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1. rWMBAT Methods for Diagnostic Variable Selection from Mass 
Spectra 

 

1.1  Introduction 
The goal of the William and Mary Bayesian Network Analysis Tool (WMBAT) is to solve two key 
problems in feature selection and classification of mass spectrometry (MS) data, as described 
by the authors of the caMassClass tool [1]: Low data reproducibility, and the possibility of false 
discovery. 
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We believe that both problems arise from a similar root cause (given the variations inherent in 
the instrument), that of small sample effects.  Features which may appear to be important in a 
small sample are then found to be non-diagnostic in another group. This leads to classifiers that 
fail to work during blind tests and random features being pursued as biomarkers. 
 
An additional problem which plagues some classification schemes is the existence of many 
correlated features in MS data.  For example, if two features exist because a molecule appears 
at a singly and doubly charged ion state in the mass spectra, they will likely be highly correlated.  
Feature selection methods such as forward selection based on a naïve Bayesian classifier 
wrapper will select one feature, but not the other, since the second adds no additional 
classification power. 
 
The primary objective was to select stable features that would extend to new data.  The 
secondary objective was to describe the relationships between these features, such as which 
were likely to be primary, or parent, ions and which were modifications or satellites. A tertiary 
objective was to provide a classifier, but one limited to stable feature sets whose error rates may 
not be as low as other, less stable methods. 
 
To achieve these objectives, we chose to encode a specific type of Bayesian (or belief) network. 
We limited the structure to have a root node that represented the disease state under study, and 
whose children (immediate descendants) were features whose relation to the disease were 
stable and independent of other features.  
 

1.2  Background 
This work is part of an ongoing project whose goal is to create tools for “computationally 
improved signal processing for mass spectrometry data.” One of the steps in that project, and 
the focus of this work, is the development of methods to exploit the improved MS data to find 
biologically relevant information. 
 
A mass spectrometer is an instrument that takes some sample of material, biologic or otherwise, 
and measures the relative amounts of constituent materials—ordered by molecular mass —in 
the sample.  The output  is called a mass spectrum and is initially continuous  in nature, with 
very low signals representing mass regions where nothing was found, and spike-shaped 
structures (called “peaks”) representing a relatively large amount of material at a particular 
mass.  
 
One type of mass spectrometry instrument works by ionizing the molecules in a sample, 
typically by an intense laser pulse or ion collision, then accelerating the resulting ions through 
an electric potential of a few kV. After the molecules have been accelerated to some terminal 
velocity v, which depends on their mass m and electric charge z as well as the electric potential 
V, they float down a field-free time of flight (TOF) tube and strike a detector. The energy E 
gained relates the electric potential and velocity by E = zV = ½mv2. Low mass ions reach a 
higher velocity and hence strike the detector first; heavy ions are detected last. By measuring 
the number of detections along a time scale, then converting the time axis into mass per unit 
charge (m/z), a spectrum of signal intensity vs. m/z is created. While this is not the only method 
of mass spectrometry, it is a common one used in the field of proteomics. Its ability to survey a 
wide range of mass values aids the search for important proteins, as opposed to other methods, 
which might search for the abundance of a material at a specific m/z value. 
 



rWMBAT Documentation Page 3 

 

There are several errors associated with this type of instrument. Although we would like the 
peaks to be infinitely narrow “spikes,” they in fact have finite width due to the method of 
ionization and detection. In addition, the time that a specific molecule arrives differs slightly from 
trial to trial, and the intensity measured can vary for reasons other than true abundance 
variations in the sample. Another important error arises because of the violence of the initial 
ionization and the several ways a single molecule can show up—with charge z >1 (called 
multiply-charged states), in fragments, or with small common molecules such as the chemical 
matrix attached (adducts) or detached (neutral loss). These processes result in peaks at 
different m/z values that actually represent a single underlying molecule. 
 

1.3  Methods 
WMBAT uses mutual information as a scoring criterium to construct a three level Bayesian 
network structure with the disease state as the uppermost node.  For more information on these 
concepts, see Cover [2] and especially Jensen [3]. Figure 1 shows the final result of one 
analysis. In that figure, the node representing the disease state is labeled “Class,” the numbered 
nodes represent specific m/z values found in the data set. Features connected directly to the 
class (“first level features”) are those which have been determined to be stable indicators of the 
disease under many randomized k-fold cross validation trials. This type of cross-validation has 
been shown to decrease variance and increase stability [4]. Those on the second level are 
related to the first level features in some fashion and have been found to provide information on 
the disease state only through the first level features. 
 
 By identifying these relationships, it may be possible for those trying to chemically identify 
biomarker candidates to understand the parent ion.  In the data represented by Figure 1, for 
example, a child of feature 203 was tentatively identified as a des-argenine modification of the 
parent—an additional clue to the identity of the primary feature. (More in-depth discussion of the 
experimental data is to appear in BMC Bioinformatics, 2010.) 
 

