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Abstract
This document describes how to use nloptr, which is an R interface

to NLopt. NLopt is a free/open-source library for nonlinear optimiza-
tion started by Steven G. Johnson, providing a common interface for a
number of different free optimization routines available online as well as
original implementations of various other algorithms. The NLopt library
is available under the GNU Lesser General Public License (LGPL), and
the copyrights are owned by a variety of authors.

1 Introduction

NLopt addresses general nonlinear optimization problems of the form:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0

h(x) = 0

xL ≤ x ≤ xU

where f(·) is the objective function and x represents the n optimization pa-
rameters. This problem may optionally be subject to the bound constraints
(also called box constraints), xL and xU . For partially or totally unconstrained
problems the bounds can take values −∞ or ∞. One may also optionally have
m nonlinear inequality constraints (sometimes called a nonlinear programming
problem), which can be specified in g(·), and equality constraints that can be
specified in h(·). Note that not all of the algorithms in NLopt can handle con-
straints.

This vignette describes how to formulate minimization problems to be solved
with the R interface to NLopt. If you want to use the C interface directly or
are interested in the Matlab interface, there are other sources of documentation
avialable. Some of the information here has been taken from the NLopt website1,
where more details are available. All credit for implementing the C code for the
different algorithms availalbe in NLopt should go to the respective authors. See
the website2 for information on how to cite NLopt and the algorithms you use.

∗This package should be considered in beta and comments about any aspect of the package
are welcome. This document is an R vignette prepared with the aid of Sweave, Leisch(2002).
Financial support of the UK Economic and Social Research Council through a grant (RES-589-
28-0001) to the ESRC Centre for Microdata Methods and Practice (CeMMAP) is gratefully
acknowledged.

1http://ab-initio.mit.edu/nlopt
2http://ab-initio.mit.edu/wiki/index.php/Citing_NLopt
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2 Installation

This package is on CRAN and can be installed from within R using

> install.packages("nloptr")

You should now be able to load the R interface to NLopt and read the help.

> library('nloptr')
> ?nloptr

The most recent experimental version of nloptr can be installed from R-Forge
using

> install.packages("nloptr",repos="http://R-Forge.R-project.org")

or from source using

> install.packages("nloptr",type="source",repos="http://R-Forge.R-project.org")

3 Minimizing the Rosenbrock Banana function

As a first example we will solve an unconstrained minimization problem. The
function we look at is the Rosenbrock Banana function

f(x) = 100
(
x2 − x2

1

)2
+ (1− x1)

2
,

which is also used as an example in the documentation for the standard R
optimizer optim. The gradient of the objective function is given by

∇f(x) =

(
−400 · x1 · (x2 − x2

1)− 2 · (1− x1)
200 · (x2 − x2

1)

)
.

Not all of the algorithms in NLopt need gradients to be supplied by the user.
We will show examples with and without supplying the gradient. After loading
the library

> library(nloptr)

we start by specifying the objective function and its gradient

> ## Rosenbrock Banana function

> eval_f <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )

}

> ## Gradient of Rosenbrock Banana function

> eval_grad_f <- function(x) {

return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),

200 * (x[2] - x[1] * x[1]) ) )

}

We define initial values
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> # initial values

> x0 <- c( -1.2, 1 )

and then minimize the function using the nloptr command. This command
runs some checks on the supplied inputs and returns an object with the exit
code of the solver, the optimal value of the objective function and the solution.
Before we can minimize the function we need to specify which algorithm we
want to use

> opts <- list("algorithm"="NLOPT_LD_LBFGS",

"xtol_rel"=1.0e-8)

Here we use the L-BFGS algorithm (Nocedal, 1980; Liu & Nocedal, 1989).
The characters LD in the algorithm show that this algorithm looks for local
minima (L) using a derivative-based (D) algorithm. Other algorithms look for
global (G) minima, or they don’t need derivatives (N). We also specified the
termination criterium in terms of the relative x-tolerance. Other termination
criteria are available (see Appendix A for a full list of options). We then solve
the minimization problem using

> # solve Rosenbrock Banana function

> res <- nloptr( x0=x0,

eval_f=eval_f,

eval_grad_f=eval_grad_f,

opts=opts)

We can see the results by printing the resulting object.

