
Package ‘pomp’
January 11, 2012

Type Package

Title Statistical inference for partially observed Markov processes

Version 0.40-2

Date 2012-01-11

Author Aaron A. King, Edward L. Ionides, Carles Breto, Steve Ellner, Bruce Kendall, Helen Wear-
ing, Matthew J. Ferrari, Michael Lavine, Daniel C. Reuman

Maintainer Aaron A. King <kingaa@umich.edu>

URL http://pomp.r-forge.r-project.org

Description Inference methods for partially-observed Markov processes

Depends R(>= 2.10.1), stats, methods, graphics, mvtnorm, subplex, deSolve

License GPL(>= 2)

LazyLoad true

LazyData false

Collate aaa.R version.R eulermultinom.R plugins.R
parmat.R slice-design.R profile-design.R sobol.R bsplines.R sannbox.R
pomp-fun.R pomp.R pomp-methods.R rmeasure-pomp.R rprocess-pomp.R init-state-pomp.R
dmeasure-pomp.R dprocess-pomp.R skeleton-pomp.R simulate-pomp.R trajectory-pomp.R plot-
pomp.R pfilter.R pfilter-methods.R traj-match.R bsmc.R
mif-class.R particles-mif.R mif.R mif-methods.R compare-mif.R
pmcmc.R pmcmc-methods.R compare-pmcmc.R nlf-funcs.R nlf-guts.R nlf-objfun.R nlf.R
probe.R probe-match.R basic-probes.R spect.R spect-match.R

R topics documented:
pomp-package . 2
B-splines . 3
basic.probes . 5

1

http://pomp.r-forge.r-project.org

2 pomp-package

blowflies . 7
bsmc . 7
dacca . 9
eulermultinom . 10
gompertz . 12
LondonYorke . 12
mif . 13
mif-methods . 16
nlf . 18
ou2 . 20
parmat . 21
pfilter . 21
pfilter-methods . 24
plugins . 25
pmcmc . 28
pmcmc-methods . 30
pomp . 31
pomp-methods . 38
probe . 41
probed.pomp-methods . 44
profileDesign . 46
ricker . 47
rw2 . 47
simulate-pomp . 48
sir . 49
sliceDesign . 50
sobol . 51
spect . 52
traj.match . 55
trajectory . 57
verhulst . 58

Index 59

pomp-package Partially-observed Markov processes

Description

The pomp package provides facilities for inference on time series data using partially-observed
Markov processes (AKA state-space models or nonlinear stochastic dynamical systems). One can
use pomp to fit nonlinear, non-Gaussian dynamic models to time-series data. The first step in using
pomp is to encode one’s model and data in an object of class pomp. One does this via a call to
pomp, which involves specifying the process and measurement components of the model in one or
more of a variety of ways. Details on this are given in the documentation for the pomp function and
examples are given in the ‘intro_to_pomp’ vignette.

B-splines 3

Currently, pomp provides algorithms for (i) simulation of stochastic dynamical systems (see simulate),
(ii) particle filtering (AKA sequential Monte Carlo or sequential importance sampling), see pfilter),
(iii) the iterated filtering method of Ionides et al. (2006), see mif), (iv) the nonlinear forecast-
ing algorithm of Kendall et al. (2005), see nlf), (v) the particle MCMC approach of Andrieu
et al. (2010), see pmcmc, (vi) basic trajectory matching, see traj.match, (vi) the probe-matching
method of Wood (2010) and Kendall et al. (1999), see probe.match, (vii) a spectral probe-matching
method (Reuman et al., 2006), see spect.match. See the package website http://pomp.r-forge.
r-project.org for these references. The package also provides various tools for plotting and ex-
tracting information on models and data as well as an API for algorithm development. Future
support for additional algorithms in envisioned, and implementations of the Bayesian sequential
Monte Carlo approach of Liu \& West. Much of the work in pomp has been done under the aus-
pices of a working group of the National Center for Ecological Analysis and Synthesis (NCEAS),
"Inference for Mechanistic Models".

The package is provided under the GNU Public License (GPL). Contributions are welcome, as
are comments, suggestions for improvements, and bug reports. See the package website http:
//pomp.r-forge.r-project.org for more information, access to the package mailing list, links
to the authors’ websites, and references to the literature.

Classes

pomp makes extensive use of S4 classes. The basic class, pomp, encodes a partially-observed
Markov process together with a uni- or multi-variate data set and (possibly) parameters.

Vignettes

The vignette ‘Introduction to pomp’ illustrates the facilities of the package using familiar stochastic
processes. Run vignette("intro_to_pomp") or look at the HTML documentation to view the
vignette. Methods for accelerating your codes are discussed in the ‘Advanced topics in pomp’
vignette; run vignette("advanced_topics_in_pomp") to view it.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp, pfilter, simulate, trajectory, mif, nlf, probe.match, traj.match, bsmc, pmcmc

B-splines B-spline bases

Description

These functions generate B-spline basis functions. bspline.basis gives a basis of spline functions.
periodic.bspline.basis gives a basis of periodic spline functions.

http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org
http://pomp.r-forge.r-project.org

4 B-splines

Usage

bspline.basis(x, nbasis, degree = 3, names = NULL)
periodic.bspline.basis(x, nbasis, degree = 3, period = 1, names = NULL)

Arguments

x Vector at which the spline functions are to be evaluated.

nbasis The number of basis functions to return.

degree Degree of requested B-splines.

period The period of the requested periodic B-splines.

names optional; the names to be given to the basis functions. These will be the column-
names of the matrix returned. If the names are specified as a format string
(e.g., "basis%d"), sprintf will be used to generate the names from the column
number. If a single non-format string is specified, the names will be generated
by paste-ing name to the column number. One can also specify each column
name explicitly by giving a length-nbasis string vector. By default, no column-
names are given.

Details

Direct access to the underlying C routines is available. See the header file “pomp.h” for details.

Value

bspline.basis Returns a matrix with length(x) rows and nbasis columns. Each column
contains the values one of the spline basis functions.

periodic.bspline.basis

Returns a matrix with length(x) rows and nbasis columns. The basis func-
tions returned are periodic with period period.

Author(s)

Aaron A. King <kingaa at umich dot edu>

Examples

x <- seq(0,2,by=0.01)
y <- bspline.basis(x,degree=3,nbasis=9,names="basis")
matplot(x,y,type=’l’,ylim=c(0,1.1))
lines(x,apply(y,1,sum),lwd=2)

x <- seq(-1,2,by=0.01)
y <- periodic.bspline.basis(x,nbasis=5,names="spline%d")
matplot(x,y,type=’l’)

basic.probes 5

basic.probes Some probes for partially-observed Markov processes

Description

Several simple and configurable probes are provided in the package. These can be used directly and
as examples for building custom probes.

Usage

probe.mean(var, trim = 0, transform = identity, na.rm = TRUE)
probe.median(var, na.rm = TRUE)
probe.var(var, transform = identity, na.rm = TRUE)
probe.sd(var, transform = identity, na.rm = TRUE)
probe.marginal(var, ref, order = 3, diff = 1, transform = identity)
probe.nlar(var, lags, powers, transform = identity)
probe.acf(var, lags, type = c("covariance", "correlation"),

transform = identity)
probe.ccf(vars, lags, type = c("covariance", "correlation"),

transform = identity)
probe.period(var, kernel.width, transform = identity)
probe.quantile(var, prob, transform = identity)

Arguments

var, vars character; the name(s) of the observed variable(s).

trim the fraction of observations to be trimmed (see mean).

transform transformation to be applied to the data before the probe is computed.

na.rm if TRUE, remove all NA observations prior to computing the probe.

kernel.width width of modified Daniell smoothing kernel to be used in power-spectrum com-
putation: see kernel.

prob a single probability; the quantile to compute: see quantile.

lags In probe.ccf, a vector of lags between time series. Positive lags correspond to
x advanced relative to y; negative lags, to the reverse.
In probe.nlar, a vector of lags present in the nonlinear autoregressive model
that will be fit to the actual and simulated data. See Details, below, for a precise
description.

powers the powers of each term (corresponding to lags) in the the nonlinear autoregres-
sive model that will be fit to the actual and simulated data. See Details, below,
for a precise description.

type Compute autocorrelation or autocovariance?

ref empirical reference distribution. Simulated data will be regressed against the
values of ref, sorted and, optionally, differenced. The resulting regression co-
efficients capture information about the shape of the marginal distribution. A
good choice for ref is the data itself.

6 basic.probes

order order of polynomial regression.

diff order of differencing to perform.

... Additional arguments to be passed through to the probe computation.

Details

Each of these functions is relatively simple. See the source code for a complete understanding of
what each does.

probe.mean, probe.median, probe.var, probe.sd return functions that compute the mean, me-
dian, variance, and standard deviation of variable var, respectively.

probe.period returns a function that estimates the period of the Fourier component of the var
series with largest power.

probe.marginal returns a function that regresses the marginal distribution of variable var against
the reference distribution ref. If diff>0, the data and the reference distribution are first
differenced diff times and centered. Polynomial regression of order order is used. This
probe returns order regression coefficients (the intercept is zero).

probe.nlar returns a function that fit a nonlinear (polynomial) autoregressive model to the uni-
variate series (variable var). Specifically, a model of the form yt =

∑
βky

pk
t−τk + εt will be

fit, where τk are the lags and pk are the powers. The data are first centered. This function
returns the regression coefficients, βk.

probe.acf returns a function that, if type=="covariance", computes the autocovariance of vari-
able var at lags lags; if type=="correlation", computes the autocorrelation of variable var
at lags lags.

probe.ccf returns a function that, if type=="covariance", computes the cross covariance of the
two variables named in vars at lags lags; if type=="correlation", computes the cross
correlation.

probe.quantile returns a function that estimates the prob-th quantile of variable var.

Value

A call to any one of these functions returns a probe function, suitable for use in probe or probe.match.
That is, the function returned by each of these takes a data array (such as comes from a call to obs)
as input and returns a single numerical value.

Author(s)

Daniel C. Reuman (d.reuman at imperial dot ac dot uk)

Aaron A. King (kingaa at umich dot edu)

References

B. E. Kendall, C. J. Briggs, W. M. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nis-
bet, S. N. Wood Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches, Ecology, 80:1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466:
1102–1104, 2010.

blowflies 7

See Also

pomp-class, pomp-methods

blowflies Model for Nicholson’s blowflies.

Description

blowfly1 and blowfly2 are pomp objects encoding stochastic delay-difference models.

Usage

data(blowflies)

See Also

pomp-class and the vignettes

Examples

data(blowflies)
plot(blowflies1)
plot(blowflies2)

bsmc Liu and West Bayesian Particle Filter

Description

Generates draws from the posterior distribution for the parameters using the Liu and West algorithm.
bsmc gives draws from the posterior.

Usage

S4 method for signature ’pomp’
bsmc(object, params, Np, est, smooth = 0.1,

ntries = 1, tol = 1e-17, lower = -Inf, upper = Inf, seed = NULL,
verbose = getOption("verbose"), max.fail = 0, ...)

8 bsmc

Arguments

object An object of class pomp or inheriting class pomp.

params A npars x Np matrix (with rownames) containing the parameters corresponding
to the initial state values in xstart. Np is the number of particles, i.e., each
row should contain Np draws from the prior distribution for that parameter. It
is permissible to supply params as a named numeric vector, i.e., without a dim
attribute. In this case, all particles will inherit the same parameter values, which
is equivalent to a degenerate prior.

Np If params is specified as a named vector, Np specifies the number of particles to
use. If params is specified as a matrix, Np should not be specified; it is taken to
be the number of columns of params.

est Names of the rows of params that are to be estimated. No updates will be made
to the other parameters. If est is not specified, all parameters for which there is
variation in params will be estimated.

smooth Kernel density smoothing parameters. The compensating shrinkage factor will
be sqrt(1-smooth^2). Thus, smooth=0 means that no noise will be added to
parameters. Generally, the value of smooth should be chosen close to 0 (i.e.,
shrink~0.1).

ntries Number of draws from rprocess per particle used to estimate the expected
value of the state process at time t+1 given the state and parameters at time t.

tol Particles with log likelihood below tol are considered to be “lost”. A filtering
failure occurs when, at some time point, all particles are lost. When all particles
are lost, the conditional log likelihood at that time point is set to be log(tol).

lower, upper optional; lower and upper bounds on the priors. This is useful in case there are
box constraints satisfied by the priors. The posterior is guaranteed to lie within
these bounds.

seed optional; an object specifying if and how the random number generator should
be initialized (‘seeded’). If seed is an integer, it is passed to set.seed prior
to any simulation and is returned as the “seed” element of the return list. By
default, the state of the random number generator is not changed and the value
of .Random.seed on the call is stored in the “seed” element of the return list.

verbose logical; if TRUE, print diagnostic messages.

max.fail The maximum number of filtering failures allowed. If the number of filtering
failures exceeds this number, execution will terminate with an error.

... currently ignored.

Value

A list with the following elements:

post A matrix containing draws from the approximate posterior distribution.

prior A matrix containing draws from the prior distribution (identical to params on
call).

eff.sample.size

A vector containing the effective number of particles at each time point.

dacca 9

cond.loglik A vector containing the conditional log likelihoods at each time point.

smooth The smoothing parameter used (see above).

seed The state of the random number generator at the time bsmc was called. If the
argument seed was specified, this is a copy; if not, this is the internal state of
the random number generator at the time of call.

nfail The number of filtering failures encountered.

loglik The estimated log-likelihood.

weights The resampling weights for each particle.

Author(s)

Michael Lavine (lavine at math dot umass dot edu), Matthew Ferrari (mferrari at psu dot edu),
Aaron A. King

See Also

pomp-class

Examples

See the vignettes for examples.

dacca Model of cholera transmission for historic Bengal.

Description

dacca is a pomp object containing census and cholera mortality data from the Dacca district of the
former British province of Bengal over the years 1891 to 1940 together with a stochastic differential
equation transmission model. The model is that of King et al. (2008). The parameters are the MLE
for the SIRS model with seasonal reservoir.

Data are provided courtesy of Dr. Menno J. Bouma, London School of Tropical Medicine and
Hygiene.