 
 

Figure 1: Final result of WMBAT analysis 
 

The first level of features below the disease class are those features most likely to be parent 
ions that are diagnostic of the disease state, or class variable.  The second level below the class 
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node are those features that are found to be correlated to the parent ions.  These are often 
ionization satellites, adducts, or modifications of a parent molecule. They are included so that 
the user has additional information that might assist in the identification of the parent 
(diagnostic) feature. 
 
The input to the tool is a n-by-v data matrix from a set of mass spectrometry measurements, 
where n is the number of spectra derived from the physical specimens, and v is a fixed number 
of specific m/z  points along the spectra. The entries are the measured intensity or abundance 
values of each species spectrum at the same (global) discrete m/z values. 
 
The output is a set of data elements that allow the user to build a Bayesian network from the v 
features identified in the input. The frequency of connections between the disease class variable 
and the feature set, as well as the frequency of connections between features, is given.  Feature 
pairs that may represent a single molecule are attempted to be combined into a meta-variable; 
successful combinations are noted as well. The predicted disease class for each specimen is 
recorded, and the overall classification error rate for each trial is reported. Other outputs return 
the subject ID and specimen data after any optional processing (such as normalization) is 
completed. While the result shown in Figure 1 is graphical, the output of the algorithm is 
numeric. Specifically, the first level variables are described by a vector whose ith entry is the 
frequency with which feature i was found to be connected to the class.  
  
Similarly, the second level features are described in an array whose (i,j) element is the 
frequency that a connection was found between feature i (a first level feature) and feature j. 
Additionally, the algorithm attempts to find feature pairs that may be arithmetically combined to 
create a more diagnostic feature. This might be the case when, for example, a sodium atom 
attaches to the parent ion during the measurement, and some of the abundance of the parent 
ion shows up at a different m/z position. These “metavariables” are also reported as (i,j) pairs, 
where the algorithm determines that a better feature is created when first level feature i is added 
to another feature j. 
 
Since the signal processing of the MS spectra is done outside the algorithm, only a minimal 
amount of data pre-processing is accomplished.  Options include the setting of all negative 
values to 0 (there are no real negative abundance), normalization, and replicate averaging. 
Normalization is done by multiplying the sum of all features of a given case by a factor that 
makes all cases have the same sum.  This is an attempt to correct for unusually low (or high) 
signal strength for a given spectrum. 
 
Since the data we built the tool around had replicates, or multiple measurements from single 
samples, we included an option to replicate average the data. If selected, features are 
arithmetically averaged among cases with the same patient ID. 
 
After this preprocessing, the algorithm enters two embedded loops: the first repeats the entire 
process some number of times as set by the user. See Figure 2 for more detail.  
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Figure 2: Algorithm flowchart 

 
The inner loop is for implementation of the k-fold cross validation. Each cycle of the inner loop 
results in k networks, with k sets of first-level, second-level, and metavariables, but with a single 
error rate.  This error rate is the fraction of all cases that were determined to be a different class 
than that recorded in the original data. In actuality, a probability of class is calculated, but the 
algorithm is defaulted to determine class by a simple test of probability of disease greater or 
less than 50%. 

 
Once a training group and testing group have been selected inside the cross validation loop, the 
algorithm finds a mutual information (MI) threshold by randomizing class labels a large number 
of times, and determining a significance threshold by taking the 99th percentile largest 
randomized MI. A user derived factor can increase this significance threshold to more 
conservatively test for stable features. 
 
Given this MI threshold, features are tested to see if the MI between a feature and the disease 
class exceeds the threshold.  If so, they are tentatively placed on the first level. 
All features are then tested pair-wise to determine feature to feature connections, using the 
same MI technique and (scaled) threshold. Those connected to a first level feature (but not a 
first level feature themselves) are placed on the second level.  
 
Where two first level features are connected, the algorithm attempts to test for conditional 
independence between the class and each feature, given the other, in order to determine if one 
is perhaps a child of the other. Details on this test and other aspects of the algorithm can be 
found in Kuschner [5]. 
 
After all the desired repetitions of this process are complete, the output is reported as described 
above. The graphical description of the network, as seen in Figure 1, must be done manually by 
the user. Classification of blind or other external data must be done manually after the user has 
examined the results reported and chosen stable features based on their own needs. 



rWMBAT Documentation Page 6 

 

 

1.4  Example Data 
In the example data set included with this package, we reproduced those systematic and 
statistical properties we have found in certain real data (BMC Bioinformatics 2010), without the 
several artifacts that we have no specific explanation for (such as certain peaks failing to appear 
in some replicates). 
 
The primary purpose of this data set is for quality control and testing of the algorithm. By 
mimicking known properties of the real data, then attempting to identify those properties with 
algorithms made for that purpose, we gain a better understanding of the reliability and stability 
of the protocols used. 
 
