
rWMBAT Documentation Page 1

William and Mary Bayesian Network Analysis Tool for Mass
Spectrometry Data (R-package)

By
Karl W. Kuschner & Qian Si

1 rWMBAT Methods for Diagnostic Variable Selection from Mass Spectra……….1
 1.1 Introduction……………………………………………………………………...1
 1.2 Background…………………………………………………………………......2
 1.3 Methods………………………………………………………………………….3
 1.4 Example Data…………………………………………………………………...6
 1.5 Concerns………………………………………………………………………...9
 1.6 Conclusions & Recommendations…………………………………………..10
2 Functions in the rWMBAT Library…………………………………………………...10
 2.1 BuildBayesNet - Select Features and Metafeatures Based On Mutual Info.10
 2.2 ChooseMetaVars - Combine Variables into Metavariables………………….11
 2.3 clearirrarcs - Clear Arcs That Are Not C->V Or C->V<->V……………..……11
 2.4 clipclassconnections - Delink Variables From Class…………………………12
 2.5 DoTheMath - Perform Feature Selection for the Data……………………….13
 2.6 FindProbTables - Estimate the Probabilities P (class=c|data=D)…………….14
 2.7 getarcs - Build Adjacency Matrix For A Set Of Variables……………………14

2.8 WMBAT-The William and Mary Bayesian Analysis Tool……………………..15
3 Generic Tool Functions……………………………………………………………….16
 3.1 Repmat - Create a Matrix Consisting Of An m-by-n Tiling Copies Of X……16
 3.2 InitialProcessing – Input Data Prep after Custom Signal Processing……....17
 3.3 MutualInfo - Calculate Mutual Information Of Two Variables………………..18
 3.4 findmutualinfos - Find Various Mutual Info Combos among Variables……..18

3.5 CondMutualInfo - Calculate Mutual Information of Two Variables
Conditioned On a Third……………………………………………………………….19
3.6 automi - Find A Threshold For Randomized MI (Var, Class)………………..19
3.7 opt2bin - Optimize Boundary for Each Variable to Maximize MI…………….20
3.8 opt3bin - Find 3 Bin Boundaries Optimizing the MI of Each Variable………21
3.9 looklr - Find Boundary………………………………………..…………………..22

 3.10 TestCases - Classify Using Bayes Rule………………………………………23
4 References……………………………………………………………………………..23
5 Acqnowledgement……………………………………………………………………..24

1. rWMBAT Methods for Diagnostic Variable Selection from Mass
Spectra

1.1 Introduction
The goal of the William and Mary Bayesian Network Analysis Tool (WMBAT) is to solve two key
problems in feature selection and classification of mass spectrometry (MS) data, as described
by the authors of the caMassClass tool [1]: Low data reproducibility, and the possibility of false
discovery.

rWMBAT Documentation Page 2

We believe that both problems arise from a similar root cause (given the variations inherent in
the instrument), that of small sample effects. Features which may appear to be important in a
small sample are then found to be non-diagnostic in another group. This leads to classifiers that
fail to work during blind tests and random features being pursued as biomarkers.

An additional problem which plagues some classification schemes is the existence of many
correlated features in MS data. For example, if two features exist because a molecule appears
at a singly and doubly charged ion state in the mass spectra, they will likely be highly correlated.
Feature selection methods such as forward selection based on a naïve Bayesian classifier
wrapper will select one feature, but not the other, since the second adds no additional
classification power.

The primary objective was to select stable features that would extend to new data. The
secondary objective was to describe the relationships between these features, such as which
were likely to be primary, or parent, ions and which were modifications or satellites. A tertiary
objective was to provide a classifier, but one limited to stable feature sets whose error rates may
not be as low as other, less stable methods.

To achieve these objectives, we chose to encode a specific type of Bayesian (or belief) network.
We limited the structure to have a root node that represented the disease state under study, and
whose children (immediate descendants) were features whose relation to the disease were
stable and independent of other features.

1.2 Background
This work is part of an ongoing project whose goal is to create tools for “computationally
improved signal processing for mass spectrometry data.” One of the steps in that project, and
the focus of this work, is the development of methods to exploit the improved MS data to find
biologically relevant information.

A mass spectrometer is an instrument that takes some sample of material, biologic or otherwise,
and measures the relative amounts of constituent materials—ordered by molecular mass —in
the sample. The output is called a mass spectrum and is initially continuous in nature, with
very low signals representing mass regions where nothing was found, and spike-shaped
structures (called “peaks”) representing a relatively large amount of material at a particular
mass.