Usage

data(dacca)

Details

dacca is a pomp object containing the model, data, and MLE parameters. Parameters that natu-
rally range over the positive reals are log-transformed; parameters that range over the unit interval
are logit-transformed; parameters that are naturally unbounded or take integer values are not trans-
formed.

10 eulermultinom

References

King, A. A., Ionides, E. L., Pascual, M., and Bouma, M. J. Inapparent infections and cholera
dynamics. Nature 454:877-880 (2008)

See Also

euler.sir, pomp

Examples

data(dacca)
plot(dacca)
#MLEs on the natural scale
coef(dacca,transform=TRUE)
plot(simulate(dacca))
now change ’eps’ and simulate again
coef(dacca,"eps",transform=TRUE) <- 1
plot(simulate(dacca))

eulermultinom Euler-multinomial death process

Description

Density and random-deviate generation for the Euler-multinomial death process with parameters
size, rate, and dt.

Usage

reulermultinom(n = 1, size, rate, dt)
deulermultinom(x, size, rate, dt, log = FALSE)

Arguments

n integer; number of random variates to generate.

size scalar integer; number of individuals at risk.

rate numeric vector of hazard rates.

dt numeric scalar; duration of Euler step.

x matrix or vector containing number of individuals that have succumbed to each
death process.

log logical; if TRUE, return logarithm(s) of probabilities.

eulermultinom 11

Details

If N individuals face constant hazards of death in k ways at rates r1, r2, . . . , rk, then in an interval
of duration ∆t, the number of individuals remaining alive and dying in each way is multinomially
distributed:

(N −
k∑
i=1

∆ni,∆n1, . . . ,∆nk) ∼ multinomial(N ; p0, p1, . . . , pk),

where ∆ni is the number of individuals dying in way i over the interval, the probability of remaining
alive is p0 = exp(−

∑
i ri∆t), and the probability of dying in way j is

pj =
rj∑
i ri

(1− exp(−
∑
i

ri∆t)).

In this case, we can say that

(∆n1, . . . ,∆nk) ∼ eulermultinom(N, r,∆t),

where r = (r1, . . . , rk). Draw m random samples from this distribution by doing

reulermultinom(n=m,size=N,rate=r,dt=dt),

where r is the vector of rates. Evaluate the probability that x = (x1, . . . , xk) are the numbers of
individuals who have died in each of the k ways over the interval ∆t =dt, by doing

deulermultinom(x=x,size=N,rate=r,dt=dt).

Direct access to the underlying C routines is available: see the header file “pomp.h”, included with
the package.

Value

reulermultinom Returns a length(rate) by n matrix. Each column is a different random draw.
Each row contains the numbers of individuals succumbed to the corresponding
process.

deulermultinom Returns a vector (of length equal to the number of columns of x) containing
the probabilities of observing each column of x given the specified parameters
(size, rate, dt).

Author(s)

Aaron A. King <kingaa at umich dot edu>

Examples

print(x <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=0.1))
deulermultinom(x,size=100,rate=c(1,2,3),dt=0.1)

12 LondonYorke

gompertz Gompertz model with log-normal observations.

Description

gompertz is a pomp object encoding a stochastic Gompertz population model with log-normal mea-
surement error.

Usage

data(gompertz)

Details

The state process is Xt+1 = K(1−S)XS
t εt, where S = e−r and the εt are i.i.d. lognormal ran-

dom deviates with variance σ2. The observed variables Yt are distributed as lognormal(logXt, τ).
Parameters include the per-capita growth rate r, the carrying capacity K, the process noise s.d.
sigma, the measurement error s.d. tau, and the initial condition X0. The model is parameterized
internally by the logarithms of r, K, σ, and τ ; the initial condition is parameterized directly. The
pomp object includes parameter transformations to and from this internal parameterization.

See Also

pomp-class and the introductory vignette vignette("intro_to_pomp").

Examples

data(gompertz)
plot(gompertz)
coef(gompertz)
coef(gompertz,transform=TRUE)

LondonYorke Historical childhood disease incidence data

Description

LondonYorke is a data-frame containing the monthly number of reported cases of chickenpox,
measles, and mumps from two American cities (Baltimore and New York) in the mid-20th century
(1928–1972).

Usage

data(LondonYorke)

mif 13

References

W. P. London and J. A. Yorke, Recurrent Outbreaks of Measles, Chickenpox and Mumps: I. Sea-
sonal Variation in Contact Rates, American Journal of Epidemiology, 98:453–468, 1973.

See Also

pomp-class and the vignettes

Examples

data(LondonYorke)

plot(cases~time,data=LondonYorke,subset=disease=="measles",type=’n’,main="measles",bty=’l’)
lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="Baltimore",col="red")
lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="New York",col="blue")
legend("topright",legend=c("Baltimore","New York"),lty=1,col=c("red","blue"),bty=’n’)

plot(
cases~time,
data=LondonYorke,
subset=disease=="chickenpox"&town=="New York",
type=’l’,col="blue",main="chickenpox, New York",
bty=’l’
)

plot(
cases~time,
data=LondonYorke,
subset=disease=="mumps"&town=="New York",
type=’l’,col="blue",main="mumps, New York",
bty=’l’
)

mif The MIF algorithm

Description

The MIF algorithm for estimating the parameters of a partially-observed Markov process.

Usage

mif(object, ...)
S4 method for signature ’pomp’
mif(object, Nmif = 1, start, pars, ivps = character(0),

particles, rw.sd, Np, ic.lag, var.factor, cooling.factor,
weighted = TRUE, tol = 1e-17, max.fail = 0,
verbose = getOption("verbose"), ...)

S4 method for signature ’pfilterd.pomp’

14 mif

mif(object, Nmif = 1, start, pars, ivps = character(0),
particles, rw.sd, Np, ic.lag, var.factor, cooling.factor,
weighted = TRUE, tol, max.fail = 0,
verbose = getOption("verbose"), ...)

S4 method for signature ’mif’
mif(object, Nmif, start, pars, ivps,

particles, rw.sd, Np, ic.lag, var.factor, cooling.factor,
weighted = TRUE, tol, max.fail = 0,
verbose = getOption("verbose"), ...)

S4 method for signature ’mif’
continue(object, Nmif = 1, start, pars, ivps,

particles, rw.sd, Np, ic.lag, var.factor, cooling.factor,
weighted = TRUE, tol, max.fail = 0,
verbose = getOption("verbose"), ...)

Arguments

object An object of class pomp.

Nmif The number of MIF iterations to perform.

start named numerical vector; the starting guess of the parameters.

pars optional character vector naming the ordinary parameters to be estimated. Every
parameter named in pars must have a positive random-walk standard deviation
specified in rw.sd. Leaving pars unspecified is equivalent to setting it equal to
the names of all parameters with a positive value of rw.sd that are not ivps.

ivps optional character vector naming the initial-value parameters (IVPs) to be es-
timated. Every parameter named in ivps must have a positive random-walk
standard deviation specified in rw.sd. If pars is empty, i.e., only IVPs are to be
estimated, see below “"Using MIF to estimate initial-value parameters only"”.

particles Function of prototype particles(Np,center,sd,...) which sets up the start-
ing particle matrix by drawing a sample of size Np from the starting particle
distribution centered at center and of width sd. If particles is not supplied
by the user, the default behavior is to draw the particles from a multivariate
normal distribution with mean center and standard deviation sd.

rw.sd numeric vector with names; the intensity of the random walk to be applied to
parameters. The random walk is only applied to parameters named in pars (i.e.,
not to those named in ivps). The algorithm requires that the random walk be
nontrivial, so each element in rw.sd[pars] must be positive. rw.sd is also used
to scale the initial-value parameters (via the particles function). Therefore,
each element of rw.sd[ivps] must be positive. The following must be satisfied:
names(rw.sd) must be a subset of names(start), rw.sd must be non-negative
(zeros are simply ignored), the name of every positive element of rw.sd must
be in either pars or ivps.

Np the number of particles to use in filtering. This may be specified as a single
positive integer, in which case the same number of particles will be used at each
timestep. Alternatively, if one wishes the number of particles to vary across

mif 15

timestep, one may specify Np either as a vector of positive integers (of length
length(time(object,t0=TRUE))) or as a function taking a positive integer
argument. In the latter case, Np(k) must be a single positive integer, represent-
ing the number of particles to be used at the k-th timestep: Np(0) is the num-
ber of particles to use going from timezero(object) to time(object)[1],
Np(1), from timezero(object) to time(object)[1], and so on, while when
T=length(time(object,t0=TRUE)), Np(T) is the number of particles to sam-
ple at the end of the time-series.

ic.lag a positive integer; the timepoint for fixed-lag smoothing of initial-value param-
eters. The mif update for initial-value parameters consists of replacing them by
their filtering mean at time times[ic.lag], where times=time(object). It
makes no sense to set ic.lag>length(times); if it is so set, ic.lag is set to
length(times) with a warning.

var.factor a positive number; the scaling coefficient relating the width of the starting parti-
cle distribution to rw.sd. In particular, the width of the distribution of particles
at the start of the first MIF iteration will be random.walk.sd*var.factor.

cooling.factor a positive number not greater than 1; the exponential cooling factor, alpha.

weighted logical; if TRUE, the MIF update (a weighted average) is used. If FALSE, the
MIF update is not used; instead, an unweighed average of the filtering means is
used for the update.

tol numeric scalar; particles with log likelihood below tol are considered to be
“lost”. A filtering failure occurs when, at some time point, all particles are lost.

max.fail integer; maximum number of filtering failures permitted. If the number of fail-
ures exceeds this number, execution will terminate with an error.

verbose logical; if TRUE, print progress reports.

... additional arguments. Currently, these are ignored.

Re-running MIF Iterations

To re-run a sequence of MIF iterations, one can use the mif method on a mif object. By default, the
same parameters used for the original MIF run are re-used (except for weighted, tol, max.fail,
and verbose, the defaults of which are shown above). If one does specify additional arguments,
these will override the defaults.

Continuing MIF Iterations

One can resume a series of MIF iterations from where one left off using the continue method. A
call to mif to perform Nmif=m iterations followed by a call to continue to perform Nmif=n iterations
will produce precisely the same effect as a single call to mif to perform Nmif=m+n iterations. By
default, all the algorithmic parameters are the same as used in the original call to mif. Additional
arguments will override the defaults.

Using MIF to estimate initial-value parameters only

One can use MIF’s fixed-lag smoothing to estimate only initial value parameters (IVPs). In this
case, pars is left empty and the IVPs to be estimated are named in ivps. If theta is the current
parameter vector, then at each MIF iteration, Np particles are drawn from a distribution centered

16 mif-methods

at theta and with width proportional to var.factor*rw.sd, a particle filtering operation is per-
formed, and theta is replaced by the filtering mean at time(object)[ic.lag]. Note the impli-
cation that, when mif is used in this way on a time series any longer than ic.lag, unnecessary
work is done. If the time series in object is longer than ic.lag, consider replacing object with
window(object,end=ic.lag).

Details

If particles is not specified, the default behavior is to draw the particles from a multivariate normal
distribution. It is the user’s responsibility to ensure that, if the optional particles argument
is given, that the particles function satisfies the following conditions:

particles has at least the following arguments: Np, center, sd, and Np may be assumed to be
a positive integer; center and sd will be named vectors of the same length. Additional arguments
may be specified; these will be filled with the elements of the userdata slot of the underlying pomp
object (see pomp-class).

particles returns a length(center) x Np matrix with rownames matching the names of center
and sd. Each column represents a distinct particle.

The center of the particle distribution returned by particles should be center. The width of the
particle distribution should vary monotonically with sd. In particular, when sd=0, the particles
should return matrices with Np identical columns, each given by the parameters specified in center.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

E. L. Ionides, C. Bret\’o, & A. A. King, Inference for nonlinear dynamical systems, Proc. Natl.
Acad. Sci. U.S.A., 103:18438–18443, 2006.

A. A. King, E. L. Ionides, M. Pascual, and M. J. Bouma, Inapparent infections and cholera dynam-
ics, Nature, 454:877–880, 2008.

See Also

mif-methods, pomp, pomp-class, pfilter. See the “intro_to_pomp” vignette for examples.

mif-methods Methods of the "mif" class

Description

Methods of the "mif" class.

mif-methods 17

Usage

S4 method for signature ’mif’
logLik(object, ...)
S4 method for signature ’mif’
conv.rec(object, pars, transform = FALSE, ...)
S4 method for signature ’mif’
plot(x, y = NULL, ...)
compare.mif(z)

Arguments

object The mif object.
pars Names of parameters.
x The mif object.
y Ignored.
z A mif object or list of mif objects.
transform optional logical; should the parameter transformations be applied? See coef for

details.
... Further arguments (either ignored or passed to underlying functions).

Methods

conv.rec conv.rec(object, pars = NULL) returns the columns of the convergence-record matrix
corresponding to the names in pars. By default, all rows are returned.

logLik Returns the value in the loglik slot.
mif Re-runs the MIF iterations. See the documentation for mif.
compare.mif Given a mif object or a list of mif objects, compare.mif produces a set of diagnostic

plots.
plot Plots a series of diagnostic plots. When x is a mif object, plot(x) is equivalent to compare.mif(list(x)).
predvarplot predvarplot(object, pars = NULL, mean = FALSE, ...) produces a plot of

the scaled prediction variances for each parameter. This can be used to diagnose a good value
of the mif parameters var.factor and ic.lag. If used in this way, one should run mif with
Nmif=1 first. Additional arguments in ... will be passed to the actual plotting function.

print Prints a summary of the mif object.
show Displays the mif object.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

E. L. Ionides, C. Bret\’o, & A. A. King, Inference for nonlinear dynamical systems, Proc. Natl.
Acad. Sci. U.S.A., 103:18438–18443, 2006.

A. A. King, E. L. Ionides, M. Pascual, and M. J. Bouma, Inapparent infections and cholera dynam-
ics, Nature, 454:877–880, 2008.

18 nlf

See Also

mif, pomp, pomp-class, pfilter

nlf Fit Model to Data Using Nonlinear Forecasting (NLF)

Description

Calls an optimizer to maximize the nonlinear forecasting (NLF) goodness of fit, by simulating data
from a model, fitting a nonlinear autoregressive model to the simulated time series (which may be
multivariate) and using the fitted model to predict some or all variables in the data time series. NLF
is an ‘indirect inference’ method using a quasi-likelihood as the objective function.