The following steps were taken to prepare the generated data: 
 
1. A spectrum1 with 200 peaks is created by taking the mean and standard deviation of the non-
disease members of a real data set. This provides a baseline for creating all the cases that will 
be used. 
 
2. A set of spectra, with the number of cases approximating the number of unique patient 
identification numbers in a real data set, is generated via a draw from a Gaussian  distribution 
for each variable independently, using those values of mean and standard deviation. At this 
point there should be no real distinction between any of the 200 variables. 
 
3. One-half of the population is designated to be in the disease class. A class vector 
representing this choice is created and attached to the data. 
 
4. One peak (labeled 200) is chosen as “highly diagnostic” and the mean values of the two 
subpopulations (normal and disease) are separated by two times the population’s average 
standard deviation. Specifically, the disease cases are redrawn from N(µ+2σ,σ). This results in 
a distribution like the one shown in Figure 3. 

 
Figure 3: Generated data distribution for highly diagnostic peak 

 

1. A random fraction (about a tenth) of the total value of this peak is placed into each of 
four adjacent peaks (labeled 195-199).  In this manner, five diagnostic peaks are 

                                                           

1 A full spectrum is not created as we do not wish to replicate the signal processing steps.  Instead, the steps here are 
applied to the final peak list data. 
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created, all diagnostic of the class.  This procedure mimics the measurement of adducts 
or modifications in the real data set, wherein slightly modified molecules show up as 
peaks separate from the original. 

 
2. A small fraction of the value of the key peak (200) is moved into a peak some distance 

away in the list (labeled 100), representing a multiply-charged ionization satellite (z =2). 
This is repeated to a different peak (labeled 99) for one of the adducts (199). 

 
 
3. Another moderately diagnostic2 peak is created but not added to the peak list. Instead, 

varying portions of the total value of that peak are placed in two non-adjacent peaks 
(labeled 50 and 150).  This represents the breaking apart of a biomarker protein, whose 
mass is too great to be detected, into several fragment molecules that are in the range of 
measurement. 

 
4. Two more peaks (labeled 1 and 2) are selected as “mildly diagnostic” and the values 

chosen from two normal distributions whose means are separated by about one 
standard deviation of either group. Specifically, the disease cases are redrawn from 
N(µ+σ,σ). One of these two peaks has a portion of the other peak’s value added to it to 
represent two peaks that are so close together that the peak value of one is “riding up” 
on the tail of another.  

 
  
5. The cases are replicated three times (the original of each case is discarded) by 

multiplying each value by a de-normalization factor to replicate the signal strength and 
chemical preparation effects. For a single data vector X, a factor f is first selected from 
~U(0.5, 2.0) to replicate the range of total ion current normalization factors found in the 
Leukemia data. The resulting distribution for the highly diagnostic peak is shown in 
Figure 4. 

 
Figure 4: Distribution for highly diagnostic peak after de-normalization 

 

A summary of the diagnostic peaks placed in the generated data is given in Table 1.  
 

                                                           

2 Difference in means is about one and a half standard deviations of the sub populations. 
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Table 1: Diagnostic variables, generated data 

Peak Purpose 

200 Highly diagnostic 

196-199 Adducts or modi-
fications of peak 

200 
99, 100 Correlated doubly 

charged ionization 
states of 199, 200 

1, 2 Diagnostic with 
correlations due to 

mixing 
3, 4 Mildly diagnostic 

50, 150 Diagnostic—but 
hidden—primary 

peak 

 
 

With this data, the algorithm should output a highly stable set of connections that result in the 
Bayesian network shown in Figure 5. The user may want to vary the threshold factor from 2.5 to 
3.5 and note the minimum error rate around 3.2 with an average of 6 first level features. In our 
test, 6 features (3%) were selected nearly 100% of the time. 93% of the others are almost never 
selected. The first level connections occurring in more than one-half of trials in a typical run are 
shown in Table 2. 
 

Table 2: First Level Variables.  Table 2 shows those features found 
most often to be directly connected to the class node. One unintended 
feature was found 48% of the trials. 

Feature Selection 
Frequency 

1 100% 

2 100% 

3 95.1% 

4 99.7% 

150 99.9% 

200 99.6% 

 
 
Only two first-level features had other features frequently connected at the second level. 
Feature 200 was found to be the parent of features 195-199 and 100, all more than 99% of the 
trials. Feature 150 was connected to feature 50, but in only 13% of the trials. These two features 
were fragments of a non-measured feature. 
 
