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Chapter 1

Introduction

Using stereological methods it is possible to estimate geometric parameters
(planar area, volume, surface area, number etc...) of spatial structures (2D
or 3D) from partial observations. Partial observations consist of intersections
of the spatial structure under study and figures (test sets) such as points,
quadrats, lines, planes... In practice, the figures are often systematically
distributed in the containing space: the whole sampling device forms a lattice
of figures. Such sampling devices are commonly used both because they are
easy to implement and because of their statistical efficiency, see e.g. [12].

Provided that the lattice of figures is uniformly randomly translated,
most stereological estimators turn out to be unbiased. However assessing the
precision of stereological estimators is usually not straightfoward. A naive
approach consists of considering the sampling figures as non-correlated sta-
tistical units. However as shown by Gundersen & Jensen [12], this approach
tends to overestimate the estimation variability. An alternative approach is
based on a theory developped by Kendall [15, 16] and Matheron [22, 23].
This approach provides asymptotic approximations of mean square errors
(MSE). The approximations converge when the sampling density grows.
Stereological applications of Kendall-Matheron theory have been developped
in several papers [12, 2, 13, 20, 21, 7, 8, 11, 4, 6, 9, 10, 3, 1, 5, 14].

General MSE formulae for planar area and volume estimation/predic-
tion have been derived [17, 18]. These formulae can be used for a large set
of sampling devices : point lattices, point pattern lattices, quadrat lattices,
series of parallel lines, strips... Due to their very simple form, the formu-
lae can be used to compare sampling devices independently of the spatial
structure under study. Hence they can be very useful in a priori sampling
design. Also they can be used for MSE estimation from data, see e.g. [19].
The R package pgs provides tools for computing MSE approximations and
estimates for area and volume predictors.

Notice that this document does not aim to be a self-contained introduc-
tion to methods for assessing the precision of stereological estimators. The
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reader is referred to e.g. [18, ?] for a presentation of those methods.
Note that the current version (0.2-0) of the package is still at an experi-

mental stage of development.
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Chapter 2

Installation of pgs package

2.1 Prerequisites

R is a free statistical software which consists of many packages (see http:
//www.R-project.org). R is available for many platforms (PC/Windows,
PC/Linux, Mac/OsX,...). It is assumed here that R is already installed.

We have not tested the pgs package under old versions of R. Any fairly
recent version should fit. The pgs package depends on three other R pack-
ages:

• The package methods is a standard package of R. It should be already
installed in most cases. If not, it can be downloaded and installed from
the Web site of R.

• The package R2Cuba performs numerical integration. It can be down-
loaded and installed from the Web site of R.

• The package gsl is a front end to the GNU Scientific Library. It
can be downloaded and installed from the Web site of R. Linux users
should install first the Gnu Scientific Library (http://www.gnu.org/
software/gsl/.

Most installation procedures are dependency aware and should install these
required packages if not yet installed.

2.2 Obtaining and installing pgs

The package pgs is available on CRAN (Comprehensive R Archive Network).
Therefore it can be downloaded and installed using e.g. install.packages or
package (installation and management) tools available in R GUI’s (see R
general documentation). Note that this package is distributed under the
CeCILL free license which is rather similar to the GPL license.

In order to load pgs package in a R session, just type
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> library(pgs)

in the R command window. The documentation of pgs is available in the
on-line help of R.
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Chapter 3

Lattice of figures

The sampling devices considered here are lattice of figures. A figure is a
simple geometric test set such as a single point, a finite point pattern, a
quadrat, a segment, a line or a plane. By translations, the figure is repeated
in space at regularly spaced locations. The translation vectors form a vector
lattice.

3.1 Classes of geometric objects

In pgs package, geometric entities are represented by objects. The package
operates on three classes of geometric objects:

• Simple figures are represented by objects of the class Figure.

• The vector lattices are represented by objects of the class VecLat.

• The lattices of figures are represented by objects of the class FigLat.

Note that the classes have been designed for lattices and figures in spaces
with arbitrary dimensions (not only in 2D and 3D spaces).

Most users will handle only FigLat objects generated using predefined
generating functions, see sections 3.2 and 3.3.