Usage

nlf(object, start, est, lags, period = NA, tensor = FALSE,
nconverge=1000, nasymp=1000, seed = 1066,
transform = function (x) x,
nrbf = 4, method = "subplex", skip.se = FALSE,
verbose = FALSE, gr = NULL,
bootstrap=FALSE, bootsamp = NULL,
lql.frac = 0.1, se.par.frac = 0.1, eval.only = FALSE, ...)

Arguments

object A pomp object, with the data and model to fit to it.

start Named numeric vector with guessed parameters.

est Vector containing the names or indices of parameters to be estimated.

lags A vector specifying the lags to use when constructing the nonlinear autoregres-
sive prediction model. The first lag is the prediction interval.

period numeric; period=NA means the model is nonseasonal. period>0 is the period of
seasonal forcing in ’real time’.

tensor logical; if FALSE, the fitted model is a generalized additive model with time
mod period as one of the predictors, i.e., a gam with time-varying intercept. If
TRUE, the fitted model is a gam with lagged state variables as predictors and
time-periodic coefficients, constructed using tensor products of basis functions
of state variables with basis functions of time.

nconverge Number of convergence timesteps to be discarded from the model simulation.

nasymp Number of asymptotic timesteps to be recorded from the model simulation.

seed Integer specifying the random number seed to use. When fitting, it is usually
best to always run the simulations with the same sequence of random numbers,
which is accomplished by setting seed to an integer. If you want a truly random
simulation, set seed=NULL.

nlf 19

transform optional function. If specified, forecasting is performed using data and model
simulations transformed by this function. By default, transform is the identity
function. The main purpose of transform is to achieve approximately multi-
variate normal forecasting errors. If data are univariate, transform should take
a scalar and return a scalar. If data are multivariate, transform should assume
a vector input and return a vector of the same length.

nrbf A scalar specifying the number of radial basis functions to be used at each lag.

method Optimization method. Choices are subplex and any of the methods used by
optim.

skip.se Logical; if TRUE, skip the computation of standard errors.

verbose Logical; if TRUE, the negative log quasilikelihood and parameter values are
printed at each iteration of the optimizer.

gr optional; passed to optim if optim is used.

bootstrap Logical; if TRUE the indices in bootsamp will determine which of the conditional
likelihood values be used in computing the quasi-loglikelihood.

bootsamp Vector of integers; used to have the quasi-loglikelihood evaluated using a boot-
strap re-sampling of the data set.

lql.frac target fractional change in log quasi-likelihood for quadratic standard error esti-
mate

se.par.frac initial parameter-change fraction for quadratic standard error estimate

eval.only logical; if TRUE, no optimization is attempted and the quasi-loglikelihood value
is evaluated at the start parameters.

... Arguments that will be passed to optim or subplex in the control list.

Details

This is functionally a wrapper for nlf.objfun, which does the statistical heavy lifting and should
be consulted for details.

Value

A list corresponding to the output from the optimizer, except that the full parameter vector is re-
turned (not just the ones fitted), the log quasilikelihood (LQL) (not -LQL) is reported, xstart is
included, and asymptotic Wald standard errors based on M-estimator theory are returned for each
fitted parameter.

Author(s)

Stephen P. Ellner <spe2 at cornell dot edu> and Bruce E. Kendall <kendall at bren dot
ucsb dot edu>

References

The following papers describe and motivate the NLF approach to model fitting:

20 ou2

Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T. and Nychka D. W. (1998)
Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to
population modeling. American Naturalist 151, 425–440.

Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R.
M. and Wood S. N. (1999) Why do populations cycle? A synthesis of statistical and mechanistic
modeling approaches. Ecology 80, 1789–1805. Available online at http://www2.bren.ucsb.
edu/~kendall/pubs/1999Ecology.pdf

Kendall, B. E., Ellner, S. P., McCauley, E., Wood, S. N., Briggs, C. J., Murdoch, W. W. and
Turchin, P. (2005) Population cycles in the pine looper moth (Bupalus piniarius): dynamical tests
of mechanistic hypotheses. Ecological Monographs 75, 259–276. Available online at http:
//repositories.cdlib.org/postprints/818/

ou2 Two-dimensional discrete-time Ornstein-Uhlenbeck process

Description

ou2 is a pomp object encoding a bivariate discrete-time Ornstein-Uhlenbeck process.

Usage

data(ou2)

Details

If the state process is X(t) = (x1(t), x2(t)), then

X(t+ 1) = αX(t) + σε(t),

where α and σ are 2x2 matrices, σ is lower-triangular, and ε(t) is standard bivariate normal. The
observation process is Y (t) = (y1(t), y2(t)), where yi(t) ∼ normal(xi(t), τ). The functions
rprocess, dprocess, rmeasure, dmeasure, and skeleton are implemented using compiled C
code for computational speed: see the source code for details. This object is demonstrated in the
vignette "Advanced topics in pomp".

See Also

pomp and the vignettes

Examples

data(ou2)
plot(ou2)
coef(ou2)
x <- simulate(ou2)
plot(x)
pf <- pfilter(ou2,Np=1000)
logLik(pf)

http://www2.bren.ucsb.edu/~kendall/pubs/1999Ecology.pdf
http://www2.bren.ucsb.edu/~kendall/pubs/1999Ecology.pdf
http://repositories.cdlib.org/postprints/818/
http://repositories.cdlib.org/postprints/818/

parmat 21

parmat Create a matrix of parameters

Description

parmat is a utility that makes a vector of parameters suitable for use in pomp functions.

Usage

parmat(params, nrep = 1)

Arguments

params named numeric vector of parameters.

nrep number of replicates (columns) desired.

Value

parmat returns a matrix consisting of nrep copies of params and rownames identical to the names
of params.

Author(s)

Aaron A. King <kingaa at umich dot edu>

Examples

generate a bifurcation diagram for the Ricker map
data(ricker)
p <- parmat(coef(ricker),nrep=500)
p["log.r",] <- seq(from=1.5,to=4,length=500)
x <- trajectory(ricker,times=seq(from=1000,to=2000,by=1),params=p)
matplot(p["log.r",],x["N",,],pch=’.’,col=’black’,xlab="log(r)",ylab="N")

pfilter Particle filter

Description

Run a plain vanilla particle filter. Resampling is performed at each observation.

22 pfilter

Usage

S4 method for signature ’pomp’
pfilter(object, params, Np, tol = 1e-17,

max.fail = 0, pred.mean = FALSE, pred.var = FALSE,
filter.mean = FALSE, save.states = FALSE,
save.params = FALSE, seed = NULL,
verbose = getOption("verbose"), ...)

S4 method for signature ’pfilterd.pomp’
pfilter(object, params, Np, tol,

max.fail = 0, pred.mean = FALSE, pred.var = FALSE,
filter.mean = FALSE, save.states = FALSE,
save.params = FALSE, seed = NULL,
verbose = getOption("verbose"), ...)

Arguments

object An object of class pomp or inheriting class pomp.

params A npars x Np numeric matrix containing the parameters corresponding to the
initial state values in xstart. This must have a ‘rownames’ attribute. If it
desired that all particles should share the same parameter values, one one may
supply params as a named numeric vector.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Alter-
natively, if one wishes the number of particles to vary across timesteps, one may
specify Np either as a vector of positive integers (of length length(time(object,t0=TRUE)))
or as a function taking a positive integer argument. In the latter case, Np(k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(0) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=length(time(object,t0=TRUE)),
Np(T) is the number of particles to sample at the end of the time-series. When
object is of class mif, this is by default the same number of particles used in
the mif iterations.

tol positive numeric scalar; particles with log likelihood below tol are considered
to be “lost”. A filtering failure occurs when, at some time point, all particles are
lost. When all particles are lost, the conditional log likelihood at that time point
is set to be log(tol).

max.fail integer; the maximum number of filtering failures allowed. If the number of
filtering failures exceeds this number, execution will terminate with an error.

pred.mean logical; if TRUE, the prediction means are calculated for the state variables and
parameters.

pred.var logical; if TRUE, the prediction variances are calculated for the state variables
and parameters.

filter.mean logical; if TRUE, the filtering means are calculated for the state variables and
parameters.

pfilter 23

save.states, save.params

logical. If save.states=TRUE, the state-vector for each particle at each time
is saved in the saved.states slot of the returned pfilterd.pomp object. If
save.params=TRUE, the parameter-vector for each particle at each time is saved
in the saved.params slot of the returned pfilterd.pomp object.

seed optional; an object specifying if and how the random number generator should
be initialized (‘seeded’). If seed is an integer, it is passed to set.seed prior
to any simulation and is returned as the “seed” element of the return list. By
default, the state of the random number generator is not changed and the value
of .Random.seed on the call is stored in the “seed” element of the return list.

verbose logical; if TRUE, progress information is reported as pfilter works.

... Additional arguments unused at present.

Value

An object of class pfilterd.pomp. This class inherits from class pomp and contains the following
additional slots:

pred.mean, pred.var, filter.mean matrices of prediction means, variances, and filter means, re-
spectively. In each of these, the rows correspond to states and parameters (if appropriate), in
that order, the columns to successive observations in the time series contained in object.

eff.sample.size numeric vector containing the effective number of particles at each time point.

cond.loglik numeric vector containing the conditional log likelihoods at each time point.

saved.states If pfilter was called with save.states=TRUE, this is the list of state-vectors at each
time point, for each particle. It is a length-ntimes list of nvars-by-Np arrays. In particular,
saved.states[[t]][,i] can be considered a sample from f [Xt|y1:t].

saved.params If pfilter was called with save.params=TRUE, this is the list of parameter-vectors
at each time point, for each particle. It is a length-ntimes list of npars-by-Np arrays. In
particular, saved.params[[t]][,i] is the parameter portion of the i-th particle at time t.

seed the state of the random number generator at the time pfilter was called. If the argument
seed was specified, this is a copy; if not, this is the internal state of the random number
generator at the time of call.

Np, tol, nfail the number of particles used, failure tolerance, and number of filtering failures, re-
spectively.

loglik the estimated log-likelihood.

These can be accessed using the $ operator as if the returned object were a list. In addition,
logLik returns the log likelihood. Note that if the argument params is a named vector, then
these parameters are included in the params slot of the returned pfilterd.pomp object. That is
coef(pfilter(obj,params=theta))==theta if theta is a named vector of parameters.

Author(s)

Aaron A. King <kingaa at umich dot edu>

24 pfilter-methods

References

M. S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A Tutorial on Particle Filters for Online
Nonlinear, Non-Gaussian Bayesian Tracking. IEEE Trans. Sig. Proc. 50:174–188, 2002.

See Also

pomp-class

Examples

See the vignettes for examples.

pfilter-methods Methods of the "pfilterd.pomp" class

Description

Methods of the "pfilterd.pomp" class.

Usage

S4 method for signature ’pfilterd.pomp’
logLik(object, ...)
S4 method for signature ’pfilterd.pomp’
pred.mean(object, pars, ...)
S4 method for signature ’pfilterd.pomp’
pred.var(object, pars, ...)
S4 method for signature ’pfilterd.pomp’
filter.mean(object, pars, ...)

Arguments

object An object of class pfilterd.pomp or inheriting class pfilterd.pomp.

pars Names of parameters.

... Additional arguments unused at present.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pfilter, pomp-class

plugins 25

plugins Plug-ins for dynamical models based on stochastic Euler algorithms

Description

Plug-in facilities for implementing discrete-time Markov processes and continuous-time Markov
processes using the Euler algorithm. These can be used in the rprocess and dprocess slots of
pomp.

Usage

onestep.sim(step.fun, PACKAGE)
euler.sim(step.fun, delta.t, PACKAGE)
discrete.time.sim(step.fun, delta.t = 1, PACKAGE)
gillespie.sim(rate.fun, v, d, PACKAGE)
onestep.dens(dens.fun, PACKAGE)

Arguments

step.fun This can be either an R function or the name of a compiled, dynamically loaded
native function containing the model simulator. It should be written to take
a single Euler step from a single point in state space. If it is an R function,
it should be of the form step.fun(x,t,params,delta.t,...). Here, x is a
named numeric vector containing the value of the state process at time t, params
is a named numeric vector containing parameters, and delta.t is the length of
the Euler time-step. If step.fun is the name of a native function, it must be of
type “pomp_onestep_sim” as defined in the header “pomp.h”, which is included
with the pomp package. For details on how to write such codes, see Details.

rate.fun This can be either an R function or the name of a compiled, dynamically loaded
native function that computes the transition rates. If it is an R function, it should
be of the form rate.fun(j,x,t,params,...). Here, j is the number of the
event, x is a named numeric vector containing the value of the state process
at time t and params is a named numeric vector containing parameters. If
rate.fun is a native function, it must be of type “pomp_ssa_rate_fn” as de-
fined in the header “pomp.h”, which is included with the package. For details
on how to write such codes, see Details.

v, d Matrices that specify the continuous-time Markov process in terms of its ele-
mentary events. Each should have dimensions nvar x nevent, where nvar is
the number of state variables and nevent is the number of elementary events. v
describes the changes that occur in each elementary event: it will usually com-
prise the values 1, -1, and 0 according to whether a state variable is incremented,
decremented, or unchanged in an elementary event. d is a binary matrix that de-
scribes the dependencies of elementary event rates on state variables: d[i,j]
will have value 1 if event rate j must be updated as a result of a change in state
variable i and 0 otherwise

26 plugins

dens.fun This can be either an R function or a compiled, dynamically loaded native func-
tion containing the model transition log probability density function. If it is
an R function, it should be of the form dens.fun(x1,x2,t1,t2,params,...).
Here, x1 and x2 are named numeric vectors containing the values of the state
process at times t1 and t2, params is a named numeric vector containing pa-
rameters. If dens.fun is the name of a native function, it should be of type
“pomp_onestep_pdf” as defined in the header “pomp.h”, which is included with
the pomp package. This function should return the log likelihood of a transition
from x1 at time t1 to x2 at time t2, assuming that no intervening transitions
have occurred. For details on how to write such codes, see Details.

delta.t Size of Euler time-steps.

