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1 Introduction

The pioneering work of Box, Jenkins and Reinsel (1970) in the area of autoregressive mov-
ing average models paved the way for related work in the area of volatility modelling with the
introduction of ARCH and then GARCH models by Engle (1982) and Bollerslev (1986), re-
spectively. In terms of the statistical framework, these models provide motion dynamics for the
dependency in the conditional time variation of the distributional parameters of the mean and
variance, in an attempt to capture such phenomena as autocorrelation in returns and squared
returns. Extensions to these models have included more sophisticated dynamics such as thresh-
old models to capture the asymmetry in the news impact, as well as distributions other than the
normal to account for the skewness and excess kurtosis observed in practice. In a further exten-
sion, Hansen (1994) generalized the GARCH models to capture time variation in the full density
parameters, with the Autoregressive Conditional Density Model1, relaxing the assumption that
the conditional distribution of the standardized innovations is independent of the conditioning
information.

The rugarch package aims to provide for a comprehensive set of methods for modelling uni-
variate GARCH processes, including fitting, filtering, forecasting, simulation as well as diagnostic
tools including plots and various tests. Additional methods such as rolling estimation, boot-
strap forecasting and simulated parameter density to evaluate model uncertainty provide a rich
environment for the modelling of these processes. This document discusses the finer details of
the included models and conditional distributions and how they are implemented in the package
with numerous examples.

The rugarch package forms part of the rgarch project on r-forge rgarch.r-forge.r-project.
org/ which also includes the rmgarch package for multivariate GARCH models. Previously, both
univariate and multivariate models were included in one large package which was split for release
to CRAN in August 2011.

The package is provided AS IS, without any implied warranty as to its accuracy or suitability.
A lot of time and effort has gone into the development of this package, and it is offered under the
GPL-3 license in the spirit of open knowledge sharing and dissemination. If you do use the model
in published work DO remember to cite the package and author (type citation(”rugarch”) for
the appropriate BibTeX entry) , and if you have used it and found it useful, drop me a note and
let me know.

A section on FAQ is included which deals with some often asked questions.

2 Model Specification

This section discusses the key step in the modelling process, namely that of the specification.
This is defined via a call to the ugarchspec function,

> args(ugarchspec)

function (variance.model = list(model = "sGARCH", garchOrder = c(1,

1), submodel = NULL, external.regressors = NULL, variance.targeting = FALSE),

mean.model = list(armaOrder = c(1, 1), include.mean = TRUE,

archm = FALSE, archpow = 1, arfima = FALSE, external.regressors = NULL),

distribution.model = "norm", start.pars = list(), fixed.pars = list(),

...)

NULL

1This may be included in the package at a future date.
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Thus a model, in the rugarch package, may be described by the dynamics of the conditional
mean and variance, and the distribution to which they belong, which determines any additional
parameters. The following sub-sections will outline the background and details of the dynamics
and distributions implemented in the package.

2.1 Univariate ARFIMAX Models

The univariate GARCH specification allows to define dynamics for the conditional mean from
the general ARFIMAX model with the addition of ARCH-in-mean effects introduced in Engle
(1987). The ARFIMAX-ARCH-in-mean specification may be formally defined as,

Φ(L)(1− L)d(yt − µt) = Θ(L)εt, (1)

with the left hand side denoting the Fractional AR specification on the demeaned data and the
right hand side the MA specification on the residuals. (L) is the lag operator, (1−L)d the long
memory fractional process with 0 < d < 1, and equivalent to the Hurst Exponent H - 0.5, and
µt defined as,

µt = µ+

m−n∑
i=1

δixi,t +

m∑
i=m−n+1

δixi,tσt + ξσkt , (2)

where we allow for m external regressors x of which n (last n of m) may optionally be multiplied
by the conditional standard deviation σt, and ARCH-in-mean on either the conditional standard
deviation, k = 1 or conditional variance k = 2. These options can all be passed via the arguments
in the mean.model list in the ugarchspec function,

• armaOrder (default = (1,1). The order of the ARMA model.)

• include.mean (default = TRUE. Whether the mean is modelled.)

• archm (default = FALSE. The ARCH-in-mean parameter.)

• archpow (default = 1 for standard deviation, else 2 for variance.)

• arfima (default = FALSE. Whether to use fractional differencing.)

• external.regressors (default = NULL. A matrix of external regressors of the same length
as the data.)

• archex (default = FALSE. Either FALSE or integer denoting the number of external re-
gressors from the end of the matrix to multiply by the conditional standard deviation.).