The only diagnostic feature not identified by the BN algorithm at either the first level or the 
second level of nodes more than 50% of the time was feature 99.  However, this was a correct 
result, since feature 99 was intended to be a child of feature 199, which itself was derived from 
feature 200. Therefore, it should have been identified as a third level node and eliminated, 
which is indeed what occurred. 
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Error rates around 14% are achieved, higher than may be possible with other feature selection 
methods. However, the network chart is a near perfect representation of the planned 
relationships, except for the unstable connection found from the Class node to feature 99 (a 
third level feature) and the failure to specifically identify the hidden feature H which the algorithm 
is not designed to find. The connection from 1 to 2 was only found occasionally. 
 
 

 
 
Figure 5: Planned and resulting Bayesian Network.  Black represents connections planned 
and found. Blue represents connections planned, but not found. Red represents connections 
found, but not planned. Dotted lines were found infrequently. 
 

1.5  Concerns 
The thresholding procedure is somewhat subjective, although we have been able to achieve 
good results by starting with a threshold value of 2.0, and increasing or decreasing the value by 
0.2 as is indicated by the density of connections found in the results. The mean error rate of all 
trials at a given threshold should be examined.  The threshold which achieves near-minimum 
error, stable feature selection, and a reasonable number of features is the best. In the example 
data set in Figure 6, a reasonable choice for threshold would be 3.2, as it minimizes error rate 
while choosing a reasonable number (7) of variables. 
 

 
 

Figure 6: MI threshold effects under 10-fold cross-validation 
 

A second area of concern is the metavariables creation. We have not yet found this to 
significantly decrease error rate in withheld data, and feel more work needs to be done on this 
part of the analysis. We recommend that users consider the combination of features carefully 
before using the results in more complicated analyses. 
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1.6  Conclusions and Recommendations 
We have tested the tool on several data sets with varying results. Some artificial data (example 
included), derived using the parameters of real blood sera data (see coming BMC 2010 
publication and [5]), recreated the intended relationships between features including all induced 
correlations. In real data, we have had some mixed results.  A leukemia study found very stable 
features that classified withheld data with error rates as predicted by training data. Another 
preliminary data set had less stable features and is undergoing more study. 
 
We believe that if the data produces stable features (>75% selection rate for network 
connections), the resulting most likely network will provide insight into the underlying feature 
relationships with the disease. 
 
 

2.  Functions in rWMBAT Library 
 

2.1  BuildBayesNet - Select Features and Metafeatures Based On Mutual 
Info 

Description 
BuildBayesNet selects features and metafeatures based on mutual info  
 
Usage 
BuildBayesNet(data, class, ffactor, drop) 
 
Arguments 

data integer array containing the data used to build the Bayes net, cases in rows, variables in 
cols, 

class double column vector, the known class variable for each case  

ffactor multiple of auto MI to use to threshold C->V connections  

drop   double, MI loss percentage threshold for testing independence. Set to 
.75 and adjust to filter too few/too many variable-to-variable connections. 

Details 
This function takes a set of training data and an additional variable called "class" and tries to 
learn a Bayesian Network Structure by examining Mutual Information.  
 
Value 
a matrix of zeros and ones, where one in row i, column j denotes a directed link in a Bayesian 
network between variable i and variable j. The class variable is the last row/column. 
 
Note 
CALLED FUNCTIONS  
automi: finds an MI threshold based on data  
findmutualinfos: finds all values MI(VC), MI(VV) and MI(VC|V)  
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009.  
 
References 
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http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       adjacency <- BuildBayesNet(data, class, ffactor, drop) 
 

2.2 ChooseMetaVars - Combine Variables into Metavariables 
Description 
Finds the V-V pairs in the adjacency matrix, and attempts to combine them into a metavariable 
with higher mutual information than either variable alone. If it is possible to do this, it returns a 
new data matrix with the variables combined.  
 
Usage 
ChooseMetaVars(data, class, adj) 
 
Arguments 

data double array of discrete integer (1:n) values, cases in rows and variables in columns. 

class double column vector, also 1:n. Classification of each case. 

adj Logical adjacency matrix, number of variables+1 by number of variables. Last row is class 
node. Logical meaning "there is an arc from i to j. 
 
 

Value 

metamatrix logical whose (i,j) means "variable j was combined into variable i (and erased)" 

finaldata double data matrix with the variable combined and rebinned 

leftbound vector, the new left boundary for binning 

rightbound vector, the new right boundary for binning 
 

Note 
CALLED FUNCTIONS:  
opt3bin: rebins combined variables to determine highest MI  
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009 
  
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
      result <- ChooseMetaVars ( data, class, adj) 
 
 

2.3 clearirrarcs - Clear Arcs That Are Not C->V Or C->V<->V 
Description 
Given an adjacency matrix with V<->V arcs in a square matrix and an additional row 
representing C->V (class to variable), this function clears out all V1->V2 arcs where V1 is not a 
member of the set of V's that are class-connected, i.e. have arcs in the final row.  
 
Usage 
clearirrarcs(adjin) 
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Arguments 

adjin logical array where a true value at position (i,j) means that there is an arc in a directed 
acyclic graph between (variable) i and variable j.  
 