PACKAGE an optional argument that specifies to which dynamically loaded library we re-
strict the search for the native routines. If this is “base”, we search in the R
executable itself.

Details

onestep.sim is the appropriate choice when it is possible to simulate the change in state from
one time to another, regardless of how large the interval between them is. To use onestep.sim,
you must write a function step.fun that will advance the state process from one arbitrary time to
another. euler.sim is appropriate when one cannot do this but can compute the change in state
via a sequence of smaller steps. This is desirable, for example, if one is simulating a continuous
time process but is willing to approximate it using an Euler approach. discrete.time.sim is
appropriate when the process evolves in discrete time. In this case, by default, the intervals between
observations are integers.

To use euler.sim or discrete.time.sim, you must write a function step.fun that will take a
single Euler step, of size at most delta.t. euler.sim and discrete.time.sim will create simu-
lators that take as many steps as needed to get from one time to another. See below for information
on how euler.sim chooses the actual step size it uses.

gillespie.sim allows exact simulation of a continuous-time, discrete-state Markov process using
Gillespie’s algorithm. This is an “event-driven” approach: correspondingly, to use gillespie.sim,
you must write a function rate.fun that computes the rates of each elementary event and specify
two matrices (d,v) that describe, respectively, the dependencies of each rate and the consequences
of each event.

onestep.dens will generate a suitable dprocess function when one can compute the likelihood
of a given state transition simply by knowing the states at two times under the assumption that
the state has not changed between the times. This is typically possible, for instance, when the
rprocess function is implemented using onestep.sim, euler.sim, or discrete.time.sim. [NB:
currently, there are no high-level algorithms in pomp that use dprocess. This function is provided
for completeness only, and with an eye toward future development.]

If step.fun is written as an R function, it must have at least the arguments x, t, params, delta.t,
and On a call to this function, x will be a named vector of state variables, t a scalar time, and
params a named vector of parameters. The length of the Euler step will be delta.t. If the argument
covars is included and a covariate table has been included in the pomp object, then on a call to this
function, covars will be filled with the values, at time t, of the covariates. This is accomplished via
interpolation of the covariate table. Additional arguments may be given: these will be filled by the
correspondingly-named elements in the userdata slot of the pomp object (see pomp). If step.fun

plugins 27

is written in a native language, it must be a function of type “pomp_onestep_sim” as specified in
the header “pomp.h” included with the package (see the directory “include” in the installed package
directory).

If rate.fun is written as an R function, it must have at least the arguments j, x, t, params, and
.... Here, j is the an integer that indicates which specific elementary event we desire the rate of. x
is a named vector containing the value of the state process at time t, and params is a named vector
containing parameters. If the argument covars is included and a covariate table has been included
in the pomp object, then on a call to this function, covars will be filled with the values, at time t,
of the covariates. This is accomplished via interpolation of the covariate table. If rate.fun is a
native function, it must be of type “pomp_ssa_rate_fn” as defined in the header “pomp.h”, which is
included with the package.

In writing dens.fun, you must assume that no state transitions have occurred between t1 and t2. If
dens.fun is written as an R function, it must have at least the arguments x1, x2, t1, t2, params, and
.... On a call to this function, x1 and x2 will be named vectors of state variables at times t1 and t2,
respectively. The named vector params contains the parameters. If the argument covars is included
and a covariate table has been included in the pomp object, then on a call to this function, covars
will be filled with the values, at time t1, of the covariates. If the argument covars is included and
a covariate table has been included in the pomp object, then on a call to this function, covars will
be filled with the values, at time t1, of the covariates. This is accomplished via interpolation of the
covariate table. As above, any additional arguments will be filled by the correspondingly-named
elements in the userdata slot of the pomp object (see pomp). If dens.fun is written in a native
language, it must be a function of type “pomp_onestep_pdf” as defined in the header “pomp.h”
included with the package (see the directory “include” in the installed package directory).

Value

onestep.sim, euler.sim, discrete.time.sim, and gillespie.sim each return functions suit-
able for use as the argument rprocess argument in pomp.

onestep.dens returns a function suitable for use as the argument dprocess in pomp.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

eulermultinom, pomp

Examples

examples showing how to use these functions
are provided in the vignette "intro_to_pomp"
Not run:
vignette("intro_to_pomp")

End(Not run)

28 pmcmc

pmcmc The PMCMC algorithm

Description

The Particle MCMC algorithm for estimating the parameters of a partially-observed Markov pro-
cess.

Usage

S4 method for signature ’pomp’
pmcmc(object, Nmcmc = 1, start, pars,

rw.sd, dprior, Np, hyperparams, tol = 1e-17, max.fail = 0,
verbose = getOption("verbose"), ...)

S4 method for signature ’pfilterd.pomp’
pmcmc(object, Nmcmc = 1, start, pars,

rw.sd, dprior, Np, hyperparams, tol, max.fail = 0,
verbose = getOption("verbose"), ...)

S4 method for signature ’pmcmc’
pmcmc(object, Nmcmc, start, pars,

rw.sd, dprior, Np, hyperparams, tol, max.fail = 0,
verbose = getOption("verbose"), ...)

S4 method for signature ’pmcmc’
continue(object, Nmcmc = 1, start, pars,

rw.sd, dprior, Np, hyperparams, tol, max.fail = 0,
verbose = getOption("verbose"), ...)

Arguments

object An object of class pomp.

Nmcmc The number of PMCMC iterations to perform.

start named numeric vector; the starting guess of the parameters.

pars optional character vector naming the ordinary parameters to be estimated. Every
parameter named in pars must have a positive random-walk standard deviation
specified in rw.sd. Leaving pars unspecified is equivalent to setting it equal to
the names of all parameters with a positive value of rw.sd.

dprior Function of prototype dprior(params,hyperparams,...,log) that evaluates
the prior density. This defaults to an improper uniform prior.

rw.sd numeric vector with names; used to parameterize a Gaussian random walk MCMC
proposal. The random walk is only applied to parameters named in pars. The al-
gorithm requires that the random walk be nontrivial, so each element in rw.sd[pars]
must be positive. The following must be satisfied: names(rw.sd) must be a sub-
set of names(start), rw.sd must be non-negative (zeros are simply ignored),
the name of every positive element of rw.sd must be in pars.

Np a positive integer; the number of particles to use in each filtering operation.

pmcmc 29

hyperparams optional list; parameters to be passed to dprior.

tol numeric scalar; particles with log likelihood below tol are considered to be
“lost”. A filtering failure occurs when, at some time point, all particles are lost.

max.fail integer; maximum number of filtering failures permitted. If the number of fail-
ures exceeds this number, execution will terminate with an error.

verbose logical; if TRUE, print progress reports.

... Additional arguments. These are currently ignored.

Value

An object of class pmcmc. This class inherits from class pfilterd.pomp and contains the following
additional slots:

pars, Nmcmc, dprior, hyperparams These slots hold the values of the corresponding arguments
of the call to pmcmc.

random.walk.sd a named numeric vector containing the random-walk variances used to parame-
terize a Gaussian random walk MCMC proposal.

log.prior a numeric value containing the log of the prior density evaluated at the parameter vector
in the params slot.

Re-running PMCMC Iterations

To re-run a sequence of PMCMC iterations, one can use the pmcmc method on a pmcmc object.
By default, the same parameters used for the original PMCMC run are re-used (except for tol,
max.fail, and verbose, the defaults of which are shown above). If one does specify additional
arguments, these will override the defaults.

Continuing PMCMC Iterations

One can continue a series of PMCMC iterations from where one left off using the continue method.
A call to pmcmc to perform Nmcmc=m iterations followed by a call to continue to perform Nmcmc=n
iterations will produce precisely the same effect as a single call to pmcmc to perform Nmcmc=m+n
iterations. By default, all the algorithmic parameters are the same as used in the original call to
pmcmc. Additional arguments will override the defaults.

Details

pmcmc implements an MCMC algorithm in which the true likelihood of the data is replaced by
an unbiased estimate computed by a particle filter. This gives an asymptotically correct Bayesian
procedure for parameter estimation (Andrieu and Roberts, 2009). An extension to give a correct
Bayesian posterior distribution of unobserved state variables (Andrieu et al, 2010) has not yet been
implemented.

Author(s)

Edward L. Ionides <ionides at umich dot edu>, Aaron A. King <kingaa at umich dot edu>

30 pmcmc-methods

References

C. Andrieu, A. Doucet and R. Holenstein, Particle Markov chain Monte Carlo methods, J. R. Stat.
Soc. B, to appear, 2010.

C. Andrieu and G.O. Roberts, The pseudo-marginal approach for efficient computation, Ann. Stat.
37:697-725, 2009.

See Also

pmcmc-class, pmcmc-methods, pomp, pomp-class, pfilter. See the “intro_to_pomp” vignette
for an example [CURRENTLY, ONLY DEMONSTRATING THE MIF ALGORITHM, WHICH IS
ALGORITHMICALLY VERY SIMILAR TO PMCMC SINCE THEY BOTH DEPEND CRITI-
CALLY ON A PARTICLE FILTERING STEP].

pmcmc-methods Methods of the "pmcmc" class

Description

Methods of the "pmcmc" class.

Usage

S4 method for signature ’pmcmc’
logLik(object, ...)
S4 method for signature ’pmcmc’
conv.rec(object, pars, ...)
S4 method for signature ’pmcmc’
filter.mean(object, pars, ...)
S4 method for signature ’pmcmc’
plot(x, y = NULL, ...)
S4 method for signature ’pmcmc’
dprior(object, params, log = FALSE, ...)
compare.pmcmc(z)

Arguments

object, x The pmcmc object.

pars Names of parameters.

y Ignored.

z A pmcmc object or list of pmcmc objects.

params Named vector of parameters.

log if TRUE, log probabilities are returned.

... Further arguments (either ignored or passed to underlying functions).

pomp 31

Methods

conv.rec conv.rec(object, pars = NULL) returns the columns of the convergence-record matrix
corresponding to the names in pars. By default, all rows are returned.

logLik Returns the value in the loglik slot.

dprior dprior(object,params,log) evaluates the prior density at params with values of the
hyperparameters given by object@hyperparams.

pmcmc Re-runs the PMCMC iterations. See the documentation for pmcmc.

compare.pmcmc Given a pmcmc object or a list of pmcmc objects, compare.pmcmc produces a set
of diagnostic plots.

plot Plots a series of diagnostic plots. When x is a pmcmc object, plot(x) is equivalent to compare.pmcmc(list(x)).

filter.mean filter.mean(object, pars = NULL) returns the rows of the filtering-mean matrix
corresponding to the names in pars. By default, all rows are returned.

print Prints a summary of the pmcmc object.

show Displays the pmcmc object.

pfilter See pfilter.

Author(s)

Edward L. Ionides <ionides at umich dot edu>, Aaron A. King <kingaa at umich dot edu>

References

C. Andrieu, A. Doucet and R. Holenstein, Particle Markov chain Monte Carlo methods, J. Roy.
Stat. Soc B, to appear, 2010.

C. Andrieu and G.O. Roberts, The pseudo-marginal approach for efficient computation, Ann Stat
37:697-725, 2009.

See Also

pmcmc, pomp, pomp-class, pfilter

pomp Partially-observed Markov process object.

Description

Create a new pomp object to hold a partially-observed Markov process model together with a uni-
or multi-variate time series.

32 pomp

Usage

S4 method for signature ’data.frame’
pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,
skeleton = NULL, skeleton.type = c("map","vectorfield"), skelmap.delta.t = 1,

initializer, covar, tcovar,
obsnames, statenames, paramnames, covarnames, zeronames,
PACKAGE, parameter.transform, parameter.inv.transform)

S4 method for signature ’numeric’
pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,
skeleton = NULL, skeleton.type = c("map","vectorfield"), skelmap.delta.t = 1,

initializer, covar, tcovar,
obsnames, statenames, paramnames, covarnames, zeronames,
PACKAGE, parameter.transform, parameter.inv.transform)

S4 method for signature ’matrix’
pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,
skeleton = NULL, skeleton.type = c("map","vectorfield"), skelmap.delta.t = 1,

initializer, covar, tcovar,
obsnames, statenames, paramnames, covarnames, zeronames,
PACKAGE, parameter.transform, parameter.inv.transform)

S4 method for signature ’pomp’
pomp(data, times, t0, ..., rprocess, dprocess, rmeasure, dmeasure,

measurement.model,
skeleton, skeleton.type, skelmap.delta.t,
initializer, covar, tcovar,
obsnames, statenames, paramnames, covarnames, zeronames,
PACKAGE, parameter.transform, parameter.inv.transform)

Arguments

data, times The time series data and times at which observations are made. data can be
specified as a vector, a matrix, a data-frame, or a pomp object.. If data is a
numeric vector, times must be a numeric vector of the same length. If data is
a matrix, it should have dimensions nobs x ntimes, where nobs is the number
of observed variables and ntimes is the number of times at which observations
were made (i.e., each column is a distinct observation of the nobs variables). In
this case, times must be given as a numeric vector (of length ntimes). If data
is a data-frame, times must name of the column of observation times. Note
that, in this case, data is a data-frame, it will be internally coerced to an array
with storage-mode ‘double’. Note that the times must be numeric and strictly
increasing.

t0 The zero-time. This must be no later than the time of the first observation,
times[1]. The stochastic dynamical system is initialized at time t0.

rprocess optional function; a function of prototype rprocess(xstart,times,params,...)
that simulates from the unobserved process. The easiest way to specify rprocess

pomp 33

is to use one of the plugins provided as part of the pomp package. See below
for details.

dprocess optional function; a function of prototype dprocess(x,times,params,log,...)
that evaluates the likelihood of a sequence of consecutive state transitions. The
easiest way to specify dprocess is to use one of the plugins provided as part
of the pomp package. It is not typically necessary (or even feasible) to define
dprocess. See below for details.

rmeasure optional; the measurement model simulator. This can be specified in one of
three ways: (1) as a function of prototype rmeasure(x,t,params,...) that
makes a draw from the observation process given states x, time t, and pa-
rameters params. (2) as the name of a native (compiled) routine with proto-
type “pomp_measure_model_simulator” as defined in the header file “exam-
ples/pomp.h”. In the above cases, if the measurement model depends on covari-
ates, the optional argument covars will be filled with interpolated values at each
call. (3) using the formula-based measurement.model facility (see below).

dmeasure optional; the measurement model probability density function. This can be spec-
ified in one of three ways: (1) as a function of prototype dmeasure(y,x,t,params,log,...)
that computes the p.d.f. of y given x, t, and params. (2) as the name of a native
(compiled) routine with prototype “pomp_measure_model_density” as defined
in the header file “examples/pomp.h”. In the above cases, if the measurement
model depends on covariates, the optional argument covars will be filled with
interpolated values at each call. (3) using the formula-based measurement.model
facility (see below). As might be expected, if log=TRUE, this function should re-
turn the log likelihood.

measurement.model

optional; a formula or list of formulae, specifying the measurement model.
These formulae are parsed internally and used to generate rmeasure and dmeasure
functions. If measurement.model is given it overrides any specification of
rmeasure or dmeasure. See below for an example. NB: it will typically be
possible to acclerate measurement model computations by writing dmeasure
and/or rmeasure functions directly.

skeleton, skeleton.type, skelmap.delta.t

The function skeleton specifies the deterministic skeleton of the unobserved
Markov process. If we are dealing with a discrete-time Markov process, its de-
terministic skeleton is a map: indicate this by specifying skeleton.type="map".
If we are dealing with a continuous-time Markov process, its deterministic skele-
ton is a vectorfield: indicate this by specifying skeleton.type="vectorfield".
The skeleton function can be specified in one of two ways: (1) as an R func-
tion of prototype skeleton(x,t,params,...) that evaluates the deterministic
skeleton at state x and time t given the parameters params, or (2) as the name
of a native (compiled) routine with prototype “pomp_skeleton” as defined in the
header file “pomp.h”. If the deterministic skeleton depends on covariates, the
optional argument covars will be filled with interpolated values of the covari-
ates at the time t.
With a discrete-time skeleton, the default assumption is that time advances 1 unit
per iteration of the map; to change this, set skelmap.delta.t to the appropriate
time-step.