One type of mass spectrometry instrument works by ionizing the molecules in a sample,
typically by an intense laser pulse or ion collision, then accelerating the resulting ions through
an electric potential of a few kV. After the molecules have been accelerated to some terminal
velocity v, which depends on their mass m and electric charge z as well as the electric potential
V, they float down a field-free time of flight (TOF) tube and strike a detector. The energy E
gained relates the electric potential and velocity by E = zV = ½mv2. Low mass ions reach a
higher velocity and hence strike the detector first; heavy ions are detected last. By measuring
the number of detections along a time scale, then converting the time axis into mass per unit
charge (m/z), a spectrum of signal intensity vs. m/z is created. While this is not the only method
of mass spectrometry, it is a common one used in the field of proteomics. Its ability to survey a
wide range of mass values aids the search for important proteins, as opposed to other methods,
which might search for the abundance of a material at a specific m/z value.

rWMBAT Documentation Page 3

There are several errors associated with this type of instrument. Although we would like the
peaks to be infinitely narrow “spikes,” they in fact have finite width due to the method of
ionization and detection. In addition, the time that a specific molecule arrives differs slightly from
trial to trial, and the intensity measured can vary for reasons other than true abundance
variations in the sample. Another important error arises because of the violence of the initial
ionization and the several ways a single molecule can show up—with charge z >1 (called
multiply-charged states), in fragments, or with small common molecules such as the chemical
matrix attached (adducts) or detached (neutral loss). These processes result in peaks at
different m/z values that actually represent a single underlying molecule.

1.3 Methods
WMBAT uses mutual information as a scoring criterium to construct a three level Bayesian
network structure with the disease state as the uppermost node. For more information on these
concepts, see Cover [2] and especially Jensen [3]. Figure 1 shows the final result of one
analysis. In that figure, the node representing the disease state is labeled “Class,” the numbered
nodes represent specific m/z values found in the data set. Features connected directly to the
class (“first level features”) are those which have been determined to be stable indicators of the
disease under many randomized k-fold cross validation trials. This type of cross-validation has
been shown to decrease variance and increase stability [4]. Those on the second level are
related to the first level features in some fashion and have been found to provide information on
the disease state only through the first level features.

 By identifying these relationships, it may be possible for those trying to chemically identify
biomarker candidates to understand the parent ion. In the data represented by Figure 1, for
example, a child of feature 203 was tentatively identified as a des-argenine modification of the
parent—an additional clue to the identity of the primary feature. (More in-depth discussion of the
experimental data is to appear in BMC Bioinformatics, 2010.)

Figure 1: Final result of WMBAT analysis

The first level of features below the disease class are those features most likely to be parent
ions that are diagnostic of the disease state, or class variable. The second level below the class

rWMBAT Documentation Page 4

node are those features that are found to be correlated to the parent ions. These are often
ionization satellites, adducts, or modifications of a parent molecule. They are included so that
the user has additional information that might assist in the identification of the parent
(diagnostic) feature.

The input to the tool is a n-by-v data matrix from a set of mass spectrometry measurements,
where n is the number of spectra derived from the physical specimens, and v is a fixed number
of specific m/z points along the spectra. The entries are the measured intensity or abundance
values of each species spectrum at the same (global) discrete m/z values.

The output is a set of data elements that allow the user to build a Bayesian network from the v
features identified in the input. The frequency of connections between the disease class variable
and the feature set, as well as the frequency of connections between features, is given. Feature
pairs that may represent a single molecule are attempted to be combined into a meta-variable;
successful combinations are noted as well. The predicted disease class for each specimen is
recorded, and the overall classification error rate for each trial is reported. Other outputs return
the subject ID and specimen data after any optional processing (such as normalization) is
completed. While the result shown in Figure 1 is graphical, the output of the algorithm is
numeric. Specifically, the first level variables are described by a vector whose ith entry is the
frequency with which feature i was found to be connected to the class.

Similarly, the second level features are described in an array whose (i,j) element is the
frequency that a connection was found between feature i (a first level feature) and feature j.
Additionally, the algorithm attempts to find feature pairs that may be arithmetically combined to
create a more diagnostic feature. This might be the case when, for example, a sodium atom
attaches to the parent ion during the measurement, and some of the abundance of the parent
ion shows up at a different m/z position. These “metavariables” are also reported as (i,j) pairs,
where the algorithm determines that a better feature is created when first level feature i is added
to another feature j.

Since the signal processing of the MS spectra is done outside the algorithm, only a minimal
amount of data pre-processing is accomplished. Options include the setting of all negative
values to 0 (there are no real negative abundance), normalization, and replicate averaging.
Normalization is done by multiplying the sum of all features of a given case by a factor that
makes all cases have the same sum. This is an attempt to correct for unusually low (or high)
signal strength for a given spectrum.

Since the data we built the tool around had replicates, or multiple measurements from single
samples, we included an option to replicate average the data. If selected, features are
arithmetically averaged among cases with the same patient ID.