Since the specification allows for both fixed and starting parameters to be passed, it is useful to
provide the naming convention for these here,

• AR parameters are ’ar1’, ’ar2’, ...,

• MA parameters are ’ma1’, ’ma2’, ...,

• mean parameter is ’mu’

• archm parameter is ’archm’

• the arfima parameter is ’arfima’

• the external regressor parameters are ’mxreg1’, ’mxreg2’, ...,

Note that estimation of the mean and variance equations in the maximization of the likelihood
is carried out jointly in a single step. While it is perfectly possible and consistent to perform
a 2-step estimation, the one step approach results in greater efficiency, particularly for smaller
datasets.
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2.2 Univariate GARCH Models

In GARCH models, the density function is usually written in terms of the location and scale
parameters, normalized to give zero mean and unit variance,

αt = (µt, σt, ω), (3)

where the conditional mean is given by

µt = µ(θ, xt) = E(yt|xt), (4)

and the conditional variance is,

σ2
t = σ2(θ, xt) = E((yt − µt)2|xt), (5)

with ω = ω(θ, xt) denoting the remaining parameters of the distribution, perhaps a shape and
skew parameter. The conditional mean and variance are used to scale the innovations,

zt(θ) =
yt − µ(θ, xt)

σ(θ, xt)
, (6)

having conditional density which may be written as,

g(z|ω) =
d

dz
P (zt < z|ω), (7)

and related to f(y|α) by,

f(yt|µt, σ2
t , ω) =

1

σt
g(zt|ω). (8)

The rugarch package implements a rich set of univariate GARCH models and allows for
the inclusion of external regressors in the variance equation as well as the possibility of using
variance targeting as in Engle (1996). These options can all be passed via the arguments in the
variance.model list in the ugarchspec function,

• model (default = ’sGARCH’ (vanilla GARCH). Valid models are ’iGARCH’, ’gjrGARCH’,
’eGARCH’, ’apARCH’ and ’fGARCH’).

• garchOrder (default = c(1,1). The order of the GARCH model.)

• submodel (default = NULL. In the case of the ’fGARCH’ omnibus model, valid choices are
’GARCH’, ’TGARCH’, ’GJRGARCH’, ’AVGARCH’, ’NGARCH’, ’NAGARCH’, ’APARCH’
and ’ALLGARCH’)

• external.regressors (default = NULL. A matrix of external regressors of the same length
as the data).

• variance.targeting (default = FALSE. Whether to include variance targeting.)

The rest of this section discusses the various flavors of GARCH implemented in the package,
while Section 2.3 discusses the distributions implemented and their standardization for use in
GARCH processes.
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2.2.1 The standard GARCH model (’sGARCH’)

The standard GARCH model (Bollerslev (1986)) may be written as:

σ2
t =

ω +

m∑
j=1

ζjvjt

+

q∑
j=1

αjε
2
t−j+

p∑
j=1

βjσ
2
t−j , (9)

with σ2
t denoting the conditional variance, ω the intercept and ε2

t the residuals from the mean
filtration process discussed previously. The GARCH order is defined by (q, p) (ARCH, GARCH),
with possibly m external regressors vj which are passed pre-lagged. If variance targeting is used,
then ω is replaced by,

σ̄2
(

1− P̂
)
−

m∑
j=1

ζj v̄j (10)

where σ̄2 is the unconditional variance of ε2 which is consistently estimated by its sample coun-
terpart at every iteration of the solver following the mean equation filtration, and v̄j represents
the sample mean of the jth external regressors in the variance equation (assuming stationarity),
and P̂ is the persistence and defined below. One of the key features of the observed behavior of
financial data which GARCH models capture is volatility clustering which may be quantified in
the persistence parameter P̂ . For the ’sGARCH’ model this may be calculated as,

P̂ =

q∑
j=1

αj +

p∑
j=1

βj . (11)

Related to this measure is the ’half-life’ (call it h2l) defined as the number of days it takes for
half of the expected reversion back towards E

(
σ2
)

to occur,

h2l =
−loge2

logeP̂
. (12)

Finally, the unconditional variance of the model σ̂2, and related to its persistence, is,

σ̂2 =
ω̂

1− P̂
, (13)

where ω̂ is the estimated value of the intercept from the GARCH model. The naming conventions
for passing fixed or starting parameters for this model are:

• ARCH(q) parameters are ’alpha1’, ’alpha2’, ...,

• GARCH(p) parameters are ’beta1’, ’beta2’, ...,

• variance intercept parameter is ’omega’

• the external regressor parameters are ’vxreg1’, ’vxreg2’, ...,

2.2.2 The integrated GARCH model (’iGARCH’)

The integrated GARCH model (see Engle and Bollerslev (1986)) assumes that the persistence
P̂ = 1, and imposes this during the estimation procedure. Because of unit persistence, none of
the other results can be calculated (i.e. unconditional variance, half life etc). The stationarity
of the model has been established in the literature, but one should investigate the possibility
of omitted structural breaks before adopting the iGARCH as the model of choice. The way
the package enforces the sum of the ARCH and GARCH parameters to be 1, is by subtracting