> print( res )

Call:

nloptr(x0 = x0, eval_f = eval_f, eval_grad_f = eval_grad_f, opts = opts)

Minimization using NLopt version 2.2.4

NLopt solver status: 1 ( NLOPT_SUCCESS: Generic success

return value. )

Number of Iterations....: 56

Termination conditions: xtol_rel: 1e-08

Number of inequality constraints: 0

Number of equality constraints: 0

Optimal value of objective function: 7.35727226897802e-23

Optimal value of controls: 1 1

Sometimes the objective function and its gradient contain common terms. To
economize on calculations, we can return the objective and its gradient in a list.
For the Rosenbrock Banana function we have for instance
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> ## Rosenbrock Banana function and gradient in one function

> eval_f_list <- function(x) {

common_term <- x[2] - x[1] * x[1]

return( list( "objective" = 100 * common_term^2 + (1 - x[1])^2,

"gradient" = c( -400 * x[1] * common_term - 2 * (1 - x[1]),

200 * common_term) ) )

}

which we minimize using

> res <- nloptr( x0=x0,

eval_f=eval_f_list,

opts=opts)

> print( res )

Call:

nloptr(x0 = x0, eval_f = eval_f_list, opts = opts)

Minimization using NLopt version 2.2.4

NLopt solver status: 1 ( NLOPT_SUCCESS: Generic success

return value. )

Number of Iterations....: 56

Termination conditions: xtol_rel: 1e-08

Number of inequality constraints: 0

Number of equality constraints: 0

Optimal value of objective function: 7.35727226897802e-23

Optimal value of controls: 1 1

This gives the same results as before.

4 Minimization with inequality constraints

This section shows how to minimize a function subject to inequality constraints.
This example is the same as the one used in the tutorial on the NLopt website.
The problem we want to solve is

min
x∈Rn

√
x2

s.t. x2 ≥ 0

x2 ≥ (a1x1 + b1)3

x2 ≥ (a2x1 + b2)3,

where a1 = 2, b1 = 0, a2 = −1, and b2 = 1. In order to solve this problem, we
first have to re-formulate the constraints to be of the form g(x) ≤ 0. Note that
the first constraint is a bound on x2, which we will add later. The other two
constraints can be re-written as

(a1x1 + b1)3 − x2 ≤ 0

(a2x1 + b2)3 − x2 ≤ 0.
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First we define R functions to calculate the objective function and its gradi-
ent

> # objective function

> eval_f0 <- function( x, a, b ){

return( sqrt(x[2]) )

}

> # gradient of objective function

> eval_grad_f0 <- function( x, a, b ){

return( c( 0, .5/sqrt(x[2]) ) )

}

If needed, these can of course be calculated in the same function as before. Then
we define the two constraints and the jacobian of the constraints

> # constraint function

> eval_g0 <- function( x, a, b ) {

return( (a*x[1] + b)^3 - x[2] )

}

> # jacobian of constraint

> eval_jac_g0 <- function( x, a, b ) {

return( rbind( c( 3*a[1]*(a[1]*x[1] + b[1])^2, -1.0 ),

c( 3*a[2]*(a[2]*x[1] + b[2])^2, -1.0 ) ) )

}

Note that all of the functions above depend on additional parameters, a and
b. We have to supply specific values for these when we invoke the optimization
command. The constraint function eval_g0 returns a vector with in this case
the same length as the vectors a and b. The function calculating the jacobian
of the constraint should return a matrix where the number of rows equal the
number of constraints (in this case two). The number of columns should equal
the number of control variables (two in this case as well).

After defining values for the parameters

> # define parameters

> a <- c(2,-1)

> b <- c(0, 1)

we can minimize the function subject to the constraints with the following com-
mand

> # Solve using NLOPT_LD_MMA with gradient information supplied in separate function

> res0 <- nloptr( x0=c(1.234,5.678),

eval_f=eval_f0,

eval_grad_f=eval_grad_f0,

lb = c(-Inf,0),

ub = c(Inf,Inf),

eval_g_ineq = eval_g0,

eval_jac_g_ineq = eval_jac_g0,

opts = list("algorithm" = "NLOPT_LD_MMA",

"print_level" = 2,

"check_derivatives" = TRUE,
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"check_derivatives_print" = "all"),

a = a,

b = b )

Checking gradients of objective function.