After this preprocessing, the algorithm enters two embedded loops: the first repeats the entire
process some number of times as set by the user. See Figure 2 for more detail.

rWMBAT Documentation Page 5

Figure 2: Algorithm flowchart

The inner loop is for implementation of the k-fold cross validation. Each cycle of the inner loop
results in k networks, with k sets of first-level, second-level, and metavariables, but with a single
error rate. This error rate is the fraction of all cases that were determined to be a different class
than that recorded in the original data. In actuality, a probability of class is calculated, but the
algorithm is defaulted to determine class by a simple test of probability of disease greater or
less than 50%.

Once a training group and testing group have been selected inside the cross validation loop, the
algorithm finds a mutual information (MI) threshold by randomizing class labels a large number
of times, and determining a significance threshold by taking the 99th percentile largest
randomized MI. A user derived factor can increase this significance threshold to more
conservatively test for stable features.

Given this MI threshold, features are tested to see if the MI between a feature and the disease
class exceeds the threshold. If so, they are tentatively placed on the first level.
All features are then tested pair-wise to determine feature to feature connections, using the
same MI technique and (scaled) threshold. Those connected to a first level feature (but not a
first level feature themselves) are placed on the second level.

Where two first level features are connected, the algorithm attempts to test for conditional
independence between the class and each feature, given the other, in order to determine if one
is perhaps a child of the other. Details on this test and other aspects of the algorithm can be
found in Kuschner [5].

After all the desired repetitions of this process are complete, the output is reported as described
above. The graphical description of the network, as seen in Figure 1, must be done manually by
the user. Classification of blind or other external data must be done manually after the user has
examined the results reported and chosen stable features based on their own needs.

rWMBAT Documentation Page 6

1.4 Example Data
In the example data set included with this package, we reproduced those systematic and
statistical properties we have found in certain real data (BMC Bioinformatics 2010), without the
several artifacts that we have no specific explanation for (such as certain peaks failing to appear
in some replicates).

The primary purpose of this data set is for quality control and testing of the algorithm. By
mimicking known properties of the real data, then attempting to identify those properties with
algorithms made for that purpose, we gain a better understanding of the reliability and stability
of the protocols used.

The following steps were taken to prepare the generated data:

1. A spectrum1 with 200 peaks is created by taking the mean and standard deviation of the non-
disease members of a real data set. This provides a baseline for creating all the cases that will
be used.

2. A set of spectra, with the number of cases approximating the number of unique patient
identification numbers in a real data set, is generated via a draw from a Gaussian distribution
for each variable independently, using those values of mean and standard deviation. At this
point there should be no real distinction between any of the 200 variables.

3. One-half of the population is designated to be in the disease class. A class vector
representing this choice is created and attached to the data.

4. One peak (labeled 200) is chosen as “highly diagnostic” and the mean values of the two
subpopulations (normal and disease) are separated by two times the population’s average
standard deviation. Specifically, the disease cases are redrawn from N(µ+2σ,σ). This results in
a distribution like the one shown in Figure 3.

Figure 3: Generated data distribution for highly diagnostic peak

1. A random fraction (about a tenth) of the total value of this peak is placed into each of
four adjacent peaks (labeled 195-199). In this manner, five diagnostic peaks are

1 A full spectrum is not created as we do not wish to replicate the signal processing steps. Instead, the steps here are
applied to the final peak list data.

rWMBAT Documentation Page 7

created, all diagnostic of the class. This procedure mimics the measurement of adducts
or modifications in the real data set, wherein slightly modified molecules show up as
peaks separate from the original.

2. A small fraction of the value of the key peak (200) is moved into a peak some distance

away in the list (labeled 100), representing a multiply-charged ionization satellite (z =2).
This is repeated to a different peak (labeled 99) for one of the adducts (199).

3. Another moderately diagnostic2 peak is created but not added to the peak list. Instead,

varying portions of the total value of that peak are placed in two non-adjacent peaks
(labeled 50 and 150). This represents the breaking apart of a biomarker protein, whose
mass is too great to be detected, into several fragment molecules that are in the range of
measurement.

4. Two more peaks (labeled 1 and 2) are selected as “mildly diagnostic” and the values

chosen from two normal distributions whose means are separated by about one
standard deviation of either group. Specifically, the disease cases are redrawn from
N(µ+σ,σ). One of these two peaks has a portion of the other peak’s value added to it to
represent two peaks that are so close together that the peak value of one is “riding up”
on the tail of another.

5. The cases are replicated three times (the original of each case is discarded) by

multiplying each value by a de-normalization factor to replicate the signal strength and
chemical preparation effects. For a single data vector X, a factor f is first selected from
~U(0.5, 2.0) to replicate the range of total ion current normalization factors found in the
Leukemia data. The resulting distribution for the highly diagnostic peak is shown in
Figure 4.

Figure 4: Distribution for highly diagnostic peak after de-normalization

A summary of the diagnostic peaks placed in the generated data is given in Table 1.