3.2 Specific generators of some particular planar
lattices of figures

The package provides specific generator functions for some common planar
lattices of figures:

• The figure can be a finite point pattern, a quadrat, a segment or a
line.

• The 2D vector lattices are rectangular, hexagonal or quincunx.
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For instance, the command line

> plat = PPHexLat2(delta = 1, n = 4)

creates an hexagonal lattice of point patterns with 4 points lying in a square
of side length equal to 0.2 (default value, see arguments hp and vp, below,
for changing the default value). The argument delta determines the distance
between homologous points in two neighbour point patterns. The second
argument n gives the number of points in each point pattern.

The object plat is printed as follows:

> print(plat)

2D lattice of point patterns
Vector Lattice:
An object of class "VecLat"
dimspace: 2
dimsupp: 2
determinant: 0.8660254
generating matrix:

[,1] [,2]
[1,] 1 0.5000000
[2,] 0 0.8660254
determinant: 0.8660254
Figure: PointPattern
coord:

[,1] [,2] [,3] [,4]
[1,] 0 0.2 0.2 0.0
[2,] 0 0.0 0.2 0.2

The function print displays the generating matrix of the hexagonal vector
lattice with its determinant and the column matrix coord containing the
Cartesian coordinates of the points.

Other arguments can be passed to the function PPHexLat2: hp and vp
determine the “size” of the point pattern bounding rectangle and h3 defines
the orientation of the point pattern.

Similarly, rectangular and quincunx lattices of point patterns can be
created by using the specific generator functions PPRectLat2 and PPQcxLat2.

For planar lattices of quadrats or segments, use the generators QHexLat2,
QRectLat2, SHexLat2 and SRectLat2. The function LLat2 creates planar
lattices of lines.

For a complete documentation of these functions, see the on-line help.
A plot function is implemented for planar lattices of figures. The com-

mand line

> plot(plat, xlim = c(0, 3), ylim = c(0, 3), pch = "+", cex = 0.3)

yields the graphic shown in Figure 3.1.

7



+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+
+

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+
+

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+ +
++

+
+

Figure 3.1: Plot of the object plat representing a lattice of point patterns.

3.3 Specific generators of some particular 3D lat-
tices of figures

The package provides three specific generators of 3D lattices of horizon-
tal point patterns: rectangular , body-center rectangular and face-centered
rectangular lattices of horizontal point patterns. For instance, the command
line

> p3lat = PPRectLat3(dx = 1, dy = 1, dz = 1, n = 4)

creates a 3D cubic lattice of point patterns with 4 points lying in a horizontal
square of side length equal to 0.2 (default value).

Body-centered and face-centered lattices of horizontal point patterns can
be created by using the generators PPBCRectLat3 and PPFCRectLat3.

Complete documentations of the generators are available in the on-line
help.

3.4 Generator FigLat

The generator function FigLat can be used to create user-defined lattices of
figures.

The lattice of figures plat defined above can also be obtained by the
command line

> plat = FigLat(2, HexLat2(sqrt(3)/2), PP2(n = 4, h = 1/5))

• The first argument passed to FigLat is the dimension of the space where
the structure lies (2 for planar structures).

• The second argument passed to the function FigLat is a VecLat object
representing the vector lattice.
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Such a vector lattice can be created by the general generator VecLat.
The unique argument of the function VecLat is the generating matrix
of the vector lattice.

Planar hexagonal lattices may be generated in a simpler way by the
specific generator HexLat2. The argument of the function is the deter-
minant of the generating matrix, that is the area of a fundamental tile
of the hexagonal lattice. Similarly, the generator RectLat2 is used for
planar rectangular lattices.

• The third argument defines the figure, here a point pattern represented
by a PointPattern object.

The generator PointPattern generates such objects, it takes as a unique
argument a column matrix containing the Cartesian coordinates of the
points.

The specific function PP2 creates some particular planar point pat-
terns. The 3D generator PP3 converts these planar point patterns
into horizontal 3D point patterns.
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Chapter 4

Planar area prediction

The spatial structure of interest is considered as a random compact planar
set. Note that the case where the structure is deterministic may be consid-
ered as a special case of this framework. The feature to be predicted is the
(total) area of the structure. The term“prediction” is preferred to estimation
because the area is a random variable instead of a fixed parameter.

