
The rredis Package

Bryan W. Lewis
blewis@illposed.net

October 21, 2011

1 Introduction

The rredis package provides a native R interface to Redis. Redis is an in memory key/value
database with many innovative features written by Salvatore Sanfilippo. It supports data per-
sistence, networked client/server operation, command pipelining, structured value types, server
replication, data expiration, clustering, multicast-like publish/subscribe, and it’s very fast.

The following simple example illustrates a typical use of the rredis package:

> library('rredis')

> redisConnect()

> redisSet('x',rnorm(5))

[1] TRUE

> redisGet('x')

[1] 0.808448325 0.341482747 -0.728739322 -0.105507214 -0.002349064

The key name “x” is associated with the R vector produced by rnorm(5) and stored in Redis. Note
that the R object associated with “x” is available to other rredis clients, and indeed to any Redis
client that can deserialize R objects. Neither the Redis server nor the rredis clients need reside on
the machine on which the result was generated. Depending on the Redis server settings, “x” can
be persistent–that is the value and its association with “x” will persist even if the Redis server is
terminated and re-started.

Values in Redis are classified by type. Value types are perhaps the most distinguishing feature
of Redis.

� The canonical string type holds general-purpose objects, for example any serializable R object,
text, or arbitrary binary data.

The rredis Package

� The list type represents lists of Redis string objects, ordered by insertion order. Data can be
accessed from lists with stack-like PUSH and POP operations, or by directly indexing ranges
of elements. Importantly, redis lists support atomic blocking and asynchronous operation.

� Redis sets are unordered collections of unique Redis strings equipped with typical set opera-
tions like unions and intersections. Uniqueness is enforced by Redis at insertion-time. Redis
also supports operations on ordered sets, with set commands prefixed by “Z.”

� Redis hashes are collections of Redis strings indexed by a hashed set of secondary keys.

Expiration intervals or absolute expiration times may be set on any Redis value. The Redis server
can handle lots of small transactions with aplomb, easily exceeding 50,000 transactions/second even
on very limited hardware1. Although Redis is primarily an in-memory database, it uses a virtual
memory scheme to support large objects and databases larger than available RAM.

2 Supported Platforms

The Redis server is written in ANSI C and supported on most POSIX systems including GNU/Linux,
Solaris, *BSD, and Mac OS X. The server is not officially supported on Windows systems at the
time of this writing (March, 2010).

The rredis package for R is supported on all supported R platforms, including Microsoft Windows,
and can connect to a Redis server running on a supported platform.

Redis clients are available for lots of languages other than R, including Java, C, C#, Ruby,
Python, PHP, Tcl, Perl, Erlang, Clojure, Javascript, Scala, and more...

2.1 Obtaining and Installing the Redis server

Redis is an open-source project available from http://redis.io, with source code available from
Github at http://github.com/antirez/redis. Redis is also available as an installable package for
most modern GNU/Linux operating systems.

The Redis server is completely configured by the file redis.conf. In order to run the Redis
server as a background process, edit this file and change the line:

daemonize no

to:

daemonize yes

1Redis easily exceeds 100,000 transactions/second on typical high-end workstations

2

http://redis.io
http://github.com/antirez/redis

The rredis Package

Most default Redis configuration files are set to disconnect connected clients after an inactivity
time out interval. It’s possible to disable that behavior in the redis.conf file with:

timeout 0

You may wish to peruse the rest of the configuration file and experiment with the other server
settings as well. Finally, start up the Redis server with

redis-server ./redis.conf

Note that some packaged versions of Redis on GNU/Linux set the Redis server to start on boot as
a service.

3 The rredis Package by Example

We explore operation of many of the Redis features available to R through a few examples. Seek
out the rredis package documentation and the excellent Redis Wiki referenced therein for additional
help and examples.

3.1 Basic Operation and Redis Strings

Redis strings represent the canonical value type. They are used to store any R object that can be
serialized to a bit-stream. Most R objects are serializeable. Notable exceptions include objects with
open connections and external reference pointers.