Derivative checker results: 0 error(s) detected.

eval_grad_f[ 1 ] = 0.000000e+00 ~ 0.000000e+00 [0.000000e+00]

eval_grad_f[ 2 ] = 2.098323e-01 ~ 2.098323e-01 [1.422937e-09]

Checking gradients of inequality constraints.

Derivative checker results: 0 error(s) detected.

eval_jac_g_ineq[ 1, 1 ] = 3.654614e+01 ~ 3.654614e+01 [1.667794e-08]

eval_jac_g_ineq[ 2, 1 ] = -1.642680e-01 ~ -1.642680e-01 [2.103453e-07]

eval_jac_g_ineq[ 1, 2 ] = -1.000000e+00 ~ -1.000000e+00 [0.000000e+00]

eval_jac_g_ineq[ 2, 2 ] = -1.000000e+00 ~ -1.000000e+00 [0.000000e+00]

iteration: 1

f(x) = 2.382855

g(x) = ( 9.354647,-5.690813 )

iteration: 2

f(x) = 2.356135

g(x) = ( -0.122989,-5.549587 )

iteration: 3

f(x) = 2.245864

g(x) = ( -0.531886,-5.038655 )

iteration: 4

f(x) = 2.019102

g(x) = ( -3.225104,-3.931194 )

iteration: 5

f(x) = 1.740934

g(x) = ( -2.676260,-2.761137 )

iteration: 6

f(x) = 1.404206

g(x) = ( -1.674056,-1.676216 )

iteration: 7

f(x) = 1.022295

g(x) = ( -0.748790,-0.748792 )

iteration: 8

f(x) = 0.685203

g(x) = ( -0.173206,-0.173206 )

iteration: 9

f(x) = 0.552985

g(x) = ( -0.009495,-0.009496 )

iteration: 10

f(x) = 0.544354

g(x) = ( -0.000026,-0.000025 )

iteration: 11

f(x) = 0.544331
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g(x) = ( -0.000000,0.000000 )

> print( res0 )

Call:

nloptr(x0 = c(1.234, 5.678), eval_f = eval_f0, eval_grad_f = eval_grad_f0,

lb = c(-Inf, 0), ub = c(Inf, Inf), eval_g_ineq = eval_g0,

eval_jac_g_ineq = eval_jac_g0, opts = list(algorithm = "NLOPT_LD_MMA",

print_level = 2, check_derivatives = TRUE, check_derivatives_print = "all"),

a = a, b = b)

Minimization using NLopt version 2.2.4

NLopt solver status: 4 ( NLOPT_XTOL_REACHED: Optimization

stopped because xtol_rel or xtol_abs (above) was reached.

)

Number of Iterations....: 11

Termination conditions: relative x-tolerance = 1e-04 (DEFAULT)

Number of inequality constraints: 2

Number of equality constraints: 0

Optimal value of objective function: 0.544331050645946

Optimal value of controls: 0.3333333 0.2962963

Here we supplied lower bounds for x2 in lb. There are no upper bounds for both
control variables, so we supply Inf values. If we don’t supply lower or upper
bounds, plus or minus infinity is chosen by default. The inequality constraints
and its jacobian are defined using eval_g_ineq and eval_jac_g_ineq. Not all
algorithms can handle inequality constraints, so we have to specifiy one that
does, NLOPT_LD_MMA (Svanberg, 2002).

We also specify the option print_level to obtain output during the opti-
mization process. For the available print_level values, see ?nloptr. Setting
the check_derivatives option to TRUE, compares the gradients supplied by the
user with a finite difference approximation in the initial point (x0). When this
check is run, the option check_derivatives_print can be used to print all
values of the derivative checker (all (default)), only those values that result in
an error (errors) or no output (none), in which case only the number of errors
is shown. The tolerance that determines if a difference between the analytic
gradient and the finite difference approximation results in an error can be set
using the option check_derivatives_tol (default = 1e-04). The first column
shows the value of the analytic gradient, the second column shows the value
of the finite difference approximation, and the third column shows the relative
error. Stars are added at the front of a line if the relative error is larger than
the specified tolerance.