Value 
copy of adjin with unneeded arcs cleared 
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       adjout <- clearirrarcs( adjin ) 

  

2.4 clipclassconnections - Delink Variables From Class 
Description 
Where two variables are connected to each other and also to the class, attempt to select one as 
the child of the other and disconnect it from the class. Use MI(Vi;C|Vj)<<MI(Vi;C) as a test. 
  
Usage 
clipclassconnections(adj, mivc_vec, mivcv, dropthreshold) 
 
Arguments 

adj logical matrix where "true" entries at (i,j) mean "an arc exists from the Bayesian 
network node Vi to Vj." The class variable C is added at row (number of V's + 
1). "0" values mean no arc. 

mivc_vec double row vector containing MI(C;Vi) for each variable 

mivcv double array whose (i,j) entry is MI(Vi,C|Vj) 

dropthreshold double percentage drop from MI(Vj;C) to MI(Vj;C|Vi) before declaring that Vi is 
between C and Vj 

Value 
copy of adj with the appropriate arcs removed 
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
 
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm 
  
Examples 
 
       adjout <- clipclassconnections(adj, mivc_vec, mivcv, dropthreshold) 
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2.5 DoTheMath - Perform Feature Selection for the Data 
Description 
DoTheMath takes a data array, class vector, and other information and builds and assesses a 
Bayesian network after selecting features from within the data array.  
 
Usage 
DoTheMath(InputStructure) 
 
Arguments 

InputStructure A list containing following inputs 

Class vector of length "cases", with discrete values identifying class of each case (may 
be integer) 

ID double patient ID array of length cases, with one or more cols 

MZ Vector of length "variables" holding labels for variables 

Options Logical 6x1 array.  
Options are:  
1. Normalize on population total ion count (sum across rows)  
2. Remove negative data values by setting them to zero  
3. After normalizing, before binning, average cases with same ID  
4. Find the MI threshold by randomization  
5. Take log (data) prior to binning. Negative values set to 1.  
6. Remove Low Signal cases  
NOT DONE: 3 Bin (2 Bin if False) 

n integer, the "n" in n-fold cross validation 

repeats Integer, times to repeat the whole process (e.g. re-crossvalidate) 

threshold double factor by which the maximum "random" MI us multiplied to find the 
minimum "significant" MI (double, 1.0-5.0) 

Details 
This is the umbrella script that loops a specified number of times (see "repeats" above), each 
time doing a full n-fold cross validation and recording the results. All input and output data are 
stored in a single data structure, described below.  
 
Value 

OutputDataStructure all the fields of InputStructure, plus 

ErrorRate Vector containing misclassification rate for each repeat 

KeyFeatures Index to vector MZ that identifies features selected 

  

Note 
CALLED FUNCTIONS  
InitialProcessing: Applies the options listed above  
BuildBayesNet: Learns a Bayesian Network from the training data  
ChooseMetaVars: Combines variables that may not be physically separate molecules. 
TestCases: Given the BayesNet, tests the "test group" to determine the probability of being in 
each class.  
opt3bin: Discretizes continuous data into 3 bins, optimizing MI FindProbTables: Learns the 
values P(C,V) for each variable cvpartition and training are MATLAB Statistics toolbox functions.  
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Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       OutputDataStructure <- DoTheMath (InputStructure) 
 
 

2.6 FindProbTables - Estimate the Probabilities P (class=c|data=D) 
Description 
Input a training group of data arranged with cases in rows and variables in columns, as well as 
the class value c for that vector. Each case represents a data vector V. For each possible data 
value vi, and each variable Vi, it calculates P(C=c|Vi=vi) and stores that result in a 3-D table. 
The table is arranged with the dimensions (class value, data value, variable number).  
 
Usage 
FindProbTables(data, class) 
 
Arguments 

data double array of discrete integer (1:n) values, cases in rows and variables in columns 

class double column vector, also 1:n. Classification of each case 
 

Value 
3-D array whose (c,d,v) value is P(class=c|data=p) for variable v 
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       probtable <- FindProbTables(data, class) 
 
 

2.7 getarcs - Build Adjacency Matrix For A Set Of Variables 
Description 
By comparing mutual information between two variables to thresholds determined seperately, 
this function declares there to be an arc in a Bayesian network. Arcs are stored in an adjacency 
matrix, described below.  
 