We assume from now on that the rredis package is loaded in the running R session using either

require('rredis')

or

library('rredis')

prior to running any example.

Open a connection to a Redis server with redisConnect. By default, redisConnect() attempts
to connect to a Redis server locally on a default port (6379). Explicitly specify a host and/or port
to connect to a server running on a computer different from the computer on which the R session
is running, for example,

redisConnect(host='illposed.net', port=5555)

to connect to a Redis server running on host ’illposed.net’ at port 5555.

Once connected we can easily store and retrieve values in the Redis database with redisSet and
redisGet:

3

The rredis Package

> x <- rnorm(5)

> print(x)

[1] -0.3297596 1.0417431 -1.3216719 -0.8186305 -0.2705817

> redisSet('x',x)

[1] TRUE

> y <- redisGet('x')

> print(y)

[1] -0.3297596 1.0417431 -1.3216719 -0.8186305 -0.2705817

> all.equal(x,y)

[1] TRUE

> redisGet('z')

NULL

Note that one must explicitly specify a key name (“x” in the above example) and that Redis key
names need not correspond to R variable names.

The SET/GET operations are atomic–that is, multiple SET and or GET operations are guaran-
teed not to simultaneously occur. And redisGet always returns immediately, even if a value is not
available in which case it returns NULL (see the example).

The true power of Redis becomes apparent when we share values across multiple clients. For
example, start up a new R session and try:

> library('rredis')

> redisConnect()

> y <- redisGet('x')

> print(y)

[1] -0.3297596 1.0417431 -1.3216719 -0.8186305 -0.2705817

The default behavior of Redis is to make the database persistent, so the value associated with
“x” in the above examples will last until it is overwritten or explicitly removed, even if the Redis
server is re-started. One may immediately purge Redis of all key/value pairs with the (dangerous)
redisFlushAll command.

Redis supports multiple distinct key workspaces, indexed by number. Access may be switched
between workspaces with the redisSelect function as illustrated below. We also use redisKeys

to list all key names in the current workspace.

> redisKeys()

[[1]]

[1] "x"

> redisSelect(1)

[1] "OK"

> redisKeys()

4

The rredis Package

NULL

redisSelect(0)

> redisKeys()

[[1]]

[1] "x"

The number of available workspaces is user-configurable in the redis.conf file (the default is 16).
Note also that index values in Redis begin with 0.

One may easily store and retrieve multiple objects in one operation with redisMSet and redis-

MGet. The example also illustrates how values may be expired (in this case, after one second) with
redisExpire.

> redisMSet(list(x=pi,y=runif(5),z=sqrt(2)))

[1] TRUE

> redisMGet(c('x','y','z'))

$x

[1] 3.141593

$y

[1] 0.85396951 0.80191589 0.21750311 0.02535608 0.11929247

$z

[1] 1.414214

> redisExpire('z',1)

[1] TRUE

> Sys.sleep(1)

> redisGet('z')

NULL

3.2 Sharing Data with Clients other than R

Redis provides a particularly convenient system for sharing data between diverse applications.
We illustrate cross-application communication with simple examples using R and the redis-cli

command-line program that is included with the Redis server.

Store a sample value in the Redis database with the redis-cli program from the command line
as follows:

redis-cli set shell "Greetings, R client!"

OK

Now, leaving the terminal window open, from an R session, try:

5

The rredis Package

> redisGet('shell')

[1] "Greetings, R client!\n"

And, voilà, R and shell communicate text through Redis.

The reverse direction requires more scrutiny. From the R session, run:

> redisSet('R', 'Greetings, shell client!')

And now, switch over to the shell client and run:

./redis-cli get R

<<Partially decipherable garbage>>

This example produces undesirable results because the default behavior of the R redisSet command
is to store data as R objects, which the shell client cannot decipher. Instead, we must encode the
R object (in this case, a character string) in a format that shell can understand:

> redisSet('R', charToRaw('Greetings, shell client!'))

[1] TRUE

And now, switch over to the shell client and run:

./redis-cli get R

Greetings, shell client!