Finally, we add all the parameters that have to be passed on to the objective
and constraint functions, a and b.

We can also use a different algorithm to solve the same minimization prob-
lem. The only thing we have to change is the algorithm that we want to use, in
this case NLOPT_LN_COBYLA, which is an algorithm that doesn’t need gradient
information (Powell, 1994, 1998).
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> # Solve using NLOPT_LN_COBYLA without gradient information

> res1 <- nloptr( x0=c(1.234,5.678),

eval_f=eval_f0,

lb = c(-Inf,0),

ub = c(Inf,Inf),

eval_g_ineq = eval_g0,

opts = list("algorithm"="NLOPT_LN_COBYLA"),

a = a,

b = b )

> print( res1 )

Call:

nloptr(x0 = c(1.234, 5.678), eval_f = eval_f0, lb = c(-Inf, 0),

ub = c(Inf, Inf), eval_g_ineq = eval_g0, opts = list(algorithm = "NLOPT_LN_COBYLA"),

a = a, b = b)

Minimization using NLopt version 2.2.4

NLopt solver status: 4 ( NLOPT_XTOL_REACHED: Optimization

stopped because xtol_rel or xtol_abs (above) was reached.

)

Number of Iterations....: 31

Termination conditions: relative x-tolerance = 1e-04 (DEFAULT)

Number of inequality constraints: 2

Number of equality constraints: 0

Optimal value of objective function: 0.544242301658176

Optimal value of controls: 0.3333292 0.2961997

5 Derivative checker

The derivative checker can be called when supplying a minimization problem to
nloptr, using the options check_derivatives, check_derivatives_tol and
check_derivatives_print, but it can also be used separately. For example,
define the function g, with vector outcome, and its gradient g_grad

> g <- function( x, a ) {

return(

c( x[1] - a[1],

x[2] - a[2],

(x[1] - a[1])^2,

(x[2] - a[2])^2,

(x[1] - a[1])^3,

(x[2] - a[2])^3

)

)

}

> g_grad <- function( x, a ) {
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return(

rbind(

c( 1, 0 ),

c( 0, 1 ),

c( 2*(x[1] - a[1]), 0 ),

c( 2*(x[1] - a[1]), 2*(x[2] - a[2]) ),

c( 3*(x[1] - a[2])^2, 0 ),

c( 0, 3*(x[2] - a[2])^2 )

)

)

}

a is some vector containing data. The gradient contains some errors in this case.
By calling the function check.derivatives we can check the user-supplied
analytic gradients with a finite difference approximation at a point .x.

> res <- check.derivatives(

.x=c(1,2),

func=g,

func_grad=g_grad,

check_derivatives_print='all',
a=c(.3, .8) )

Derivative checker results: 2 error(s) detected.

grad_f[ 1, 1 ] = 1.00e+00 ~ 1.00e+00 [0.000000e+00]

grad_f[ 2, 1 ] = 0.00e+00 ~ 0.00e+00 [0.000000e+00]

grad_f[ 3, 1 ] = 1.40e+00 ~ 1.40e+00 [9.579318e-09]

* grad_f[ 4, 1 ] = 1.40e+00 ~ 0.00e+00 [1.400000e+00]

* grad_f[ 5, 1 ] = 1.20e-01 ~ 1.47e+00 [9.183673e-01]

grad_f[ 6, 1 ] = 0.00e+00 ~ 0.00e+00 [0.000000e+00]

grad_f[ 1, 2 ] = 0.00e+00 ~ 0.00e+00 [0.000000e+00]

grad_f[ 2, 2 ] = 1.00e+00 ~ 1.00e+00 [0.000000e+00]

grad_f[ 3, 2 ] = 0.00e+00 ~ 0.00e+00 [0.000000e+00]

grad_f[ 4, 2 ] = 2.40e+00 ~ 2.40e+00 [1.179675e-08]

grad_f[ 5, 2 ] = 0.00e+00 ~ 0.00e+00 [0.000000e+00]

grad_f[ 6, 2 ] = 4.32e+00 ~ 4.32e+00 [2.593906e-08]

The errors are shown on screen, where the option check_derivatives_print

determines the amount of output you see. The value of the analytic gradient and
the value of the finite difference approximation at the supplied point is returned
in a list.