2 Difference in means is about one and a half standard deviations of the sub populations.

rWMBAT Documentation Page 8

Table 1: Diagnostic variables, generated data

Peak Purpose

200 Highly diagnostic

196-199 Adducts or modi-
fications of peak

200
99, 100 Correlated doubly

charged ionization
states of 199, 200

1, 2 Diagnostic with
correlations due to

mixing
3, 4 Mildly diagnostic

50, 150 Diagnostic—but
hidden—primary

peak

With this data, the algorithm should output a highly stable set of connections that result in the
Bayesian network shown in Figure 5. The user may want to vary the threshold factor from 2.5 to
3.5 and note the minimum error rate around 3.2 with an average of 6 first level features. In our
test, 6 features (3%) were selected nearly 100% of the time. 93% of the others are almost never
selected. The first level connections occurring in more than one-half of trials in a typical run are
shown in Table 2.

Table 2: First Level Variables. Table 2 shows those features found
most often to be directly connected to the class node. One unintended
feature was found 48% of the trials.

Feature Selection
Frequency

1 100%

2 100%

3 95.1%

4 99.7%

150 99.9%

200 99.6%

Only two first-level features had other features frequently connected at the second level.
Feature 200 was found to be the parent of features 195-199 and 100, all more than 99% of the
trials. Feature 150 was connected to feature 50, but in only 13% of the trials. These two features
were fragments of a non-measured feature.

The only diagnostic feature not identified by the BN algorithm at either the first level or the
second level of nodes more than 50% of the time was feature 99. However, this was a correct
result, since feature 99 was intended to be a child of feature 199, which itself was derived from
feature 200. Therefore, it should have been identified as a third level node and eliminated,
which is indeed what occurred.

rWMBAT Documentation Page 9

Error rates around 14% are achieved, higher than may be possible with other feature selection
methods. However, the network chart is a near perfect representation of the planned
relationships, except for the unstable connection found from the Class node to feature 99 (a
third level feature) and the failure to specifically identify the hidden feature H which the algorithm
is not designed to find. The connection from 1 to 2 was only found occasionally.

Figure 5: Planned and resulting Bayesian Network. Black represents connections planned
and found. Blue represents connections planned, but not found. Red represents connections
found, but not planned. Dotted lines were found infrequently.

1.5 Concerns
The thresholding procedure is somewhat subjective, although we have been able to achieve
good results by starting with a threshold value of 2.0, and increasing or decreasing the value by
0.2 as is indicated by the density of connections found in the results. The mean error rate of all
trials at a given threshold should be examined. The threshold which achieves near-minimum
error, stable feature selection, and a reasonable number of features is the best. In the example
data set in Figure 6, a reasonable choice for threshold would be 3.2, as it minimizes error rate
while choosing a reasonable number (7) of variables.

Figure 6: MI threshold effects under 10-fold cross-validation

A second area of concern is the metavariables creation. We have not yet found this to
significantly decrease error rate in withheld data, and feel more work needs to be done on this
part of the analysis. We recommend that users consider the combination of features carefully
before using the results in more complicated analyses.

rWMBAT Documentation Page 10

1.6 Conclusions and Recommendations
We have tested the tool on several data sets with varying results. Some artificial data (example
included), derived using the parameters of real blood sera data (see coming BMC 2010
publication and [5]), recreated the intended relationships between features including all induced
correlations. In real data, we have had some mixed results. A leukemia study found very stable
features that classified withheld data with error rates as predicted by training data. Another
preliminary data set had less stable features and is undergoing more study.

We believe that if the data produces stable features (>75% selection rate for network
connections), the resulting most likely network will provide insight into the underlying feature
relationships with the disease.

2. Functions in rWMBAT Library

2.1 BuildBayesNet - Select Features and Metafeatures Based On Mutual
Info

Description
BuildBayesNet selects features and metafeatures based on mutual info

Usage
BuildBayesNet(data, class, ffactor, drop)

Arguments

data integer array containing the data used to build the Bayes net, cases in rows, variables in
cols,

class double column vector, the known class variable for each case

ffactor multiple of auto MI to use to threshold C->V connections

drop double, MI loss percentage threshold for testing independence. Set to
.75 and adjust to filter too few/too many variable-to-variable connections.

Details
This function takes a set of training data and an additional variable called "class" and tries to
learn a Bayesian Network Structure by examining Mutual Information.

Value
a matrix of zeros and ones, where one in row i, column j denotes a directed link in a Bayesian
network between variable i and variable j. The class variable is the last row/column.

Note
CALLED FUNCTIONS
automi: finds an MI threshold based on data
findmutualinfos: finds all values MI(VC), MI(VV) and MI(VC|V)

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009.

References

rWMBAT Documentation Page 11

http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 adjacency <- BuildBayesNet(data, class, ffactor, drop)

2.2 ChooseMetaVars - Combine Variables into Metavariables
Description
Finds the V-V pairs in the adjacency matrix, and attempts to combine them into a metavariable
with higher mutual information than either variable alone. If it is possible to do this, it returns a
new data matrix with the variables combined.