It can be tricky to share arbitrary R objects with other languages, but raw character strings usually
provide a reasonable, if sometimes inefficient, common tongue.

The RAW=TRUE option may be set on most package functions that receive data, for example
redisGet. Use the RAW option to leave the message data as is (otherwise the functions try to
deserialize it to a standard R object). The RAW format is useful for binary exchange of data with
programs other than R.

3.3 Redis Lists

Redis list value types provide us with a remarkably powerful and rich set of operations. Redis lists
may be used to set up data queues and they may be accessed either synchronously or asynchronously.

We walk through basic Redis list operation in the first example below. The example shows how
redisLPush pushes values onto a list from the left, and redisRPush pushes values from the right.

> redisLPush('a',1)

[1] 1

> redisLPush('a',2)

[1] 2

6

The rredis Package

> redisLPush('a',3)

[1] 3

> redisLRange('a',0,2)

[[1]]

[1] 3

[[2]]

[1] 2

[[3]]

[1] 1

> redisLPop('a')

[1] 3

> redisLRange('a',0,-1)

[[1]]

[1] 2

[[2]]

[1] 1

> redisRPush('a','A')

[1] 3

> redisRPush('a','B')

[1] 4

> redisLRange('a',0,-1)

[[1]]

[1] 2

[[2]]

[1] 1

[[3]]

[1] "A"

[[4]]

[1] "B"

> redisRPop('a')

[1] "B"

Like the redisGet function, redisLPop and redisRPop always return immediately, even when
no value is available in which case they return NULL. Redis includes a blocking variant of the list
“Pop” commands that is illustrated in the next example.

> redisBLPop('b',timeout=1)

NULL

> redisLPush('b',runif(5))

7

The rredis Package

[1] 1

> redisBLPop('b',timeout=1)

$b

[1] 0.3423658 0.4188430 0.2494071 0.9960606 0.5643137

In the first case above, the NULL value is returned after a one-second timeout because no value
was immediately available in the list. Once populated with data, the second attempt consumes the
list value and returns immediately.

We can also block on multiple lists, returning when data is available on at least one of the lists:

> redisFlushAll()

[1] "OK"

> redisLPush('b',5)

[1] 1

> redisBLPop(c('a','b','c'))

$b

[1] 5

Although blocking list operations seem simple, they provide an extraordinarily powerful envi-
ronment for coordinating events between multiple R (and other client) processes. The following
example illustrates a simple event stream in which data is emitted periodically by a shell script,
and consumed and processed as events arrive by an R process.

First, open an R window and block on the “a” and “b” lists:

> redisFlushAll()

> for (j in 1:5) {

+ x <- redisBLPop(c('a','b'))

+ print (x)

+ }

Your R session should freeze, waiting for events to process.

Now, open a terminal window and navigate to the directory that contains the redis-cli program.
Run (the following may all be typed on one line):

for x in 1 2 3 4 5;do sleep $x;

if test $x == "2";

then ./redis-cli lpush a $x;

else ./redis-cli lpush b $x;

fi;

done

And now you will see your R session processing the events as they are generated by the shell
script:

8

The rredis Package

$b

[1] "1"

$a

[1] "2"

$b

[1] "3"

$b

[1] "4"

$b

[1] "5"

Now, imagine that events may be processed independently, and that they occur at an extraor-
dinary rate–a rate too fast for R to keep up. The solution in this case is simple, start up another
R process and it will handle events as they come in, relieving the first R process of about half the
event load. Still not enough, start up another, etc.

Keeping in mind that the R clients can run on different computers, we realize that this simple
example can easily lead to a very scalable parallel event processing system that requires very little
programming effort!

3.4 Redis Sets

The Redis set value type operates somewhat like Redis lists, but only allowing unique values within
a set. Sets also come equipped with the expected set operations, as illustrated in the following
example.