34 pomp

initializer optional function of prototype initializer(params,t0,...) that yields ini-
tial conditions for the state process when given a vector, params, of parameters.
By default (i.e., if it is unspecified when pomp is called), the initializer assumes
any parameters in params the names of which end in “.0” are initial values.
These are simply copied over as initial conditions when init.state is called
(see init.state-pomp). The names of the state variables are the same as the
corresponding initial value parameters, but with the “.0” dropped.

covar, tcovar An optional table of covariates: covar is the table (with one column per vari-
able) and tcovar the corresponding times (one entry per row of covar). covar
can be specified as either a matrix or a data frame. In either case the columns
are taken to be distinct covariates. If covar is a data frame, tcovar can be ei-
ther the name or the index of the time variable. If a covariate table is supplied,
then the value of each of the covariates is interpolated as needed, i.e., when-
ever rprocess, dprocess, rmeasure, dmeasure, or init.state is evaluated.
The resulting interpolated values are passed to the corresponding functions as a
numeric vector named covars.

obsnames, statenames, paramnames, covarnames

Optional character vectors specifying the names of observables, state variables,
parameters, or covariates, respectively. These are only used in the event that
one or more of the basic functions (rprocess, dprocess, rmeasure, dmeasure,
skeleton) are defined using native routines. In that case, these name vectors
are matched against the corresponding names and the indices of the names are
passed to the native routines. Using this facility allows one to write one or more
of rprocess, dprocess, rmeasure, dmeasure, skeleton in native code in a
way that does not depend on the order of states, parameters, and covariates at
run time. See the “Advanced topics in pomp” vignette for more on this topic and
examples.

zeronames Optional character vector specifying the names of accumulator variables. See
the “Advanced topics in pomp” vignette for a discussion of this.

PACKAGE An optional string giving the name of the dynamically loaded library in which
any native routines are to be found.

parameter.transform, parameter.inv.transform

Optional functions specifying parameter transformations. These functions must
have arguments params and parameter.transform should transform pa-
rameters from the user’s scale to the scale that rprocess, dprocess, rmeasure,
dmeasure, skeleton, and initializer will use internally. parameter.inv.transform
should be the inverse of parameter.transform. Note that it is the user’s re-
sponsibility to make sure this holds. If obj is the constructed pomp object, and
coef(obj) is non-empty, a simple check of this is x <- coef(obj,transform=TRUE);
obj1 <- obj; coef(obj1,transform=TRUE) <- x; identical(coef(obj),coef(obj1))
and identical(coef(obj1,transform=TRUE),x). By default, both functions
are the identity transformation. See the “introduction_to_pomp” vignette for an
example.

... Any additional arguments given to pomp will be stored in the pomp object and
passed as arguments to each of the functions rprocess, dprocess, rmeasure,
dmeasure, and initializer whenever they are evaluated.

pomp 35

Details

It is not typically necessary (or desirable, or even feasible) to define all of the functions
rprocess, dprocess, rmeasure, dmeasure, and skeleton in any given problem. Each algo-
rithm makes use of a different subset of these functions. In general, the specification of process-
model codes rprocess and/or dprocess can be somewhat nontrivial: for this reason, plugins have
been developed to streamline this process for the user. Currently, if one’s process model evolves in
discrete time or one is willing to make such an approximation (e.g., via an Euler approximation),
then the euler.sim or onestep.sim plugin for rprocess and onestep.dens plugin for dprocess
are available. For exact simulation of certain continuous-time Markov chains, an implementation
of Gillespie’s algorithm is available (see gillespie.sim). To use the plugins, consult the help
documentation (?plugins) and the vignettes.

It is anticipated that, in specific cases, it will be possible to obtain increased computational efficiency
by writing custom versions of rprocess and/or dprocess. See the “Advanced topics in pomp”
vignette for a discussion of this. If such custom versions are desired, the following describes how
each of these functions should be written in this case.

rprocess In general, the specification of rprocess can be somewhat nontrivial: for this reason,
plugins have been developed to streamline this process for the user. Currently, if one’s pro-
cess model evolves in discrete time or one is willing to make such an approximation (e.g., via
an Euler approximation), then the euler.sim or onestep.sim plugin is available. For exact
simulation of certain continuous-time Markov chains, an implementation of Gillespie’s algo-
rithm is available (see gillespie.sim). To use the plugins, consult the help documentation
(?plugins) and the vignettes.
If the plugins are not used rprocess must have at least the following arguments: xstart,
times, params, and It can also take additional arguments. It is guaranteed that these will
be filled with the corresponding elements the user has included as additional arguments in the
construction of the pomp object.
In calls to rprocess, xstart can be assumed to be a rank-2 array (matrix) with rows cor-
responding to state variables and columns corresponding to independent realizations of the
process. params will similarly be a rank-2 array with rows corresponding to parameters and
columns corresponding to independent realizations. The columns of params correspond to
those of xstart; in particular, they will agree in number. Both xstart and params will have
rownames, which are available for use by the user.
rprocess must return a rank-3 array with rownames. Suppose x is the array returned. Then
dim(x)=c(nvars,nreps,ntimes), where nvars (=nrow(xstart)) is the number of state
variables, nreps (=ncol(xstart)) is the number of independent realizations simulated, and
ntimes is the length of the vector times. x[,j,k] is the value of the state process in the
j-th realization at time times[k]. In particular, x[,,1] must be identical to xstart. The
rownames of x must correspond to those of xstart.
At present, the following methods make use of rprocess:

• simulate

• pfilter

• mif

• nlf

• probe

• probe.match

36 pomp

dprocess In general, the specification of dprocess can be somewhat nontrivial: for this reason,
plugins have been developed to streamline this process for the user. Currently, if one’s pro-
cess model evolves in discrete time or one is willing to make such an approximation (e.g., via
an Euler approximation), then the onestep.dens plugin for dprocess is available. To use the
plugins, consult the help documentation (?plugins) and the vignettes.
If the plugins are not used, dprocess must have at least the following arguments: x, times,
params, log, and It may take additional arguments. It is guaranteed that these will be
filled with the corresponding elements the user has included as additional arguments in the
construction of the pomp object.
In calls to dprocess, x may be assumed to be an nvars x nreps x ntimes array, where these
terms have the same meanings as above. params will be a rank-2 array with rows correspond-
ing to individual parameters and columns corresponding to independent realizations. The
columns of params correspond to those of x; in particular, they will agree in number. Both x
and params will have rownames, available for use by the user.
dprocess must return a rank-2 array (matrix). Suppose d is the array returned. Then dim(d)=c(nreps,ntimes-
1). d[j,k] is the probability density of the transition from state x[,j,k-1] at time times[k-
1] to state x[,j,k] at time times[k]. If log=TRUE, then the log of the pdf is returned.
In writing this function, you may assume that the transitions are consecutive. It should
be quite clear that, but for this assumption, it would be quite difficult in general to write the
transition probabilities. In fact, from one perspective, the algorithms in pomp are designed to
overcome just this difficulty.
At present, no methods in pomp make use of dprocess.

The measurement-model, deterministic skeleton, and initializer components are easily specified
without the use of plugins. The following is a guide to writing these components.

rmeasure if provided, must take at least the arguments x, t, params, and It may take addi-
tional arguments, which will be filled with user-specified data as above. x may be assumed to
be a named numeric vector of length nvars, (which has the same meanings as above). t is a
scalar quantity, the time at which the measurement is made. params may be assumed to be a
named numeric vector of length npars.
rmeasure must return a named numeric vector. If y is the returned vector, then length(y)=nobs,
where nobs is the number of observable variables.
At present, the following methods make use of rmeasure:

• simulate

• nlf

• probe

• probe.match

dmeasure if provided, must take at least the arguments y, x, t, params, log, and y may
be assumed to be a named numeric vector of length nobs containing (actual or simulated)
values of the observed variables; x will be a named numeric vector of length nvar containing
state variables params, a named numeric vector containing parameters; and t, a scalar, the
corresponding observation time. It may take additional arguments which will be filled with
user-specified data as above. dmeasure must return a single numeric value, the pdf of y given
x at time t. If log=TRUE, then the log of the pdf is returned.
At present, the following methods make use of dmeasure:

• pfilter

pomp 37

• mif

skeleton If skeleton is an R function, it must have at least the arguments x, t, params, and
x is a numeric vector containing the coordinates of a point in state space at which evaluation of
the skeleton is desired. t is a numeric value giving the time at which evaluation of the skeleton
is desired. Of course, these will be irrelevant in the case of an autonomous skeleton. params
is a numeric vector holding the parameters. The optional argument covars is a numeric
vector containing the values of the covariates at the time t. covars will have one value
for each column of the covariate table specified when the pomp object was created. covars
is constructed from the covariate table (see covar, below) by interpolation. skeleton may
take additional arguments, which will be filled, as above, with user-specified data. skeleton
must return a numeric vector of the same length as x. The return value is interpreted as the
vectorfield (if the dynamical system is continuous) or the value of the map (if the dynamical
system is discrete), at the point x at time t.
If skeleton is the name of a native routine, this routine must be of prototype “pomp_skeleton”
as defined in the header “pomp.h” (see the “include” directory in the installed package direc-
tory).
At present, the following methods make use of skeleton:

• trajectory

• traj.match

initializer if provided, must have at least the arguments params, t0, and params is a
named numeric vector of parameters. t0 will be the time at which initial conditions are de-
sired. initializer must return a named numeric vector of initial states.

Value

An object of class pomp. If data is an object of class pomp, then by default the returned pomp object
is identical to data. If additional arguments are given, these override the defaults.

Warning

Some error checking is done by pomp, but complete error checking is impossible. If the user-
specified functions do not conform to the above specifications (see Details), then the results may
be invalid. In particular, if both rmeasure and dmeasure are specified, the user should verify
that these two functions correspond to the same model and if skeleton is specified, the user is
responsible for verifying that it corresponds to the true deterministic skeleton of the model. Each
pomp-package algorithm uses some subset of the five basic components (rprocess, dprocess,
rmeasure, dmeasure, skeleton). If an algorithm requires a component that was not given in the
construction of the pomp object, an error is generated.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp-methods, plugins, time, time<-, timezero, timezero<-, coef, coef<-, obs, states, window,
as.data.frame.pomp

38 pomp-methods

Examples

For examples, see the vignettes, the data()-loadable
example \code{pomp} objects, and the provided example files.
Not run:
vignette("intro_to_pomp")
vignette("advanced_topics_in_pomp")
data(package="pomp")
pomp.home <- system.file("examples",package="pomp")
pomp.examples <- list.files(pomp.home)
file.show(

file.path(pomp.home,pomp.examples),
header=paste("======",pomp.examples,"=======")
)

End(Not run)

pomp-methods Methods of the "pomp" class

Description

Methods of the pomp class.

Usage

S4 method for signature ’pomp’
coef(object, pars, transform = FALSE, ...)
S4 replacement method for signature ’pomp’
coef(object, pars, transform = FALSE, ...) <- value
S4 method for signature ’pomp’
obs(object, vars, ...)
S4 method for signature ’pomp’
data.array(object, vars, ...)
S4 method for signature ’pomp’
states(object, vars, ...)
S4 method for signature ’pomp’
time(x, t0 = FALSE, ...)
S4 replacement method for signature ’pomp’
time(object, t0 = FALSE, ...) <- value
S4 method for signature ’pomp’
timezero(object, ...)
S4 replacement method for signature ’pomp’
timezero(object, ...) <- value
S4 method for signature ’pomp’
window(x, start, end, ...)
S4 method for signature ’pomp’
show(object)
S4 method for signature ’pomp’

pomp-methods 39

as(object, class)
S3 method for class ’pomp’
as.data.frame(x, row.names, optional, ...)
S4 method for signature ’pomp,data.frame’
coerce(from, to = "data.frame", strict = TRUE)
S4 method for signature ’pomp’
print(x, ...)
S4 method for signature ’pomp’
plot(x, y, variables, panel = lines,

nc = NULL, yax.flip = FALSE,
mar = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1),
oma = c(6, 0, 5, 0), axes = TRUE, ...)