> res

$analytic

[,1] [,2]

[1,] 1.00 0.00

[2,] 0.00 1.00

[3,] 1.40 0.00

[4,] 1.40 2.40

[5,] 0.12 0.00

[6,] 0.00 4.32
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$finite_difference

[,1] [,2]

[1,] 1.00 0.00

[2,] 0.00 1.00

[3,] 1.40 0.00

[4,] 0.00 2.40

[5,] 1.47 0.00

[6,] 0.00 4.32

Note that not all errors will be picked up by the derivative checker. For instance,
if we run the check with a = c(.5, .5), one of the errors is not flagged as an
error.

6 Notes

The .R scripts in the tests directory contain more examples. For instance,
hs071.R and systemofeq.R show how to solve problems with equality con-
straints. See also http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#Augmented_Lagrangian_algorithm
for more details. Please let me know if you’re missing any of the features that
are implemented in NLopt.

Sometimes the optimization procedure terminates with a message maxtime

was reached without evaluating the objective function. Submitting the same
problem again usually solves this problem.
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A Description of options

> nloptr.print.options()

algorithm

possible values: NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L,

NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_NOSCAL,

NLOPT_GN_DIRECT_L_NOSCAL,

NLOPT_GN_DIRECT_L_RAND_NOSCAL,

NLOPT_GN_ORIG_DIRECT, NLOPT_GN_ORIG_DIRECT_L,

NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,

NLOPT_LD_SLSQP, NLOPT_LD_LBFGS_NOCEDAL,

NLOPT_LD_LBFGS, NLOPT_LN_PRAXIS, NLOPT_LD_VAR1,

NLOPT_LD_VAR2, NLOPT_LD_TNEWTON,

NLOPT_LD_TNEWTON_RESTART,

NLOPT_LD_TNEWTON_PRECOND,

NLOPT_LD_TNEWTON_PRECOND_RESTART,

NLOPT_GN_CRS2_LM, NLOPT_GN_MLSL, NLOPT_GD_MLSL,

NLOPT_GN_MLSL_LDS, NLOPT_GD_MLSL_LDS,

NLOPT_LD_MMA, NLOPT_LN_COBYLA, NLOPT_LN_NEWUOA,

NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NELDERMEAD,

NLOPT_LN_SBPLX, NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG,

NLOPT_LN_AUGLAG_EQ, NLOPT_LD_AUGLAG_EQ,

NLOPT_LN_BOBYQA, NLOPT_GN_ISRES

default value: none

This option is required. Check the NLopt website for a description of

the algorithms.

stopval

possible values: -Inf <= stopval <= Inf

default value: -Inf

Stop minimization when an objective value <= stopval is found.

Setting stopval to -Inf disables this stopping criterion (default).

ftol_rel

possible values: ftol_rel > 0

default value: 0.0

Stop when an optimization step (or an estimate of the optimum)

changes the objective function value by less than ftol_rel multiplied

by the absolute value of the function value. If there is any chance

that your optimum function value is close to zero, you might want to

set an absolute tolerance with ftol_abs as well. Criterion is

disabled if ftol_rel is non-positive (default).

ftol_abs

possible values: ftol_abs > 0

default value: 0.0
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Stop when an optimization step (or an estimate of the optimum)

changes the function value by less than ftol_abs. Criterion is

disabled if ftol_abs is non-positive (default).

xtol_rel

possible values: xtol_rel > 0

default value: 1.0e-04

Stop when an optimization step (or an estimate of the optimum)

changes every parameter by less than xtol_rel multiplied by the

absolute value of the parameter. If there is any chance that an

optimal parameter is close to zero, you might want to set an absolute

tolerance with xtol_abs as well. Criterion is disabled if xtol_rel is

non-positive.

xtol_abs

possible values: xtol_abs > 0

default value: rep( 0.0, length(x0) )

xtol_abs is a vector of length n (the number of elements in x) giving

the tolerances: stop when an optimization step (or an estimate of the

optimum) changes every parameter x[i] by less than xtol_abs[i].