> redisSAdd('A',runif(2))

[1] TRUE

> redisSAdd('A',55)

[1] TRUE

> redisSAdd('B',55)

[1] TRUE

> redisSAdd('B',rnorm(3))

[1] TRUE

> redisSCard('A')

[1] 2

> redisSDiff(c('A','B'))

[[1]]

[1] 0.5449955 0.7848509

9

The rredis Package

> redisSInter(c('A','B'))

[[1]]

[1] 55

> redisSUnion(c('A','B'))

[[1]]

[1] 55

[[2]]

[1] 0.5449955 0.7848509

[[3]]

[1] -1.3153612 0.9943198 -0.3725513

Redis sets do not include blocking operations.

4 Transactions

Redis supports batch submission of multiple Redis operations. Aggregating operations with trans-
actions can in many cases significantly increase performance. The following description is adapted
from the Redis documentation at http://redis.io:

The redisMulti, redisExec, redisDiscard and redisWatch form the foundation of transac-
tions in Redis. They allow the execution of a group of commands in a single step, with two important
guarantees:

1. All the commands in a transaction are serialized and executed sequentially. It can never
happen that a request issued by another client is served in the middle of the execution of
a Redis transaction. This guarantees that the commands are executed as a single atomic
operation.

2. Either all of the commands or none are processed. The redisExec command triggers the
execution of all the commands in the transaction, so if a client loses the connection to the
server in the context of a transaction before calling the redisMulti command none of the
operations are performed, instead if the redisExec command is called, all the operations are
performed. When using the append-only file Redis makes sure to use a single write(2) syscall
to write the transaction on disk. However if the Redis server crashes or is killed by the system
administrator in some hard way it is possible that only a partial number of operations are
registered. Redis will detect this condition at restart, and will exit with an error. Using
the redis-check-aof tool it is possible to fix the append only file that will remove the partial
transaction so that the server can start again.

10

http://redis.io

The rredis Package

Queued Redis commands may be discarded with the redisDiscard function. Upon successful
execution of a transaction, the results from all of the queued commands are returned as a list.

The redisWatch function provides a check and set style conditional transaction. Use redisWatch
to monitor any number of Redis keys. If any watched key values change prior to calling redisExec

the entire queued sequence will be discarded. Conditioning transactions with redisWatch is quite
useful in multi-client asynchronous settings.

The following extremely basic example illustrates transactions conditional on no change in value
corresponding to the “z” key:

> redisWatch('z')

[1] "OK"

> redisMulti()

[1] "OK"

> redisSet('x',runif(3))

[1] "QUEUED"

> redisSet('y',pi)

[1] "QUEUED"

> redisGet('x')

[1] "QUEUED"

> redisExec()

[[1]]

[1] "OK"

[[2]]

[1] "OK"

[[3]]

[1] 0.7620601 0.5982853 0.8274721

5 Publish/Subscribe

The publish/subscribe functions let Redis clients reliably multicast (publish) messages over “chan-
nels” that any client may subscribe to. Channels are identified by name (character string). Use the
redisSubscribe function to subscribe to one or more channels. Use the redisPublish function
to transmit messages over a channel. Once subscribed, channels must be monitored for incom-
ing messages using the redisGetResponse function, usually in an event loop. Beware that the
redisGetResponse function indefinitely blocks for an incoming message on subscribed channels.

Here is a simple example:

> redisSubscribe('channel1')

11

The rredis Package

The loop will receive three messages from 'channel1':

> for(j in 1:3) print(redisGetResponse())

A typical message might look like:

[1]]

[1] "message"

[[2]]

[1] "channel1"

[[3]]

[1] "message3"

Finally, unsubscribe to the channel:

> redisUnsubscribe('channel1')

Note that the only Redis functions that may be used in between the redisSubscribe and re-

disUnsubscribe functions are redisGetResponse, redisSubscribe, and redisMonitorChannels

functions.

12

	Introduction
	Supported Platforms
	Obtaining and Installing the Redis server

	The rredis Package by Example
	Basic Operation and Redis Strings
	Sharing Data with Clients other than R
	Redis Lists
	Redis Sets

	Transactions
	Publish/Subscribe