Arguments

object, x The pomp object.

pars optional character; names of parameters to be retrieved or set.

vars optional character; names of observed variables to be retrieved.

transform optional logical; should the parameter transformations be applied?

value numeric; values to be assigned.

t0 logical; if TRUE on a call to time, the zero time is prepended to the time vector;
if TRUE on a call to time<-, the first element in value is taken to be the initial
time.

start, end start and end times of the window.

class character; name of the class to which object should be coerced.

from, to the classes between which coercion should be performed.

strict ignored.

y ignored.

variables optional character; names of variables to plot.

panel a function of prototype panel(x, col, bg, pch, type, ...) which gives
the action to be carried out in each panel of the display.

nc the number of columns to use. Defaults to 1 for up to 4 series, otherwise to 2.

yax.flip logical; if TRUE, the y-axis (ticks and numbering) should flip from side 2 (left)
to 4 (right) from series to series.

mar, oma the ’par’ settings for ’mar’ and ’oma’ to use. Modify with care!

axes logical; indicates if x- and y- axes should be drawn.

row.names, optional

ignored.

... Further arguments (either ignored or passed to underlying functions).

40 pomp-methods

Details

coef coef(object) returns the contents of the params slot of object. coef(object,pars) re-
turns only those parameters named in pars. coef(object,transform=TRUE) returns parameter.inv.transform(coef(object)),
where parameter.inv.transform is the user parameter inverse transformation function spec-
ified when object was created. Likewise, coef(object,pars,transform=TRUE) returns
parameter.inv.transform(coef(object))[pars].

coef<- Assigns values to the params slot of the pomp object. coef(object) <- value has the
effect of replacing the parameters of object with value. If coef(object) exists, then
coef(object,pars) <- value replaces those parameters of object named in pars with the
elements of value; the names of value are ignored. If some of the names in pars do not al-
ready name parameters in coef(object), then they are concatenated. If coef(object) does
not exist, then coef(object,pars) <- value assigns value to the parameters of object;
in this case, the names of object will be pars and the names of value will be ignored.
coef(object,transform=TRUE) <- value assigns parameter.transform(value) to the
params slot of object. Here, parameter.transform is the parameter transformation func-
tion specified when object was created. coef(object,pars,transform=TRUE) <- value
first, discards any names the value may have, sets names(value) <- pars, and then replaces
the elements of object’s params slot parameter.transform(value). In this case, if some
of the names in pars do not already name parameters in coef(object,transform=TRUE),
then they are concatenated.

obs, data.array These functions are synonymous. obs(object) returns the array of observations.
obs(object,vars) gives just the observations of variables named vars. vars may specify
the variables by position or by name.

states states(object) returns the array of states. states(object,vars) gives just the state
variables named in vars. vars may specify the variables by position or by name.

time time(object) returns the vector of observation times. time(object,t0=TRUE) returns the
vector of observation times with the zero-time t0 prepended.

time<- time(object) <- value replaces the observation times slot (times) of object with
value. time(object,t0=TRUE) <- value has the same effect, but the first element in value
is taken to be the initial time. The second and subsequent elements of value are taken to be
the observation times. Those data and states (if they exist) corresponding to the new times are
retained.

timezero, timezero<- timezero(object) returns the zero-time t0. timezero(object) <- value
sets the zero-time to value.

window window(x,start=t1,end=t2 returns a new pomp object, identical to x but with only the
data in the window between times t1 and t2 (inclusive). By default, start is the time of the
first observation and end is the time of the last.

show Displays the pomp object.

plot Plots the data and state trajectories (if the latter exist). Additional arguments are passed to the
low-level plotting routine.

print Prints the pomp object in a nice way.

as, coerce The coerce method should typically not be used directly. It is defined by setAs as a
method to be used by as. A pomp object can be coerced to a data frame via as(object,"data.frame").
The data frame contains the times, the data, and the state trajectories, if they exist.

probe 41

rprocess simulates the process model. See rprocess-pomp.

dprocess evaluates the process model density. See dprocess-pomp.

rmeasure simulates the measurement model. See rmeasure-pomp.

dmeasure evaluates the measurement-model density. See dmeasure-pomp.

skeleton evaluates the deterministic skeleton (be it a vector field or a map). See skeleton-pomp.

init.state returns a vector of initialial conditions. See init.state-pomp.

simulate simulate can be used to simulate state and observation trajectories. See documentation
under simulate-pomp.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp, pomp-class, rprocess, dprocess, rmeasure, dmeasure, init.state, simulate

probe Probe a partially-observed Markov process.

Description

probe applies one or more “probes” to time series data and model simulations and compares the
results. It can be used to diagnose goodness of fit and/or as the basis for “probe-matching”, a gen-
eralized method-of-moments approach to parameter estimation. probe.match calls an optimizer to
adjust model parameters to do probe-matching, i.e., to minimize the discrepancy between simulated
and actual data. This discrepancy is measured using the “synthetic likelihood” as defined by Wood
(2010).

Usage

S4 method for signature ’pomp’
probe(object, probes, params, nsim, seed = NULL, ...)
S4 method for signature ’probed.pomp’

probe(object, probes, params, nsim, seed = NULL, ...)
S4 method for signature ’pomp’

probe.match(object, start, est = character(0),
probes, weights,
nsim, seed = NULL,
method = c("subplex","Nelder-Mead","SANN","BFGS","sannbox"),
verbose = getOption("verbose"),
eval.only = FALSE, fail.value = NA, ...)

S4 method for signature ’probed.pomp’
probe.match(object, start, est = character(0),

probes, weights,

42 probe

nsim, seed = NULL,
method = c("subplex","Nelder-Mead","SANN","BFGS","sannbox"),
verbose = getOption("verbose"),
eval.only = FALSE, fail.value = NA, ...)

S4 method for signature ’probe.matched.pomp’
probe.match(object, start, est,

probes, weights,
nsim, seed = NULL,
method = c("subplex","Nelder-Mead","SANN","BFGS","sannbox"),
verbose = getOption("verbose"),
eval.only = FALSE, fail.value, ...)

Arguments

object An object of class pomp.
probes A single probe or a list of one or more probes. A probe is simply a scalar- or

vector-valued function of one argument that can be applied to the data array of
a pomp. A vector-valued probe must always return a vector of the same size. A
number of basic examples are provided with the package (see basic.probes).

params optional named numeric vector of model parameters. By default, params=coef(object).
nsim The number of model simulations to be computed.
seed optional; if non-NULL, the random number generator will be initialized with this

seed for simulations. See simulate-pomp.
start named numeric vector; the initial guess of parameters.
est character vector; the names of parameters to be estimated.
weights optional numeric vector of relative weights. Must be of the same length as

probes.
method Optimization method. Choices are subplex and any of the methods used by

optim.
verbose logical; print diagnostic messages?
eval.only logical; if TRUE, no optimization is attempted. Instead, the probe-mismatch

value is simply evaluated at the start parameters.
fail.value optional scalar; if non-NA, this value is substituted for non-finite values of the

objective function.
... Additional arguments. In the case of probe, these are currently ignored. In the

case of probe.match, these are passed to optim or subplex in the control list.

Details

A call to probe results in the evaluation of the probe(s) in probes on the data. Additionally, nsim
simulated data sets are generated (via a call to simulate) and the probe(s) are applied to each of
these. The results of the probe computations on real and simulated data are stored in an object of
class probed.pomp.
A call to probe.match results in an attempt to optimize the agreement between model and data,
as measured by the specified probes, over the parameters named in est. The results, including
coefficients of the fitted model and values of the probes for data and fitted-model simulations, are
stored in an object of class probe.matched.pomp.

probe 43

Value

probe returns an object of class probed.pomp. probed.pomp is derived from the pomp class and
therefore have all the slots of pomp. In addition, a probed.pomp class has the following slots:

probes list of the probes applied.

datvals, simvals values of each of the probes applied to the real and simulated data, respectively.

quantiles fraction of simulations with probe values less than the value of the probe of the data.

pvals two-sided p-values: fraction of the simvals that deviate more extremely from the mean of
the simvals than does datavals.

synth.loglik the log synthetic likelihood (Wood 2010). This is the likelihood assuming that the
probes are multivariate-normally distributed.

probe.match returns an object of class probe.matched.pomp, which is derived from class probed.pomp.
probe.matched.pomp objects therefore have all the slots above plus the following:

est, weights, fail.value values of the corresponding arguments in the call to spect.match.

value value of the objective function.

evals number of function and gradient evaluations by the optimizer. See optim.

convergence, msg Convergence code and message from the optimizer. See optim.

Author(s)

Daniel C. Reuman (d.reuman at imperial dot ac dot uk)

Aaron A. King (kingaa at umich dot edu)

References

B. E. Kendall, C. J. Briggs, W. M. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nis-
bet, S. N. Wood Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches, Ecology, 80:1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466:
1102–1104, 2010.

See Also

pomp-class, pomp-methods, basic.probes, probe.match

Examples

data(ou2)
good <- probe(

ou2,
probes=list(

y1.mean=probe.mean(var="y1"),
y2.mean=probe.mean(var="y2"),
y1.sd=probe.sd(var="y1"),
y2.sd=probe.sd(var="y2"),
extra=function(x)max(x["y1",])

44 probed.pomp-methods

),
nsim=500
)

summary(good)
plot(good)

bad <- probe(
ou2,
params=c(alpha.1=0.1,alpha.4=0.2,x1.0=0,x2.0=0,

alpha.2=-0.5,alpha.3=0.3,
sigma.1=3,sigma.2=-0.5,sigma.3=2,
tau=1),

probes=list(
y1.mean=probe.mean(var="y1"),
y2.mean=probe.mean(var="y2"),
y1.sd=probe.sd(var="y1"),
y2.sd=probe.sd(var="y2"),
extra=function(x)range(x["y1",])
),

nsim=500
)

summary(bad)
plot(bad)

probed.pomp-methods Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp",
and "spect.matched.pomp" classes

Description

Methods of the probed.pomp, probe.matched.pomp, spect.pomp, and spect.matched.pomp classes

Usage

S4 method for signature ’probed.pomp’
summary(object, ...)
S4 method for signature ’probed.pomp’
plot(x, y, ...)
S4 method for signature ’probe.matched.pomp’
summary(object, ...)
S4 method for signature ’probe.matched.pomp’
plot(x, y, ...)
S4 method for signature ’spect.pomp’
summary(object, ...)
S4 method for signature ’probed.pomp’
logLik(object, ...)
S4 method for signature ’spect.pomp’
plot(x, y, max.plots.per.page = 4,

plot.data = TRUE,

probed.pomp-methods 45

quantiles = c(.025, .25, .5, .75, .975),
quantile.styles = list(lwd=1, lty=1, col="gray70"),
data.styles = list(lwd=2, lty=2, col="black"))

S4 method for signature ’spect.matched.pomp’
summary(object, ...)
S4 method for signature ’spect.matched.pomp’
plot(x, y, ...)
S4 method for signature ’probed.pomp’
as(object, class)

Arguments

object, x the object to be summarized or plotted.

y ignored.
max.plots.per.page

maximum number of plots per page

plot.data plot the data spectrum?

quantiles quantiles to plot
quantile.styles

plot style parameters for the quantiles

data.styles plot style parameters for the data spectrum

class character; name of the class to which object should be coerced.

... Further arguments (either ignored or passed to underlying functions).

Methods

plot displays diagnostic plots.

summary displays summary information.

logLik returns the synthetic likelihood for the probes. NB: in general, this is not the same as the
likelihood.

as when a ‘probed.pomp’ is coerced to a ‘data.frame’, the first row gives the probes applied to the
data; the rest of the rows give the probes evaluated on simulated data. The rownames of the
result can be used to distinguish these.

Author(s)

Daniel C. Reuman (d.reuman at imperial dot ac dot uk)

Aaron A. King (kingaa at umich dot edu)

See Also

probe, probed.pomp, probe.matched.pomp, probe.match

46 profileDesign

profileDesign Design matrices for likelihood profile calculations.

Description

profileDesign generates a data-frame where each row can be used as the starting point for a profile
likelihood calculation.

Usage

profileDesign(..., lower, upper, nprof)

Arguments

... Specifies the parameters over which to profile.

lower, upper Named numeric vectors, specifying the range over which the other parameters
are to be sampled.

nprof The number of starts per profile point.

Value

profileDesign returns a data frame with nprof points per profile point. The other parameters in
vars are sampled using sobol.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

sobol

Examples

A one-parameter profile design:
x <- profileDesign(p=1:10,lower=c(a=0,b=0),upper=c(a=1,b=5),nprof=20)
dim(x)
plot(x)
A two-parameter profile design:
x <- profileDesign(p=1:10,q=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=20)
dim(x)
plot(x)

ricker 47

ricker Ricker model with Poisson observations.

Description

ricker is a pomp object encoding a stochastic Ricker model with Poisson measurement error.

Usage

data(ricker)

Details

The state process is Nt+1 = rNtexp(−Nt + et), where the et are i.i.d. normal random deviates
with variance σ2. The observed variables yt are distributed as Poisson(φNt).

See Also

pomp-class and the vignettes

Examples

data(ricker)
plot(ricker)
coef(ricker)

rw2 Two-dimensional random-walk process

Description

rw2 is a pomp object encoding a 2-D normal random walk.

Usage

data(rw2)

Details

The random-walk process is fully but noisily observed.

See Also

pomp-class and the vignettes

48 simulate-pomp

Examples

data(rw2)
plot(rw2)
x <- simulate(rw2,nsim=10,seed=20348585L,params=c(x1.0=0,x2.0=0,s1=1,s2=3,tau=1))
plot(x[[1]])

simulate-pomp Running simulations of a partially-observed Markov process

Description

simulate can be used to generate simulated data sets and/or to simulate the state process.

Usage

S4 method for signature ’pomp’
simulate(object, nsim = 1, seed = NULL, params,

states = FALSE, obs = FALSE, times, t0, ...)