Usage
ChooseMetaVars(data, class, adj)

Arguments

data double array of discrete integer (1:n) values, cases in rows and variables in columns.

class double column vector, also 1:n. Classification of each case.

adj Logical adjacency matrix, number of variables+1 by number of variables. Last row is class
node. Logical meaning "there is an arc from i to j.

Value

metamatrix logical whose (i,j) means "variable j was combined into variable i (and erased)"

finaldata double data matrix with the variable combined and rebinned

leftbound vector, the new left boundary for binning

rightbound vector, the new right boundary for binning

Note
CALLED FUNCTIONS:
opt3bin: rebins combined variables to determine highest MI

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 result <- ChooseMetaVars (data, class, adj)

2.3 clearirrarcs - Clear Arcs That Are Not C->V Or C->V<->V
Description
Given an adjacency matrix with V<->V arcs in a square matrix and an additional row
representing C->V (class to variable), this function clears out all V1->V2 arcs where V1 is not a
member of the set of V's that are class-connected, i.e. have arcs in the final row.

Usage
clearirrarcs(adjin)

rWMBAT Documentation Page 12

Arguments

adjin logical array where a true value at position (i,j) means that there is an arc in a directed
acyclic graph between (variable) i and variable j.

Value
copy of adjin with unneeded arcs cleared

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 adjout <- clearirrarcs(adjin)

2.4 clipclassconnections - Delink Variables From Class
Description
Where two variables are connected to each other and also to the class, attempt to select one as
the child of the other and disconnect it from the class. Use MI(Vi;C|Vj)<<MI(Vi;C) as a test.

Usage
clipclassconnections(adj, mivc_vec, mivcv, dropthreshold)

Arguments

adj logical matrix where "true" entries at (i,j) mean "an arc exists from the Bayesian
network node Vi to Vj." The class variable C is added at row (number of V's +
1). "0" values mean no arc.

mivc_vec double row vector containing MI(C;Vi) for each variable

mivcv double array whose (i,j) entry is MI(Vi,C|Vj)

dropthreshold double percentage drop from MI(Vj;C) to MI(Vj;C|Vi) before declaring that Vi is
between C and Vj

Value
copy of adj with the appropriate arcs removed

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples

 adjout <- clipclassconnections(adj, mivc_vec, mivcv, dropthreshold)

rWMBAT Documentation Page 13

2.5 DoTheMath - Perform Feature Selection for the Data
Description
DoTheMath takes a data array, class vector, and other information and builds and assesses a
Bayesian network after selecting features from within the data array.

Usage
DoTheMath(InputStructure)

Arguments

InputStructure A list containing following inputs

Class vector of length "cases", with discrete values identifying class of each case (may
be integer)

ID double patient ID array of length cases, with one or more cols

MZ Vector of length "variables" holding labels for variables

Options Logical 6x1 array.
Options are:
1. Normalize on population total ion count (sum across rows)
2. Remove negative data values by setting them to zero
3. After normalizing, before binning, average cases with same ID
4. Find the MI threshold by randomization
5. Take log (data) prior to binning. Negative values set to 1.
6. Remove Low Signal cases
NOT DONE: 3 Bin (2 Bin if False)

n integer, the "n" in n-fold cross validation

repeats Integer, times to repeat the whole process (e.g. re-crossvalidate)

threshold double factor by which the maximum "random" MI us multiplied to find the
minimum "significant" MI (double, 1.0-5.0)

Details
This is the umbrella script that loops a specified number of times (see "repeats" above), each
time doing a full n-fold cross validation and recording the results. All input and output data are
stored in a single data structure, described below.

Value

OutputDataStructure all the fields of InputStructure, plus

ErrorRate Vector containing misclassification rate for each repeat

KeyFeatures Index to vector MZ that identifies features selected

Note
CALLED FUNCTIONS
InitialProcessing: Applies the options listed above
BuildBayesNet: Learns a Bayesian Network from the training data
ChooseMetaVars: Combines variables that may not be physically separate molecules.
TestCases: Given the BayesNet, tests the "test group" to determine the probability of being in
each class.
opt3bin: Discretizes continuous data into 3 bins, optimizing MI FindProbTables: Learns the
values P(C,V) for each variable cvpartition and training are MATLAB Statistics toolbox functions.

rWMBAT Documentation Page 14

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 OutputDataStructure <- DoTheMath (InputStructure)

2.6 FindProbTables - Estimate the Probabilities P (class=c|data=D)
Description
Input a training group of data arranged with cases in rows and variables in columns, as well as
the class value c for that vector. Each case represents a data vector V. For each possible data
value vi, and each variable Vi, it calculates P(C=c|Vi=vi) and stores that result in a 3-D table.
The table is arranged with the dimensions (class value, data value, variable number).