Usage 
getarcs(mvc, vcthreshold, mvv, vvthreshold) 
 
Arguments 

mvc double vector array with mutual information between variables and the class 
(variables and other variables). The (i,j) entries of mvv are MI(Vi,Vj). 
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vcthreshold scalar threshold used to test for existence linkz  

mvv   double vector matrix  

vvthreshold scalar threshold used to test for existence linkz 
 

Details 
The primary tests are: MI(Vi;Cj)>>vcthreshold : tests for links between Vi and the class 
MI(Vi;Vj)>>vvthreshold : tests the links between variables  
 
Value 
logical matrix whose entries "1" at (i,j) mean "an arc exists from the Bayesian network node Vi to 
Vj." The class variable C is added at row (number of V's + 1). "0" values mean no arc 
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       adjacency <- getarcs( mvc, vcthreshold, mvv, vvthreshold ) 
          

2.8 WMBAT - The William and Mary Bayesian Analysis Tool 
Description 
WMBAT takes an array of mass spec peak intensities, a vector describing which of two classes 
each sample belongs to, and other information and builds and assesses a Bayesian network 
after selecting features (peaks) from within the data array that are diagnostic of the class. The 
primary output is an adjacency matrix describing the resulting Bayesian network.  
 
Usage 
WMBAT(tofListMetaData, alignedPeakList, Options, nfold, repeats, threshold) 
 
Arguments 

alignedPeakList List contain following information  
peaks: double vector holding time labels for peaks 

data: double vector holding peak intensity value for corresponding spectrum 

tofListMetaData a list containing information about every spectra, the information related to the 
spectra we needed in this package is class and ID. 
Class: Integer vector, values 1 or 2 identifying the class of each case, such as 
"disease, non-disease" 
ID: Double one or two column array contains the sample ID 

for each case. Second column is optional and would identify 
replicates of the same sample.   

Options Logical 6x1 array. Options are: 1. Normalize on population total ion count (sum 
across rows) 2. Remove negative data values by setting them to zero 3. After 
normalizing, before binning, average cases with same ID 4. NOT USED - SET 
TO FALSE 5. Take log(data) prior to binning. Negative values set to 1. 6. NOT 
USED - SET TO FALSE  

nfold integer, the “n” in n-fold crosses validation (integer 4-10). 10 is recommended 

repeats integer, times to repeat the whole process (e.g.re-crossvalidate). 100 is 
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recommended  

threshold double, factor by which the maximum "random" MI is multiplied to find the 
minimum "significant" MI (double, 1.0-5.0). We recommend starting with 1 and 
increasing until a "reasonable" number of diagnostic peaks is reached and error 
rates are minimized. This setting is dependent on the data and the correlations 
between variables  

Value 

IntOut  double Intensities input array, after processing by the various options selected by 
the logical Options above 

IDOut  double vector, the ID number of each row in the IntOut array. With no replicate 
averaging, each ID will be preserved (but reformatted) from the input. With replicate 
averaging, only the primary ID number remains. 

PredClass  double matrix, the predicted class of each case, during each of the trials (from input 
"repeats")  

Class2Vars vector whose ith value is the fraction of times peak i (from the vector MZ) was 
selected as being connected to the class. The maximum times it could have been 
selected was nfold*repeats 

Var2Vars  integer array whose (i,j) entry is the fraction of times a second level link was found 
from peak i to peak j, when peak i was connected to the class, as found in SumLvl1 

MetaVars  integer array whose (i,j) entry is the fraction of times a metavariable was created 
using peak i and peak j and stored in the level 

TrialErr  double vector, the error rate for each of the "repeats" possible trials. Records the 
percentage of cases where PredClass was not equal to the input Class. 

Note 
CALLED FUNCTIONS: 
DoTheMath: Learns a Bayesian Network from the data  
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
      result <- WMBAT (Intensities,Class, ID, MZ, Options, nfold, repeats, threshold) 
 
 

3.  Generic Tool Functions 
The functions in this section are generic tools that were written in order to support the rWMBAT 
library 

 

3.1 Repmat - Create a Matrix Consisting Of An m-by-n Tiling Copies Of X 
Description 
creates a large matrix consisting of an m-by-n tiling of copies of X  
 
Usage 
Repmat(X, m, n) 
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Arguments 

X double matrix used to make copies of  

m Integer row number of the result matrix 

n Integer column number of the result matrix 

  

Value 
m-by-n double matrix 
 
Author(s) 
Qian Si, College of William and Mary, Dept. of Physics, 2009  
 
Examples 
repmat<-Repmat(X,m,n) 
 

3.2 InitialProcessing – Input Data Prep after Custom Signal Processing 
Description 
Takes Peaklists That Have Been Imported into R And Prepares Them For Bayesian Analysis  
 
Usage 
InitialProcessing(StructIn) 
 
Arguments 

StructIn list with the following double-typed arrays  
Intensities: double n x m real-valued array with variables (peaks) in columns, cases 

(samples) in rows. 
MZ: double list of the labels (m/z value) for each of the variables. Must be the same 

size as the number of variables in Intensities  
Class: Integer vector, classification of each sample (disease state)– 1 or 2–must be 

the same size as the number of cases in Intensities  
ID: double column array, case or patient ID number, same size as class. May have 

second column, so each row is [ID1 ID2 where ID2 is replicate number.  
Options: logical array of processing options with elements:  