Arguments

object An object of class pomp.

nsim The number of simulations to perform. Note that the number of replicates will
be nsim times ncol(xstart).

seed optional; if set, the pseudorandom number generator (RNG) will be initialized
with seed. the random seed to use. The RNG will be restored to its original
state afterward.

params either a named numeric vector or a numeric matrix with rownames. The param-
eters to use in simulating the model. If params is not given, then the contents of
the params slot of object will be used, if they exist.

states Do we want the state trajectories?

obs Do we want data-frames of the simulated observations?

times, t0 times specifies the times at which simulated observations will be made. t0
specifies the start time (the time at which the initial conditions hold). The default
for times is is times=time(object,t0=FALSE) and t0=timezero(object),
respectively.

... further arguments that are currently ignored.

Details

Simulation of the state process and of the measurement process are each accomplished by a single
call to the user-supplied rprocess and rmeasure functions, respectively. This makes it possible for
the user to write highly optimized code for these potentially expensive computations.

sir 49

Value

If states=FALSE and obs=FALSE (the default), a list of nsim pomp objects is returned. Each has a
simulated data set, together with the parameters used (in slot params) and the state trajectories also
(in slot states). If times is specified, then the simulated observations will be at times times.

If nsim=1, then a single pomp object is returned (and not a singleton list).

If states=TRUE and obs=FALSE, simulated state trajectories are returned as a rank-3 array with
dimensions nvar x (ncol(params)*nsim) x ntimes. Here, nvar is the number of state variables
and ntimes the length of the argument times. The measurement process is not simulated in this
case.

If states=FALSE and obs=TRUE, simulated observations are returned as a rank-3 array with dimen-
sions nobs x (ncol(params)*nsim) x ntimes. Here, nobs is the number of observables.

If both states=TRUE and obs=TRUE, then a named list is returned. It contains the state trajectories
and simulated observations as above.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

pomp-class

Examples

data(ou2)
x <- simulate(ou2,seed=3495485,nsim=10)
x <- simulate(ou2,seed=3495485,nsim=10,states=TRUE,obs=TRUE)

sir Seasonal SIR model implemented using two stochastic simulation al-
gorithms.

Description

euler.sir is a pomp object encoding a simple seasonal SIR model. Simulation is performed using
an Euler multinomial approximation (AKA tau leap method). gillespie.sir has the same model
implemented using Gillespie’s algorithm.

Usage

data(euler.sir)
data(gillespie.sir)

See Also

pomp-class and the vignettes

50 sliceDesign

Examples

data(euler.sir)
plot(euler.sir)
x <- simulate(euler.sir,nsim=10,seed=20348585)
plot(x[[1]])

data(gillespie.sir)
plot(gillespie.sir)
x <- simulate(gillespie.sir,nsim=1,seed=20348585)
plot(x)

sliceDesign Design matrices for likelihood slices.

Description

sliceDesign generates a data-frame representing points taken along one or more slices through a
point in a multidimensional space.

Usage

sliceDesign(center, ...)

Arguments

center center is a named numeric vectors specifying the point through which the
slice(s) is (are) to be taken.

... Additional numeric vector arguments specify the slices.

Value

sliceDesign returns a data frame with one row per point along a slice. The column slice is a
factor that tells which slice each point belongs to.

Author(s)

Aaron A. King <kingaa at umich dot edu>

See Also

profileDesign

sobol 51

Examples

A single 11-point slice through the point c(A=3,B=8,C=0) along the B direction.
x <- sliceDesign(center=c(A=3,B=8,C=0),B=seq(0,10,by=1))
dim(x)
plot(x)
Two slices through the same point along the A and C directions.
x <- sliceDesign(c(A=3,B=8,C=0),A=seq(0,5,by=1),C=seq(0,5,length=11))
dim(x)
plot(x)

sobol Sobol’ low-discrepancy sequence

Description

Generate a data-frame containing a Sobol’ low-discrepancy sequence.

Usage

sobol(vars, n)
sobolDesign(lower, upper, nseq)

Arguments

vars Named list of ranges of variables.

lower,upper named numeric vectors giving the lower and upper bounds of the ranges, respec-
tively.

n,nseq Number of vectors requested.

Value

sobol Returns a data frame with n ‘observations’ of the variables in vars.

sobolDesign Returns a data frame with nseq ‘observations’ of the variables over the range
specified.

Author(s)

Aaron A. King <kingaa at umich dot edu>

References

W. H. Press, S. A. Teukolsky, W. T. Vetterling, \& B. P. Flannery, Numerical Recipes in C, Cam-
bridge University Press, 1992

See Also

sliceDesign, profileDesign

52 spect

Examples

plot(sobol(vars=list(a=c(0,1),b=c(100,200)),100))
plot(sobolDesign(lower=c(a=0,b=100),upper=c(b=200,a=1),100))

spect Power spectrum computation for partially-observed Markov pro-
cesses.

Description

spect estimates the power spectrum of time series data and model simulations and compares the re-
sults. It can be used to diagnose goodness of fit and/or as the basis for frequency-domain parameter
estimation (spect.match).

spect.match tries to match the power spectrum of the model to that of the data. It calls an optimizer
to adjust model parameters to minimize the discrepancy between simulated and actual data.

Usage

S4 method for signature ’pomp’
spect(object, params, vars, kernel.width, nsim, seed = NULL,

transform = identity,
detrend = c("none","mean","linear","quadratic"),
...)

S4 method for signature ’spect.pomp’
spect(object, params, vars, kernel.width, nsim, seed = NULL, transform,

detrend, ...)
spect.match(object, start, est = character(0),

vars, nsim, seed = NULL,
kernel.width, transform = identity,
detrend = c("none","mean","linear","quadratic"),
weights, method = c("subplex","Nelder-Mead","SANN"),
verbose = getOption("verbose"),
eval.only = FALSE, fail.value = NA, ...)

Arguments

object An object of class pomp.

params optional named numeric vector of model parameters. By default, params=coef(object).

vars optional; names of observed variables for which the power spectrum will be
computed. This must be a subset of rownames(obs(object)). By default, the
spectrum will be computed for all observables.

kernel.width width parameter for the smoothing kernel used for calculating the estimate of
the spectrum.

nsim number of model simulations to be computed.

spect 53

seed optional; if non-NULL, the random number generator will be initialized with this
seed for simulations. See simulate-pomp.

transform function; this transformation will be applied to the observables prior to estima-
tion of the spectrum, and prior to any detrending.

detrend de-trending operation to perform. Options include no detrending, and subtrac-
tion of constant, linear, and quadratic trends from the data. Detrending is applied
to each data series and to each model simulation independently.

weights optional. The mismatch between model and data is measured by a weighted
average of mismatch at each frequency. By default, all frequencies are weighted
equally. weights can be specified either as a vector (which must have length
equal to the number of frequencies) or as a function of frequency. If the latter,
weights(freq) must return a nonnegative weight for each frequency.

start named numeric vector; the initial guess of parameters.

est character vector; the names of parameters to be estimated.

method Optimization method. Choices are subplex and any of the methods used by
optim.

verbose logical; print diagnostic messages?

eval.only logical; if TRUE, no optimization is attempted. Instead, the probe-mismatch
value is simply evaluated at the start parameters.

fail.value optional scalar; if non-NA, this value is substituted for non-finite values of the
objective function.

... Additional arguments. In the case of spect, these are currently ignored. In the
case of spect.match, these are passed to optim or subplex in the control list.

Details

A call to spect results in the estimation of the power spectrum for the (transformed, detrended)
data and nsim model simulations. The results of these computations are stored in an object of class
spect.pomp.

A call to spect.match results in an attempt to optimize the agreement between model and data
spectrum over the parameters named in est. The results, including coefficients of the fitted model
and power spectra of fitted model and data, are stored in an object of class spect.matched.pomp.

Value

spect returns an object of class spect.pomp, which is derived from class pomp and therefore has
all the slots of that class. In addition, spect.pomp objects have the following slots:

kernel.width width parameter of the smoothing kernel used.

transform transformation function used.

freq numeric vector of the frequencies at which the power spectrum is estimated.

datspec, simspec estimated power spectra for data and simulations, respectively.

pvals one-sided p-values: fraction of the simulated spectra that differ more from the mean simu-
lated spectrum than does the data. The metric used is L2 distance.

54 spect

detrend detrending option used.

spect.match returns an object of class spect.matched.pomp, which is derived from class {spect.pomp}
and therefore has all the slots of that class. In addition, spect.matched.pomp objects have the fol-
lowing slots:

est, weights, fail.value values of the corresponding arguments in the call to spect.match.

evals number of function and gradient evaluations by the optimizer. See optim.

value Value of the objective function.

convergence, msg Convergence code and message from the optimizer. See optim.

Author(s)

Daniel C. Reuman (d.reuman at imperial dot ac dot uk)

Cai GoGwilt

Aaron A. King (kingaa at umich dot edu)

References

D.C. Reuman, R.A. Desharnais, R.F. Costantino, O. Ahmad, J.E. Cohen (2006) Power spectra
reveal the influence of stochasticity on nonlinear population dynamics. Proceedings of the National
Academy of Sciences 103, 18860-18865.

D.C. Reuman, R.F. Costantino, R.A. Desharnais, J.E. Cohen (2008) Color of environmental noise
affects the nonlinear dynamics of cycling, stage-structured populations. Ecology Letters, 11, 820-
830.

See Also

pomp-class, pomp-methods, probe, probe.match

Examples

data(ou2)
good <- spect(

ou2,
vars=c("y1","y2"),
kernel.width=3,
detrend="mean",
nsim=500
)

summary(good)
plot(good)

ou2.bad <- ou2
coef(ou2.bad,c("x1.0","x2.0","alpha.1","alpha.4")) <- c(0,0,0.1,0.2)
bad <- spect(

ou2.bad,
vars=c("y1","y2"),
kernel.width=3,
detrend="mean",

traj.match 55

nsim=500
)

summary(bad)
plot(bad)

traj.match Trajectory matching

Description

Match trajectories to data.

Usage

S4 method for signature ’pomp’
traj.match(object, start, est,

method = c("Nelder-Mead", "sannbox", "subplex"),
gr = NULL, eval.only = FALSE, ...)

S4 method for signature ’traj.matched.pomp’
traj.match(object, start, est,

method = c("Nelder-Mead", "sannbox", "subplex"),
gr = NULL, eval.only = FALSE, ...)

Arguments

object A pomp object.

start initial guess for parameters.

est character vector containing the names of parameters to be estimated.

method Optimization method. Choices are subplex, “sannbox”, and any of the methods
used by optim.

gr Passed to optim.

eval.only logical; if TRUE, no optimization is attempted and the log likelihood value is
evaluated at the start parameters.

... Arguments that will be passed to optim or subplex via their control lists.

Details

Trajectory matching is accomplished using optim. The trajectory method is used for this, which
in turn uses the skeleton slot of the pomp object. The quantity maximized is the likelihood of the
data given the trajectory, as returned by dmeasure.

56 traj.match

Value

An object of class traj.matched.pomp. This class inherits from class pomp and contains the fol-
lowing additional slots:

evals number of function and gradient evaluations by the optimizer. See optim.

value value of the objective function. Larger values indicate better fit (i.e., traj.match attempts
to maximize this quantity.

convergence, msg convergence code and message from the optimizer. See optim.

Available methods for objects of this type include summary and logLik. The other slots of this
object can be accessed via the $ operator.

See Also

trajectory, pomp, optim, subplex

Examples

data(ou2)
true.p <- c(

alpha.1=0.9,alpha.2=0,alpha.3=-0.4,alpha.4=0.99,
sigma.1=2,sigma.2=0.1,sigma.3=2,
tau=1,

x1.0=50,x2.0=-50
)

simdata <- simulate(ou2,nsim=1,params=true.p,seed=43553)
guess.p <- true.p
res <- traj.match(
simdata,
start=guess.p,
est=c(’alpha.1’,’alpha.3’,’alpha.4’,’x1.0’,’x2.0’,’tau’),
maxit=2000,
method="Nelder-Mead",
reltol=1e-8
)

summary(res)

plot(range(time(res)),range(c(obs(res),states(res))),type=’n’,xlab="time",ylab="x,y")
points(y1~time,data=as(res,"data.frame"),col=’blue’)
points(y2~time,data=as(res,"data.frame"),col=’red’)
lines(x1~time,data=as(res,"data.frame"),col=’blue’)
lines(x2~time,data=as(res,"data.frame"),col=’red’)

trajectory 57

trajectory Compute trajectories of the determinstic skeleton.

Description

The method trajectory computes a trajectory of the deterministic skeleton of a Markov process.
In the case of a discrete-time system, the deterministic skeleton is a map and a trajectory is obtained
by iterating the map. In the case of a continuous-time system, the deterministic skeleton is a vector-
field; trajectory integrates the vectorfield to obtain a trajectory.

Usage

S4 method for signature ’pomp’
trajectory(object, params, times, t0, ...)

Arguments

object an object of class pomp.

params a rank-2 array of parameters. Each column of params is a distinct parameter
vector.

times, t0 times is a numeric vector specifying the times at which a trajectory is desired.
t0 specifies the start time (the time at which the initial conditions hold). The de-
fault for times is times=time(object,t0=FALSE) and t0=timezero(object),
respectively.

... additional arguments are passed to the ODE integrator if the skeleton is a vec-
torfield and ignored if it is a map. See ode for a description of the additional
arguments accepted.

Details

This function makes repeated calls to the user-supplied skeleton of the pomp object. For specifi-
cations on supplying this, see pomp.

When the skeleton is a vectorfield, trajectory integrates it using ode.

When the skeleton is a map, trajectory iterates it. By default, time is advanced 1 unit per it-
eration. The user can change this behavior by specifying the desired timestep using the argument
skelmap.delta.t in the construction of the pomp object.

Value

Returns an array of dimensions nvar x nreps x ntimes. If x is the returned matrix, x[i,j,k] is
the i-th component of the state vector at time times[k] given parameters params[,j].

Author(s)

Aaron A. King <kingaa at umich dot edu>

58 verhulst

See Also

pomp, traj.match, ode

Examples

data(euler.sir)
x <- trajectory(euler.sir)
plot(time(euler.sir),x["I",1,],type=’l’,xlab=’time’,ylab=’I’)
lines(time(euler.sir),x["cases",1,],col=’red’)

coef(euler.sir,c("gamma")) <- log(12)
x <- trajectory(euler.sir)
plot(time(euler.sir),x["I",1,],type=’l’,xlab=’time’,ylab=’I’)
lines(time(euler.sir),x["cases",1,],col=’red’)

verhulst Simple Verhulst-Pearl (logistic) model.