The structure under study is sampled by a lattice of figures, see examples
in Figure 4.1. The area predictor is the “content” of the intersection of the
structure with the lattice of figures divided by the sampling intensity (mean
content of the lattice of figures seen in a region with unit area). For instance,
if the sampling device is a lattice of points, the area predictor is equal to
the number of lattice points hitting the structure multiplied by the area of
a tile of the lattice. If the sampling device is a lattice of quadrats, the area
predictor is the area of the structure observed in the quadrats divided by
the fraction of the plane covered by the quadrats.

If the lattice of figures is uniformly randomly translated, the area pre-
dictor is unbiased: the conditional mean prediction given the structure is
equal to the area. The approximations for the prediction MSE as given in
[?] are obtained under the assumption that the normals to the boundary of
the structure are isotropically distributed. Note that if the lattice of figures
is isotropically randomly rotated, the MSE approximations hold even for
anisotropic boundaries.

4.1 MSE approximation formulae in the isotropic
case

Under the assumption of isotropy, the MSE approximation formulae involve
two terms:

• one term depending only on sampling parameters and involving the
multidimensional Epstein zeta function.
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Figure 4.1: Examples of lattices of figures used for area prediction. A lattice
of figures is superimposed on a planar structure (shown in grey). The total
area of the planar structure is predicted from point counts, length or area
measurements. (a) Hexagonal lattice of points, (b) lattice of point patterns,
(c) lattice of quadrats, (d) lattice of segments, (e) lattice of (infinite) lines,
(f) lattice of (infinite) strips.
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• one term depending on the boundary of the structure under study: the
mean perimeter.

The MSE approximation is computed using the function area.mse:

> area.mse(plat, B = 1, L = 3)

[1] 0.02222672

• The first argument plat is the sampling test system.

• The second argument B is the mean perimeter of the structure (to be
provided).

• The third argument is an integer used as a criterion for stopping sum-
mation of the Epstein zeta function.

4.2 Practical design of a sampling scheme

Let us consider the case where the figure is fixed and the vector lattice is
defined up to a scaling parameter. The function latscale computes the scaling
parameter u such that the prediction coefficient of error is equal to a given
value.

> u = latscale(PPHexLat2(n = 4), A = 1, shape = 5, CE.n = 0.05,

+ upper = 2)

> u

[1] 0.3487114

• The first argument passed to the function is the lattice of figures.
The associated vector lattice is supposed to be unit (i.e. its determi-
nant must be equal to 1). The lattice of figures plat created in Sec-
tion 3.2 does not fulfill this condition (determinant equal to 0.866.
The vector lattice associated with the lattice of figures defined by
PPHexLat2(n=4) is unit.

• The second argument A is a rough estimate of the mean area.

• The third argument is a rough estimate of the shape parameter B/
√

A.
It may be determined approximately using the nomogram provided in
[12].

• The fourth parameter is the nominal coefficient of error.

• The fifth parameter is an upper bound for the interval where u is to
be searched.

Hence in order to get area predictions with a coefficient of error equal to
5%, one should use an hexagonal lattice where the spacing between homol-
ogous points is equal to 0.349.
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4.3 Variance and MSE estimation

Let us consider the case where a series of say 10 structures have been sam-
pled. The sampling lattice of figures is represented by plat, see Figure 3.1.
The point counts are given by

> counts = c(5, 3, 1, 4, 1, 3, 4, 2, 4, 5)

The area predictions are computed as follows

> areaPred = counts/(4 * plat@vlat@det)

> areaPred

[1] 1.4433757 0.8660254 0.2886751 1.1547005 0.2886751 0.8660254 1.1547005
[8] 0.5773503 1.1547005 1.4433757

The prediction variance is

> var(areaPred)

[1] 0.1814815

The prediction variance is the sum of the area variance and of the area
prediction MSE. The MSE formula as given in [?] requires parameters de-
pending on the lattice of figures and the mean perimeter of the structure
under study. Let us consider the case where the shape parameter B/

√
A

may be approximated by 5 in view of the nomogram given in [12]. The
mean perimeter is approximated by

> B = 5 * sqrt(mean(areaPred))

> B

[1] 4.805623

The MSE is computed using the function area.mse:

> area.mse(plat, B)

[1] 0.1068132

The area variance may be computed as the difference between the pre-
diction variance and the prediction MSE.