1. Normalize  
2. Clip Data (remove negatives)  
3. Replicate Average  
4. Auto threshold MI  
5. Use Log of Data  
6. Remove Low Signal cases 
NOT DONE: 3 Bin (2 Bin if False) 

 

Value 

RawData Intensities as input 

ClipData RawData where all values less than 1 are set to 1 

NormData ClipData normalized by total ion count, i.e. divided by the sum of all variables for 
each case 

LogData Natural logarithm of NormData 

Class Same as input 
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MZ Same as input 

ID Single column. If replicates are not averaged, the entries are now ID1.ID2. If 
replicates averaged, then just ID1 

DeltaMZ difference in peak m/z values to look for adducts 

RatioMZ ratios of m/z values ot look for satellites 
 

Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       StructOut <- InitialProcessing( StructIn) 
 

3.3 MutualInfo - Calculate Mutual Information Of Two Variables 
Description 
calculating mutual information of the two variables  
 
Usage 
MutualInfo(v1, v2) 
 
Arguments 

 v1 one of the two vectors of which MI is calculated 

 v2 one of the two vectors of which MI is calculated 

   

Value 
mutual information of the two vectors 
 
Author(s) 
Bill Cooke, College of William and Mary, Dept. of Physics, 2009  
 
Examples 
MI <- MutualInfo(v1, v2) 
 
 

3.4 findmutualinfos - Find Various Mutual Info Combos among Variables 
 

Description 
Given a set of data (many cases, each with values for many variables) and 
an additional value stored in the vector class, it finds MI described 
below in "Value." 
 
Usage 
findmutualinfos(data, class) 
 
Arguments 
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data A number of cases (in rows), each with a measurement for a group of 
variables (in columns). The data should be discredited into integers 1 
through k. The columns are considered variables V1, V2, ... 

class A column vector of length "cases" with integer values 1,2..., an additional 
measurement of class C. 

 

Value 
mi_vc       a row double vector whose ith value is MI(Vi,C). 
mi_vv       double symmetric matrix with values MI(Vi,Vj). 
mi_vc_v   double non-sym matrix with values MI(Vi;C|Vj). 
 
Note 
CALLED FUNCTIONS:  
MutualInfo - Calculate Mutual Information Of Two Variables CondMutualInfo-Calculate Mutual 
Information of Two Variables Conditioned On a Third 
 

Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       result <- findmutualinfos(data, class) 
 
 

3.5 CondMutualInfo-Calculate Mutual Information of Two Variables Conditioned 
On a Third 
Description 
calculating the mutual information of two variables conditioned on a third  
 
Usage 
CondMutualInfo(V1, V2, condV) 
 
 
 
Arguments 

V1 one of the two vectors of which MI is calculated 

V2 one of the two vectors of which MI is calculated 

condV given condition vector  
 

Value 
mutual information of two variables conditioned on a third 
 
Author(s) 
Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 2009  
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Examples 
MIxyz <- CondMutualInfo(V1, V2, condV) 
 
 

3.6 automi - Find a Threshold for Randomized MI (V C) 
Description 
Finds the threshold of a data set's mutual information with a class vector, above which a 
variable's MI (class, variable) can be expected to be significant.  
 
Usage 
automi (data, class, repeats) 
 
Arguments 

data double array of discrete integer (1:n) values, cases in rows and variables in columns. 

class double column vector, also 1:n. Classification of each case. 

repeats Integer, the number of times to repeat the randomization 
 

Details 
The threshold for mi (significance level) is found by taking the data set and randomizing the 
class vector, then calculating MI (CV) for all the variables. This is repeated a number of times. 
The resulting list of length (repeats *variables) is sorted, and the 99th percentile max MI is 
taken as the threshold.  
 
Value 
a threshold for randomized MI(V C) 
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009.  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       threshold <- automi( data, class, repeats ) 
 

3.7 opt2bin - Optimize Boundary for Each Variable to Maximize MI 
Description 
This function takes an array of continuous data, with cases in rows and variables in columns, 
along with a vector "class" which holds the known class of each of the cases, and returns an 
array "binneddata" that holds the 2 bin discretized data.  
 
Usage 
opt2bin(rawdata, class, steps, typesearch, minint = NA, maxint = NA) 
 
Arguments 

rawdata double array of continuous values, cases in rows and variables in columns. 
Distribution is unknown 

class double column vector, values 1:c representing classification of each case 
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steps Integer, number of steps to test at while finding maximum MI 

typesearch values=0: starting boundary based on data's actual max/min  
values =1: use the value passed in max as maximum (right)  
value =-1: use the value passed in min as minimum (left)  
value =2: used values passed via max, min  

minint vectors whose values limit the range of search for each variables boundaries 

maxint vectors whose values limit the range of search for each variables boundaries 
 

Details 
The discretization bin boundary is found by maximizing the mutual information with the class 
the resulting MI and boundary are also returned. The starting boundaries for the search can be 
given in the vectors min and max, or either one, or neither, in which case the data values 
determine the search boundaries.  
 