Description

verhulst is a pomp object encoding a univariate stochastic logistic model with measurement error.

Usage

data(verhulst)

Details

The model is written as an Ito diffusion, dn = rn(1 − n/K)dt + σndW , where W is a Wiener
process. It is implemented using the euler.sim plug-in.

See Also

pomp-class and the vignettes

Examples

data(verhulst)
plot(verhulst)
coef(verhulst)
params <- cbind(

c(n.0=100,K=10000,r=0.2,sigma=0.4,tau=0.1),
c(n.0=1000,K=11000,r=0.1,sigma=0.4,tau=0.1)
)

x <- simulate(verhulst,params=params,states=TRUE)
matplot(time(verhulst),t(x[’n’,,]),type=’l’)
y <- trajectory(verhulst,params=params)
matlines(time(verhulst),t(y[’n’,,]),type=’l’,lwd=2)

Index

∗Topic datasets
blowflies, 7
dacca, 9
gompertz, 12
LondonYorke, 12
ou2, 20
ricker, 47
rw2, 47
sir, 49
verhulst, 58

∗Topic design
profileDesign, 46
sliceDesign, 50
sobol, 51

∗Topic distribution
eulermultinom, 10

∗Topic models
basic.probes, 5
mif, 13
mif-methods, 16
nlf, 18
pfilter, 21
pfilter-methods, 24
plugins, 25
pmcmc, 28
pmcmc-methods, 30
pomp, 31
pomp-methods, 38
pomp-package, 2
probe, 41
probed.pomp-methods, 44
simulate-pomp, 48
spect, 52
traj.match, 55
trajectory, 57

∗Topic smooth
B-splines, 3

∗Topic ts
basic.probes, 5

bsmc, 7
mif, 13
mif-methods, 16
nlf, 18
pfilter, 21
pfilter-methods, 24
pmcmc, 28
pmcmc-methods, 30
pomp, 31
pomp-methods, 38
pomp-package, 2
probe, 41
probed.pomp-methods, 44
simulate-pomp, 48
spect, 52
traj.match, 55
trajectory, 57

$,pfilterd.pomp-method
(pfilter-methods), 24

$,traj.matched.pomp-method
(traj.match), 55

$-pfilterd.pomp (pfilter-methods), 24
$-traj.matched.pomp (traj.match), 55

as,pomp-method (pomp-methods), 38
as,probed.pomp-method

(probed.pomp-methods), 44
as.data.frame.pomp, 37
as.data.frame.pomp (pomp-methods), 38

B-splines, 3
basic.probes, 5, 42, 43
blowflies, 7
blowflies1 (blowflies), 7
blowflies2 (blowflies), 7
bsmc, 3, 7
bsmc,pomp-method (bsmc), 7
bsmc-pomp (bsmc), 7
bspline.basis (B-splines), 3

59

60 INDEX

coef, 17, 37
coef,pomp-method (pomp-methods), 38
coef-pomp (pomp-methods), 38
coef<- (pomp-methods), 38
coef<-,pomp-method (pomp-methods), 38
coef<--pomp (pomp-methods), 38
coef<-, 37
coerce,pomp,data.frame-method

(pomp-methods), 38
coerce,probed.pomp,data.frame-method

(probed.pomp-methods), 44
compare.mif (mif-methods), 16
compare.pmcmc (pmcmc-methods), 30
continue (mif), 13
continue,mif-method (mif), 13
continue,pmcmc-method (pmcmc), 28
continue-mif (mif), 13
continue-pmcmc (pmcmc), 28
conv.rec (mif-methods), 16
conv.rec,mif-method (mif-methods), 16
conv.rec,pmcmc-method (pmcmc-methods),

30
conv.rec-mif (mif-methods), 16
conv.rec-pmcmc (pmcmc-methods), 30

dacca, 9
data.array (pomp-methods), 38
data.array,pomp-method (pomp-methods),

38
data.array-pomp (pomp-methods), 38
data.frame-pomp (pomp), 31
deulermultinom (eulermultinom), 10
discrete.time.sim (plugins), 25
dmeasure, 41, 55
dmeasure-pomp, 41
dprior (pmcmc-methods), 30
dprior,pmcmc-method (pmcmc-methods), 30
dprior-pmcmc (pmcmc-methods), 30
dprocess, 41
dprocess-pomp, 41

euler.sim, 35, 58
euler.sim (plugins), 25
euler.sir, 10
euler.sir (sir), 49
eulermultinom, 10, 27

filter.mean (pfilter-methods), 24

filter.mean,pfilterd.pomp-method
(pfilter-methods), 24

filter.mean,pmcmc-method
(pmcmc-methods), 30

filter.mean-pfilterd.pomp
(pfilter-methods), 24

filter.mean-pmcmc (pmcmc-methods), 30

gillespie.sim, 35
gillespie.sim (plugins), 25
gillespie.sir (sir), 49
gompertz, 12

init.state, 41
init.state-pomp, 34, 41

kernel, 5

logLik,mif-method (mif-methods), 16
logLik,pfilterd.pomp-method

(pfilter-methods), 24
logLik,pmcmc-method (pmcmc-methods), 30
logLik,probed.pomp-method

(probed.pomp-methods), 44
logLik,traj.matched.pomp-method

(traj.match), 55
logLik-mif (mif-methods), 16
logLik-pfilterd.pomp (pfilter-methods),

24
logLik-pmcmc (pmcmc-methods), 30
logLik-probed.pomp

(probed.pomp-methods), 44
logLik-traj.matched.pomp (traj.match),

55
LondonYorke, 12

matrix-pomp (pomp), 31
mean, 5
mif, 3, 13, 17, 18, 35, 37
mif,mif-method (mif), 13
mif,pfilterd.pomp-method (mif), 13
mif,pomp-method (mif), 13
mif-methods, 16
mif-methods, 16
mif-mif (mif), 13
mif-pfilterd.pomp (mif), 13
mif-pomp (mif), 13

nlf, 3, 18, 35, 36
numeric-pomp (pomp), 31

INDEX 61

obs, 6, 37
obs (pomp-methods), 38
obs,pomp-method (pomp-methods), 38
obs-pomp (pomp-methods), 38
ode, 57, 58
onestep.dens, 35, 36
onestep.dens (plugins), 25
onestep.sim, 35
onestep.sim (plugins), 25
optim, 19, 42, 43, 53–56
ou2, 20

parmat, 21
paste, 4
periodic.bspline.basis (B-splines), 3
pfilter, 3, 16, 18, 21, 24, 30, 31, 35, 36
pfilter,pfilterd.pomp-method (pfilter),

21
pfilter,pomp-method (pfilter), 21
pfilter-methods, 24
pfilter-pfilterd.pomp (pfilter), 21
pfilter-pomp (pfilter), 21
pfilterd.pomp, 23, 29
pfilterd.pomp-class (pfilter), 21
plot,mif-method (mif-methods), 16
plot,pmcmc-method (pmcmc-methods), 30
plot,pomp-method (pomp-methods), 38
plot,probe.matched.pomp-method

(probed.pomp-methods), 44
plot,probed.pomp-method

(probed.pomp-methods), 44
plot,spect.matched.pomp-method

(probed.pomp-methods), 44
plot,spect.pomp-method

(probed.pomp-methods), 44
plot-mif (mif-methods), 16
plot-pmcmc (pmcmc-methods), 30
plot-pomp (pomp-methods), 38
plot-probe.matched.pomp

(probed.pomp-methods), 44
plot-probed.pomp (probed.pomp-methods),

44
plot-spect.pomp (probed.pomp-methods),

44
plugins, 25, 33, 35–37
pmcmc, 3, 28, 31
pmcmc,pfilterd.pomp-method (pmcmc), 28
pmcmc,pmcmc-method (pmcmc), 28
pmcmc,pomp-method (pmcmc), 28

pmcmc-class, 30
pmcmc-methods, 30
pmcmc-class (pmcmc), 28
pmcmc-methods, 30
pmcmc-pfilterd.pomp (pmcmc), 28
pmcmc-pmcmc (pmcmc), 28
pmcmc-pomp (pmcmc), 28
pomp, 2, 3, 10, 16, 18, 20, 23, 26, 27, 30, 31,

31, 34, 37, 41, 43, 53, 56–58
pomp,data.frame-method (pomp), 31
pomp,matrix-method (pomp), 31
pomp,numeric-method (pomp), 31
pomp,pomp-method (pomp), 31
pomp-class, 7, 12, 13, 16, 18, 30, 31, 47, 49,

58
pomp-class, 7, 9, 24, 41, 43, 49, 54
pomp-methods, 7, 37, 38, 43, 54
pomp-package, 2
pomp-pomp (pomp), 31
pred.mean (pfilter-methods), 24
pred.mean,pfilterd.pomp-method

(pfilter-methods), 24
pred.mean-pfilterd.pomp

(pfilter-methods), 24
pred.var (pfilter-methods), 24
pred.var,pfilterd.pomp-method

(pfilter-methods), 24
pred.var-pfilterd.pomp

(pfilter-methods), 24
print,pomp-method (pomp-methods), 38
print-pomp (pomp-methods), 38
probe, 6, 35, 36, 41, 45, 54
probe,pomp-method (probe), 41
probe,probed.pomp-method (probe), 41
probe-pomp (probe), 41
probe-probed.pomp (probe), 41
probe.acf (basic.probes), 5
probe.ccf (basic.probes), 5
probe.marginal (basic.probes), 5
probe.match, 3, 6, 35, 36, 43, 45, 54
probe.match (probe), 41
probe.match,pomp-method (probe), 41
probe.match,probe.matched.pomp-method

(probe), 41
probe.match,probed.pomp-method (probe),

41
probe.match-pomp (probe), 41
probe.match-probe.matched.pomp (probe),

62 INDEX

41
probe.match-probed.pomp (probe), 41
probe.matched.pomp, 42, 45
probe.matched.pomp-class (probe), 41
probe.matched.pomp-methods

(probed.pomp-methods), 44
probe.mean (basic.probes), 5
probe.median (basic.probes), 5
probe.nlar (basic.probes), 5
probe.period (basic.probes), 5
probe.quantile (basic.probes), 5
probe.sd (basic.probes), 5
probe.var (basic.probes), 5
probed.pomp, 45
probed.pomp-class (probe), 41
probed.pomp-methods, 44
profileDesign, 46, 50, 51

quantile, 5

reulermultinom (eulermultinom), 10
ricker, 47
rmeasure, 41
rmeasure-pomp, 41
rprocess, 41
rprocess-pomp, 41
rw2, 47

show,pomp-method (pomp-methods), 38
show-pomp (pomp-methods), 38
simulate, 3, 35, 36, 41, 42
simulate,pomp-method (simulate-pomp), 48
simulate-pomp, 41
simulate-pomp, 42, 48, 53
sir, 49
skeleton-pomp, 41
sliceDesign, 50, 51
sobol, 46, 51
sobolDesign (sobol), 51
spect, 52
spect,pomp-method (spect), 52
spect,spect.pomp-method (spect), 52
spect-pomp (spect), 52
spect-spect.pomp (spect), 52
spect.match, 3
spect.match (spect), 52
spect.match,pomp-method (spect), 52
spect.match,spect.pomp-method (spect),

52

spect.match-pomp (spect), 52
spect.match-spect.pomp (spect), 52
spect.matched.pomp, 53
spect.matched.pomp-class (spect), 52
spect.matched.pomp-methods

(probed.pomp-methods), 44
spect.pomp, 53
spect.pomp-class (spect), 52
spect.pomp-methods

(probed.pomp-methods), 44
sprintf, 4
states, 37
states (pomp-methods), 38
states,pomp-method (pomp-methods), 38
states-pomp (pomp-methods), 38
subplex, 19, 42, 53, 55, 56
summary,probe.matched.pomp-method

(probed.pomp-methods), 44
summary,probed.pomp-method

(probed.pomp-methods), 44
summary,spect.matched.pomp-method

(probed.pomp-methods), 44
summary,spect.pomp-method

(probed.pomp-methods), 44
summary,traj.matched.pomp-method

(traj.match), 55
summary-probe.matched.pomp

(probed.pomp-methods), 44
summary-probed.pomp

(probed.pomp-methods), 44
summary-spect.matched.pomp

(probed.pomp-methods), 44
summary-spect.pomp

(probed.pomp-methods), 44
summary-traj.matched.pomp (traj.match),

55

time, 37
time,pomp-method (pomp-methods), 38
time-pomp (pomp-methods), 38
time<- (pomp-methods), 38
time<-,pomp-method (pomp-methods), 38
time<--pomp (pomp-methods), 38
time<-, 37
timezero, 37
timezero (pomp-methods), 38
timezero,pomp-method (pomp-methods), 38
timezero-pomp (pomp-methods), 38
timezero<- (pomp-methods), 38

INDEX 63

timezero<-,pomp-method (pomp-methods),
38

timezero<--pomp (pomp-methods), 38
timezero<-, 37
traj.match, 3, 37, 55, 58
traj.match,pomp-method (traj.match), 55
traj.match,traj.matched.pomp-method

(traj.match), 55
traj.match-pomp (traj.match), 55
traj.match-traj.matched.pomp

(traj.match), 55
traj.matched.pomp-class (traj.match), 55
trajectory, 3, 37, 55, 56, 57
trajectory,pomp-method (trajectory), 57
trajectory-pomp (trajectory), 57

verhulst, 58

window, 37
window,pomp-method (pomp-methods), 38
window-pomp (pomp-methods), 38

	pomp-package
	B-splines
	basic.probes
	blowflies
	bsmc
	dacca
	eulermultinom
	gompertz
	LondonYorke
	mif
	mif-methods
	nlf
	ou2
	parmat
	pfilter
	pfilter-methods
	plugins
	pmcmc
	pmcmc-methods
	pomp
	pomp-methods
	probe
	probed.pomp-methods
	profileDesign
	ricker
	rw2
	simulate-pomp
	sir
	sliceDesign
	sobol
	spect
	traj.match
	trajectory
	verhulst
	Index