1−
q∑
i=1

αi−
p∑
i>1

βi, so that the last beta is never estimated but instead calculated.
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2.2.3 The exponential GARCH model

The exponential model of Nelson (1991) is defined as,

loge
(
σ2
t

)
=

ω +
m∑
j=1

ζjvjt

+

q∑
j=1

(αjzt−j + γj (|zt−j | − E |zt−j |)) +

p∑
j=1

βj loge
(
σ2
t−j
)

(14)

where the coefficient αj captures the sign effect and γj the size effect. The expected value of the
absolute standardized innovation, zt is,

E |zt| =
∞∫
−∞

|z|f (z, 0, 1, ...) dz (15)

The persistence P̂ is given by,

P̂ =

p∑
j=1

βj . (16)

If variance targeting is used, then ω is replaced by,

loge
(
σ̄2
) (

1− P̂
)
−

m∑
j=1

ζj v̄j (17)

The unconditional variance and half life follow from the persistence parameter and are calculated
as in Section 2.2.1.

2.2.4 The GJR-GARCH model (’gjrGARCH’)

The GJR GARCH model of Glosten, Jagannathan and Runkle (1993) models positive and
negative shocks on the conditional variance asymmetrically via the use of the indicator function
I,

σ2
t =

ω +
m∑
j=1

ζjvjt

+

q∑
j=1

(
αjε

2
t−j + γjIt−jε

2
t−j
)

+

p∑
j=1

βjσ
2
t−j , (18)

where γj now represents the ’leverage’ term. The indicator function I takes on value of 1 for
ε ≤ 0 and 0 otherwise. Because of the presence of the indicator function, the persistence of
the model now crucially depends on the asymmetry of the conditional distribution used. The
persistence of the model P̂ is,

P̂ =

q∑
j=1

αj +

p∑
j=1

βj+

q∑
j=1

γjκ, (19)

where κ is the expected value of the standardized residuals zt below zero (effectively the proba-
bility of being below zero),

κ = E
[
It−jz

2
t−j
]

=

0∫
−∞

f (z, 0, 1, ...) dz (20)

where f is the standardized conditional density with any additional skew and shape parameters
(. . . ). In the case of symmetric distributions the value of κ is simply equal to 0.5. The variance
targeting, half-life and unconditional variance follow from the persistence parameter and are
calculated as in Section 2.2.1. The naming conventions for passing fixed or starting parameters
for this model are:
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• ARCH(q) parameters are ’alpha1’, ’alpha2’, ...,

• Leverage(q) parameters are ’gamma1’, ’gamma2’, ...,

• GARCH(p) parameters are ’beta1’, ’beta2’, ...,

• variance intercept parameter is ’omega’

• the external regressor parameters are ’vxreg1’, ’vxreg2’, ...,

Note that the Leverage parameter follows the order of the ARCH parameter.

2.2.5 The asymmetric power ARCH model (’apARCH’)

The asymmetric power ARCH model of Ding, Granger and Engle (1993) allows for both leverage
and the Taylor effect, named after Taylor (1986) who observed that the sample autocorrelation
of absolute returns was usually larger than that of squared returns.

σδt =

ω +
m∑
j=1

ζjvjt

+

q∑
j=1

αj(|εt−j | − γjεt−j)δ+
p∑
j=1

βjσ
δ
t−j (21)

where δ ∈ R+, being a Box-Cox transformation of σt, and γj the coefficient in the leverage term.
Various submodels arise from this model:

• The simple GARCH model of Bollerslev (1986) when δ = 2 and γj = 0.

• The Absolute Value GARCH (AVGARCH) model of Taylor (1986) and Schwert (1990)
when δ = 1 and γj = 0.

• The GJR GARCH (GJRGARCH) model of Glosten, Jagannathan and Runkle (1993)
when δ = 2.

• The Threshold GARCH (TGARCH) model of Zakoian (1994) when δ = 1.

• The Nonlinear ARCH model of Higgins and Bera (1992) when γj = 0 and βj = 0.

• The Log ARCH model of Geweke (1986) and Pantula (1986) when δ → 0.