> var(areaPred) - area.mse(plat, B)

[1] 0.07466825
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Above, the MSE has been estimated based on a “visual” estimate of
the shape parameter B/

√
A. It should be noticed that some figures like

segments, lines and quadrats provide data for perimeter estimation. For
instance, consider line sampling. The total intercept length provides the
area estimate while the total number of intercepts provides the perimeter
estimate. In such a case, a MSE estimate is obtained by providing the
perimeter estimate as the argument B of the function area.mse.

Below, we focus on MSE estimation based uniquely on data used for area
prediction.

4.3.1 MSE estimation in the isotropic case

It is supposed that individual data for each sampling figure are available.
The mean perimeter estimation is based on short-range data covariations
(empirical covariogram near the origin) and depends on the sampling fig-
ure geometry. Then the MSE can be estimated by providing that mean
perimeter estimate to the function area.mse.

All estimate computations can be done with the function area.mse.est.
As an example, consider the case where a single planar structure is sam-

pled by the rectangular lattice of point patterns pplat defined by

> pplat = PPRectLat2(1, 1, 5, 0.4)

The first and second arguments are the horizontal and vertical spacings of
the vector lattice. The third and fourth arguments define the point pattern
: 5 points lying in a square of side length equal to 0.4 (4 points lying at the
square corners and one middle point).

The data to be used are contained in the matrix pp.counts displayed as

0 0 0 0 0 0 0 0 5 5 0
0 0 4 5 3 0 0 0 4 5 1
0 0 0 0 0 0 0 2 5 5 4
0 0 0 0 0 0 5 5 5 5 5
1 0 0 0 0 5 5 5 0 2 5
5 0 0 0 1 5 3 0 0 0 0
3 1 0 1 5 3 0 0 0 0 0
0 4 4 5 5 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0

Each entry of the matrix pp.counts contains the individual data of a
sampling point pattern. The matrix may be filled from input files: either
text or csv files (use respectively the functions read.table or read.csv).

The sampling grid parameters and the collected data are passed as ar-
guments to the function FigLatData.

> ppldata = FigLatData(pplat, pp.counts)
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Both the mean perimeter and MSE estimates can be computed with the
function area.mse.est:

> area.mse.est(ppldata, mse.only = FALSE, iso = TRUE)

$B.est
[1] 41.47922

$mse.est
[1] 0.5150249

• The first argument passed to the function is the lattice of figures and
the array containing the data. The data array is reduced to a matrix
(as in the example) when a single structure is sampled.

• The second argument is set equal to TRUE (the default value is
FALSE) to specify that estimates must be computed under the as-
sumption of isotropy.

• The third argument is set equal to TRUE (default value) if both the
mean perimeter and MSE estimates are required. Otherwise, only the
MSE estimate is provided.

The function area.mse.est has an extra argument diff2use defining the
data covariations to be used for the MSE estimation. See the on-line help
for more details.

4.3.2 MSE estimation under mild anisotropy

The MSE estimation method can be extended to the case where the bound-
ary can be made isotropic by a specific area preserving deformation: stretch-
ing the structure along a given direction, compressing it in the orthogonal
direction. For sake of simplicity, this transformation is called stretching.
The stretching is applied to both the structure and the lattice of figures.
For the extension to be valid, the data provided to the function area.mse.est
must be invariant under the stretching. This is the case, for example, for
lattices of point patterns and quadrats.

The function area.mse.est first estimates the stretching in order to provide
the mean perimeter and the MSE estimates.

For the lattice of point patterns and the data given in ppldata, one gets

> area.mse.est(ppldata, mse.only = FALSE, iso = FALSE)

$B.est
[1] 40.47671
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$deformation
[,1] [,2]

[1,] -0.9363625 -0.6710058
[2,] 0.5056472 -0.7056111

$mse.est
[1] 0.468871

The argument iso is set equal to FALSE to specify that a stretching has
to be applied.

The component list deformation returned by area.mse.est defines the
stretching matrix.
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