Usage
FindProbTables(data, class)

Arguments

data double array of discrete integer (1:n) values, cases in rows and variables in columns

class double column vector, also 1:n. Classification of each case

Value
3-D array whose (c,d,v) value is P(class=c|data=p) for variable v

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 probtable <- FindProbTables(data, class)

2.7 getarcs - Build Adjacency Matrix For A Set Of Variables
Description
By comparing mutual information between two variables to thresholds determined seperately,
this function declares there to be an arc in a Bayesian network. Arcs are stored in an adjacency
matrix, described below.

Usage
getarcs(mvc, vcthreshold, mvv, vvthreshold)

Arguments

mvc double vector array with mutual information between variables and the class
(variables and other variables). The (i,j) entries of mvv are MI(Vi,Vj).

rWMBAT Documentation Page 15

vcthreshold scalar threshold used to test for existence linkz

mvv double vector matrix

vvthreshold scalar threshold used to test for existence linkz

Details
The primary tests are: MI(Vi;Cj)>>vcthreshold : tests for links between Vi and the class
MI(Vi;Vj)>>vvthreshold : tests the links between variables

Value
logical matrix whose entries "1" at (i,j) mean "an arc exists from the Bayesian network node Vi to
Vj." The class variable C is added at row (number of V's + 1). "0" values mean no arc

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 adjacency <- getarcs(mvc, vcthreshold, mvv, vvthreshold)

2.8 WMBAT - The William and Mary Bayesian Analysis Tool
Description
WMBAT takes an array of mass spec peak intensities, a vector describing which of two classes
each sample belongs to, and other information and builds and assesses a Bayesian network
after selecting features (peaks) from within the data array that are diagnostic of the class. The
primary output is an adjacency matrix describing the resulting Bayesian network.

Usage
WMBAT(tofListMetaData, alignedPeakList, Options, nfold, repeats, threshold)

Arguments

alignedPeakList List contain following information
peaks: double vector holding time labels for peaks

data: double vector holding peak intensity value for corresponding spectrum

tofListMetaData a list containing information about every spectra, the information related to the
spectra we needed in this package is class and ID.
Class: Integer vector, values 1 or 2 identifying the class of each case, such as
"disease, non-disease"
ID: Double one or two column array contains the sample ID

for each case. Second column is optional and would identify
replicates of the same sample.

Options Logical 6x1 array. Options are: 1. Normalize on population total ion count (sum
across rows) 2. Remove negative data values by setting them to zero 3. After
normalizing, before binning, average cases with same ID 4. NOT USED - SET
TO FALSE 5. Take log(data) prior to binning. Negative values set to 1. 6. NOT
USED - SET TO FALSE

nfold integer, the “n” in n-fold crosses validation (integer 4-10). 10 is recommended

repeats integer, times to repeat the whole process (e.g.re-crossvalidate). 100 is

rWMBAT Documentation Page 16

recommended

threshold double, factor by which the maximum "random" MI is multiplied to find the
minimum "significant" MI (double, 1.0-5.0). We recommend starting with 1 and
increasing until a "reasonable" number of diagnostic peaks is reached and error
rates are minimized. This setting is dependent on the data and the correlations
between variables

Value

IntOut double Intensities input array, after processing by the various options selected by
the logical Options above

IDOut double vector, the ID number of each row in the IntOut array. With no replicate
averaging, each ID will be preserved (but reformatted) from the input. With replicate
averaging, only the primary ID number remains.

PredClass double matrix, the predicted class of each case, during each of the trials (from input
"repeats")

Class2Vars vector whose ith value is the fraction of times peak i (from the vector MZ) was
selected as being connected to the class. The maximum times it could have been
selected was nfold*repeats

Var2Vars integer array whose (i,j) entry is the fraction of times a second level link was found
from peak i to peak j, when peak i was connected to the class, as found in SumLvl1

MetaVars integer array whose (i,j) entry is the fraction of times a metavariable was created
using peak i and peak j and stored in the level

TrialErr double vector, the error rate for each of the "repeats" possible trials. Records the
percentage of cases where PredClass was not equal to the input Class.