Criterion is disabled if all elements of xtol_abs are non-positive

(default).

maxeval

possible values: maxeval is a positive integer

default value: 100

Stop when the number of function evaluations exceeds maxeval. This is

not a strict maximum: the number of function evaluations may exceed

maxeval slightly, depending upon the algorithm. Criterion is disabled

if maxeval is non-positive.

maxtime

possible values: maxtime > 0

default value: 0.0

Stop when the optimization time (in seconds) exceeds maxtime. This is

not a strict maximum: the time may exceed maxtime slightly, depending

upon the algorithm and on how slow your function evaluation is.

Criterion is disabled if maxtime is non-positive (default).

tol_constraints_ineq

possible values: tol_constraints_ineq > 0.0

default value: rep( 1e-8, num_constraints_ineq )

The parameter tol_constraints_ineq is a vector of tolerances. Each

tolerance corresponds to one of the inequality constraints. The
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tolerance is used for the purpose of stopping criteria only: a point

x is considered feasible for judging whether to stop the optimization

if eval_g_ineq(x) <= tol. A tolerance of zero means that NLopt will

try not to consider any x to be converged unless eval_g_ineq(x) is

strictly non-positive; generally, at least a small positive tolerance

is advisable to reduce sensitivity to rounding errors. By default the

tolerances for all inequality constraints are set to 1e-8.

tol_constraints_eq

possible values: tol_constraints_eq > 0.0

default value: rep( 1e-8, num_constraints_eq )

The parameter tol_constraints_eq is a vector of tolerances. Each

tolerance corresponds to one of the equality constraints. The

tolerance is used for the purpose of stopping criteria only: a point

x is considered feasible for judging whether to stop the optimization

if abs( eval_g_ineq(x) ) <= tol. For equality constraints, a small

positive tolerance is strongly advised in order to allow NLopt to

converge even if the equality constraint is slightly nonzero. By

default the tolerances for all equality constraints are set to 1e-8.

print_level

possible values: 0, 1, or 2

default value: 0

The option print_level controls how much output is shown during the

optimization process. Possible values: 0 (default): no output; 1:

show iteration number and value of objective function; 2: 1 + show

value of (in)equalities

check_derivatives

possible values: TRUE or FALSE

default value: FALSE

The option check_derivatives can be activated to compare the

user-supplied analytic gradients with finite difference

approximations.

check_derivatives_tol

possible values: check_derivatives_tol > 0.0

default value: 1e-04

The option check_derivatives_tol determines when a difference between

an analytic gradient and its finite difference approximation is

flagged as an error.

check_derivatives_print

possible values: 'none', 'all', 'errors',
default value: all
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The option check_derivatives_print controls the output of the

derivative checker (if check_derivatives==TRUE). All comparisons are

shown ('all'), only those comparisions that resulted in an error

('error'), or only the number of errors is shown ('none').

print_options_doc

possible values: TRUE or FALSE

default value: FALSE

If TRUE, a description of all options and their current and default

values is printed to the screen.

population

possible values: population is a positive integer

default value: 0

Several of the stochastic search algorithms (e.g., CRS, MLSL, and

ISRES) start by generating some initial population of random points

x. By default, this initial population size is chosen heuristically

in some algorithm-specific way, but the initial population can by

changed by setting a positive integer value for population. A

population of zero implies that the heuristic default will be used.

ranseed

possible values: ranseed is a positive integer

default value: 0

For stochastic optimization algorithms, pseudorandom numbers are

generated. Set the random seed using ranseed if you want to use a

'deterministic' sequence of pseudorandom numbers, i.e. the same

sequence from run to run. If ranseed is 0 (default), the seed for the

random numbers is generated from the system time, so that you will

get a different sequence of pseudorandom numbers each time you run

your program.
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