 
Value 

mi double row vector holding the maximum values of MI(CVi)  found 

boundary double vector, the location used to bin the data to get max MI 

binneddata double matrix, the resulting data binned into "1" (low) or "2" (hi) 

  

Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009 
  
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  

 
Examples 
       result <- maxMIbin(rawdata, class, typesearch ,min, max) 
 
 

3.8 opt3bin - Find 3 Bin Boundaries Optimizing the MI of Each Variable 
Description 
This function takes an array of continuous sample data of size cases (rows) by variables 
(columns), along with a class vector of integers 1:c, each integer specifying the class. The 
class vector has the same number of cases as the data. The function outputs the position of 
the 2 bin boundaries (3 bins) that optimize the mutual information of each variable's data vector 
with the class vector.  
 
Usage 
opt3bin(data, class) 
 
Arguments 

data double array of continuous values, cases in rows and variables in columns. Distribution 
is unknown 

class double column vector, values 1:c representing classification of each case 
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Value 

l double row vector of left boundary position for each var 

r double row vector of right boundary position for each var 

binned double data array discretized using boundaries in l and r 

mi  double row vector of mutual info between each discr. variable and class 

  

Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009 
  
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
Examples 
       result <- opt3bin(data,class) 
 

3.9 looklr - Find Boundary 
Description 
given a start position, finds another boundary (to create 3 bins) that maximizes MI with the 
class 
  
Usage 
looklr(data, class, startbd, steps) 
 
Arguments 

data double array, cases in rows and variables in columns 

class double column vector, values 1:c representing classification of each case 

startbd   double vector, given start position for each case 

steps Integer, number of steps to test at while finding maximum MI 

 
Value 
miout          double vector, recorded highest MI value 
nextboundary   double vector, boundary (to create 3 bins) that maximizes MI with the class 
binned         double matrix, recorded the binned value. 

 

 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009  
 
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
 
Examples 
  result<- looklr (data, class, startbd, steps) 
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3.10 TestCases - Classify Using Bayes Rule 
Description 
Tests each of a set of data vectors by looking up P(data|class) in a probability table, then 
finding P(case|class) by multiplying each of those values in a product. Then uses Bayes' rule to 
calculate P(class|data) for each possible value of class. Reports this as an array of class 
probabilities for each case.  
 
Usage 
TestCases(p, prior, data) 
 
Arguments 

p 3-D double array of probabilities (c,d,v). The first dimension is the class, the second is 
the data value, and the third is the variable number. The entry is P(var v=value d |  
class=value c) 

prior    double columns vector, prior probabilities for each cases in data 

data double array of discrete integer (1:n) values, cases in rows and variables in columns  
 

Value 
2-D double array whose value is P (class=c|data) for each case. Cases are in rows, class in 
cols 
 
Author(s) 
Karl Kuschner, Qian Si and William Cooke, College of William and Mary, Dept. of Physics, 
2009 
  
References 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm  
 
 
Examples 
       classprobs <- TestCases( p, prior, data) 
          

 

4.  References 
[1] Tuszynski, Jarek. Protein Mass Spectra (SELDI) Data Processing and Classification with 
“caMassClass” library, accessed on Aug 21, 2009 from 
http://rss.acs.unt.edu/Rdoc/library/caMassClass/ 
doc/caMassClass-old_manual.pdf.  
 
[2] Cover, Thomas M. and Thomas, Joy A. Elements of Information Theory. s.l. : John Wiley & 
Sons, Inc, 1991. 0-471-06259-6. 
 
[3] Jensen, Finn V. and Nielson, Thomas D. Bayesian Networks and Decision Graphs. New 
York, NY : Springer, 2007. ISBN 0-387-68281-3. 
 
[4] Kohavi, Ron. A Study of Cross Validation and Bootstrap for Accuracy Estimation and Model 
Selection. Stanford, 1995. 
 



rWMBAT Documentation Page 24 

 

[5] Kuschner, Karl. A Bayesian Network Approach to Feature Selection in Mass Spectrometry 
Data. Accessed on Aug 21, 2009 from 
http://kwkusc.people.wm.edu/dissertation/dissertation.htm. 
 
 

5. Acknowledgement 
This research was supported by NIH computational R01 grant CA126118 from the Advanced 
Proteomics Platforms and Computational Sciences Program within the Clinical Proteomics 
Initiative of the National Cancer Institute (PI: Malyarenko). We would like to acknowledge 
multiple discussions with Prof. Gene Tracy, and C-code contribution and performance 
optimization by Prof. William Cooke. 