Note
CALLED FUNCTIONS:
DoTheMath: Learns a Bayesian Network from the data

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 result <- WMBAT (Intensities,Class, ID, MZ, Options, nfold, repeats, threshold)

3. Generic Tool Functions
The functions in this section are generic tools that were written in order to support the rWMBAT
library

3.1 Repmat - Create a Matrix Consisting Of An m-by-n Tiling Copies Of X
Description
creates a large matrix consisting of an m-by-n tiling of copies of X

Usage
Repmat(X, m, n)

rWMBAT Documentation Page 17

Arguments

X double matrix used to make copies of

m Integer row number of the result matrix

n Integer column number of the result matrix

Value
m-by-n double matrix

Author(s)
Qian Si, College of William and Mary, Dept. of Physics, 2009

Examples
repmat<-Repmat(X,m,n)

3.2 InitialProcessing – Input Data Prep after Custom Signal Processing
Description
Takes Peaklists That Have Been Imported into R And Prepares Them For Bayesian Analysis

Usage
InitialProcessing(StructIn)

Arguments

StructIn list with the following double-typed arrays
Intensities: double n x m real-valued array with variables (peaks) in columns, cases

(samples) in rows.
MZ: double list of the labels (m/z value) for each of the variables. Must be the same

size as the number of variables in Intensities
Class: Integer vector, classification of each sample (disease state)– 1 or 2–must be

the same size as the number of cases in Intensities
ID: double column array, case or patient ID number, same size as class. May have

second column, so each row is [ID1 ID2 where ID2 is replicate number.
Options: logical array of processing options with elements:

1. Normalize
2. Clip Data (remove negatives)
3. Replicate Average
4. Auto threshold MI
5. Use Log of Data
6. Remove Low Signal cases
NOT DONE: 3 Bin (2 Bin if False)

Value

RawData Intensities as input

ClipData RawData where all values less than 1 are set to 1

NormData ClipData normalized by total ion count, i.e. divided by the sum of all variables for
each case

LogData Natural logarithm of NormData

Class Same as input

rWMBAT Documentation Page 18

MZ Same as input

ID Single column. If replicates are not averaged, the entries are now ID1.ID2. If
replicates averaged, then just ID1

DeltaMZ difference in peak m/z values to look for adducts

RatioMZ ratios of m/z values ot look for satellites

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 StructOut <- InitialProcessing(StructIn)

3.3 MutualInfo - Calculate Mutual Information Of Two Variables
Description
calculating mutual information of the two variables

Usage
MutualInfo(v1, v2)

Arguments

 v1 one of the two vectors of which MI is calculated

 v2 one of the two vectors of which MI is calculated

Value
mutual information of the two vectors

Author(s)
Bill Cooke, College of William and Mary, Dept. of Physics, 2009

Examples
MI <- MutualInfo(v1, v2)

3.4 findmutualinfos - Find Various Mutual Info Combos among Variables

Description
Given a set of data (many cases, each with values for many variables) and
an additional value stored in the vector class, it finds MI described
below in "Value."

Usage
findmutualinfos(data, class)

Arguments

rWMBAT Documentation Page 19

data A number of cases (in rows), each with a measurement for a group of
variables (in columns). The data should be discredited into integers 1
through k. The columns are considered variables V1, V2, ...

class A column vector of length "cases" with integer values 1,2..., an additional
measurement of class C.

Value
mi_vc a row double vector whose ith value is MI(Vi,C).
mi_vv double symmetric matrix with values MI(Vi,Vj).
mi_vc_v double non-sym matrix with values MI(Vi;C|Vj).

Note
CALLED FUNCTIONS:
MutualInfo - Calculate Mutual Information Of Two Variables CondMutualInfo-Calculate Mutual
Information of Two Variables Conditioned On a Third

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 result <- findmutualinfos(data, class)

3.5 CondMutualInfo-Calculate Mutual Information of Two Variables Conditioned
On a Third
Description
calculating the mutual information of two variables conditioned on a third

Usage
CondMutualInfo(V1, V2, condV)

Arguments

V1 one of the two vectors of which MI is calculated

V2 one of the two vectors of which MI is calculated

condV given condition vector

Value
mutual information of two variables conditioned on a third

Author(s)
Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009

rWMBAT Documentation Page 20

Examples
MIxyz <- CondMutualInfo(V1, V2, condV)

3.6 automi - Find a Threshold for Randomized MI (V C)
Description
Finds the threshold of a data set's mutual information with a class vector, above which a
variable's MI (class, variable) can be expected to be significant.

Usage
automi (data, class, repeats)

Arguments

data double array of discrete integer (1:n) values, cases in rows and variables in columns.

class double column vector, also 1:n. Classification of each case.

repeats Integer, the number of times to repeat the randomization

Details
The threshold for mi (significance level) is found by taking the data set and randomizing the
class vector, then calculating MI (CV) for all the variables. This is repeated a number of times.
The resulting list of length (repeats *variables) is sorted, and the 99th percentile max MI is
taken as the threshold.

Value
a threshold for randomized MI(V C)

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009.

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 threshold <- automi(data, class, repeats)

3.7 opt2bin - Optimize Boundary for Each Variable to Maximize MI
Description
This function takes an array of continuous data, with cases in rows and variables in columns,
along with a vector "class" which holds the known class of each of the cases, and returns an
array "binneddata" that holds the 2 bin discretized data.

Usage
opt2bin(rawdata, class, steps, typesearch, minint = NA, maxint = NA)

Arguments

rawdata double array of continuous values, cases in rows and variables in columns.
Distribution is unknown

class double column vector, values 1:c representing classification of each case

rWMBAT Documentation Page 21

steps Integer, number of steps to test at while finding maximum MI

typesearch values=0: starting boundary based on data's actual max/min
values =1: use the value passed in max as maximum (right)
value =-1: use the value passed in min as minimum (left)
value =2: used values passed via max, min

minint vectors whose values limit the range of search for each variables boundaries

maxint vectors whose values limit the range of search for each variables boundaries

Details
The discretization bin boundary is found by maximizing the mutual information with the class
the resulting MI and boundary are also returned. The starting boundaries for the search can be
given in the vectors min and max, or either one, or neither, in which case the data values
determine the search boundaries.

Value

mi double row vector holding the maximum values of MI(CVi) found

boundary double vector, the location used to bin the data to get max MI

binneddata double matrix, the resulting data binned into "1" (low) or "2" (hi)

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 result <- maxMIbin(rawdata, class, typesearch ,min, max)

3.8 opt3bin - Find 3 Bin Boundaries Optimizing the MI of Each Variable
Description
This function takes an array of continuous sample data of size cases (rows) by variables
(columns), along with a class vector of integers 1:c, each integer specifying the class. The
class vector has the same number of cases as the data. The function outputs the position of
the 2 bin boundaries (3 bins) that optimize the mutual information of each variable's data vector
with the class vector.

Usage
opt3bin(data, class)

Arguments

data double array of continuous values, cases in rows and variables in columns. Distribution
is unknown

class double column vector, values 1:c representing classification of each case

rWMBAT Documentation Page 22

Value

l double row vector of left boundary position for each var

r double row vector of right boundary position for each var

binned double data array discretized using boundaries in l and r

mi double row vector of mutual info between each discr. variable and class

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 result <- opt3bin(data,class)

3.9 looklr - Find Boundary
Description
given a start position, finds another boundary (to create 3 bins) that maximizes MI with the
class

Usage
looklr(data, class, startbd, steps)

Arguments

data double array, cases in rows and variables in columns

class double column vector, values 1:c representing classification of each case

startbd double vector, given start position for each case

steps Integer, number of steps to test at while finding maximum MI

Value
miout double vector, recorded highest MI value
nextboundary double vector, boundary (to create 3 bins) that maximizes MI with the class
binned double matrix, recorded the binned value.

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 result<- looklr (data, class, startbd, steps)

rWMBAT Documentation Page 23

3.10 TestCases - Classify Using Bayes Rule
Description
Tests each of a set of data vectors by looking up P(data|class) in a probability table, then
finding P(case|class) by multiplying each of those values in a product. Then uses Bayes' rule to
calculate P(class|data) for each possible value of class. Reports this as an array of class
probabilities for each case.

Usage
TestCases(p, prior, data)

Arguments

p 3-D double array of probabilities (c,d,v). The first dimension is the class, the second is
the data value, and the third is the variable number. The entry is P(var v=value d |
class=value c)

prior double columns vector, prior probabilities for each cases in data

data double array of discrete integer (1:n) values, cases in rows and variables in columns

Value
2-D double array whose value is P (class=c|data) for each case. Cases are in rows, class in
cols

Author(s)
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics,
2009

References
http://kwkusc.people.wm.edu/dissertation/dissertation.htm

Examples
 classprobs <- TestCases(p, prior, data)

4. References
[1] Tuszynski, Jarek. Protein Mass Spectra (SELDI) Data Processing and Classification with
“caMassClass” library, accessed on Aug 21, 2009 from
http://rss.acs.unt.edu/Rdoc/library/caMassClass/
doc/caMassClass-old_manual.pdf.

[2] Cover, Thomas M. and Thomas, Joy A. Elements of Information Theory. s.l. : John Wiley &
Sons, Inc, 1991. 0-471-06259-6.

[3] Jensen, Finn V. and Nielson, Thomas D. Bayesian Networks and Decision Graphs. New
York, NY : Springer, 2007. ISBN 0-387-68281-3.

[4] Kohavi, Ron. A Study of Cross Validation and Bootstrap for Accuracy Estimation and Model
Selection. Stanford, 1995.

rWMBAT Documentation Page 24

[5] Kuschner, Karl. A Bayesian Network Approach to Feature Selection in Mass Spectrometry
Data. Accessed on Aug 21, 2009 from
http://kwkusc.people.wm.edu/dissertation/dissertation.htm.

5. Acknowledgement
This research was supported by NIH computational R01 grant CA126118 from the Advanced
Proteomics Platforms and Computational Sciences Program within the Clinical Proteomics
Initiative of the National Cancer Institute (PI: Malyarenko). We would like to acknowledge
multiple discussions with Prof. Gene Tracy, and C-code contribution and performance
optimization by Prof. William Cooke.