The persistence of the model is given by,

P̂ =

p∑
j=1

βj+

q∑
j=1

αjκj (22)

where κj is the expected value of the standardized residuals zt under the Box-Cox transformation
of the term which includes the leverage coefficient γj ,

κj = E(|z| − γjz)δ =

∞∫
−∞

(|z| − γjz)δf (z, 0, 1, ...) dz (23)

If variance targeting is used, then ω is replaced by,

σ̄δ
(

1− P̂
)
−

m∑
j=1

ζj v̄j . (24)
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Finally, the unconditional variance of the model σ̂2 is,

σ̂2 =

(
ω̂

1− P̂

)2/δ

(25)

where ω̂ is the estimated value of the intercept from the GARCH model. The half-life follows
from the persistence parameter and is calculated as in Section 2.2.1. The naming conventions
for passing fixed or starting parameters for this model are:

• ARCH(q) parameters are ’alpha1’, ’alpha2’, ...,

• Leverage(q) parameters are ’gamma1’, ’gamma2’, ...,

• Power parameter is ’delta’,

• GARCH(p) parameters are ’beta1’, ’beta2’, ...,

• variance intercept parameter is ’omega’

• the external regressor parameters are ’vxreg1’, ’vxreg2’, ...,

In particular, to obtain any of the submodels simply pass the appropriate parameters as fixed.

2.2.6 The family GARCH model (’fGARCH’)

The family GARCH model of Hentschel (1995) is another omnibus model which subsumes some
of the most popular GARCH models. It is similar to the apARCH model, but more general since
it allows the decomposition of the residuals in the conditional variance equation to be driven by
different powers for zt and σt and also allowing for both shifts and rotations in the news impact
curve, where the shift is the main source of asymmetry for small shocks while rotation drives
large shocks.

σλt =

ω +

m∑
j=1

ζjvjt

+

q∑
j=1

αjσ
λ
t−1(|zt−j − η2j | − η1j (zt−j − η2j))

δ+

p∑
j=1

βjσ
λ
t−j (26)

which is a Box-Cox transformation for the conditional standard deviation whose shape is de-
termined by λ, and the parameter δ transforms the absolute value function which it subject to
rotations and shifts through the η1j and η2j parameters respectively. Various submodels arise
from this model, and are passed to the ugarchspec ’variance.model’ list via the submodel option,

• The simple GARCH model of Bollerslev (1986) when λ = δ = 2 and η1j = η2j = 0
(submodel = ’GARCH’).

• The Absolute Value GARCH (AVGARCH) model of Taylor (1986) and Schwert (1990)
when λ = δ = 1 and |η1j | ≤ 1 (submodel = ’AVGARCH’).

• The GJR GARCH (GJRGARCH) model of Glosten, Jagannathan and Runkle (1993)
when λ = δ = 2 and η2j = 0 (submodel = ’GJRGARCH’).

• The Threshold GARCH (TGARCH) model of Zakoian (1994) when λ = δ = 1, η2j = 0
and |η1j | ≤ 1 (submodel = ’TGARCH’).

• The Nonlinear ARCH model of Higgins and Bera (1992) when δ = λ and η1j = η2j = 0
(submodel = ’NGARCH’).
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• The Nonlinear Asymmetric GARCH model of Engle and Ng (1993) when δ = λ = 2 and
η1j = 0 (submodel = ’NAGARCH’).

• The Asymmetric Power ARCH model of Ding, Granger and Engle (1993) when δ = λ,
η2j = 0 and |η1j | ≤ 1 (submodel = ’APARCH’).

• The Exponential GARCH model of Nelson (1991) when δ = 1, λ = 0 and η2j = 0 (not
implemented as a submodel of fGARCH).

• The Full fGARCH model of Hentschel (1995) when δ = λ (submodel = ’ALLGARCH’).

The persistence of the model is given by,

P̂ =

p∑
j=1

βj+

q∑
j=1

αjκj (27)

where κj is the expected value of the standardized residuals zt under the Box-Cox transformation
of the absolute value asymmetry term,

κj = E(|zt−j − η2j | − η1j (zt−j − η2j))
δ =

∞∫
−∞

(|z − η2j | − η1j (z − η2j))
δf (z, 0, 1, ...) dz (28)

If variance targeting is used, then ω is replaced by,

σ̄λ
(

1− P̂
)
−

m∑
j=1

ζj v̄j (29)

Finally, the unconditional variance of the model σ̂2 is,

σ̂2 =

(
ω̂

1− P̂

)2/λ

(30)

where ω̂ is the estimated value of the intercept from the GARCH model. The half-life follows
from the persistence parameter and is calculated as in Section 2.2.1. The naming conventions
for passing fixed or starting parameters for this model are:

• ARCH(q) parameters are ’alpha1’, ’alpha2’, ...,

• Asymmetry1(q) - rotation - parameters are ’eta11’, ’eta12’, ...,

• Asymmetry2(q) - shift - parameters are ’eta21’, ’eta22’, ...,

• Asymmetry Power parameter is ’delta’,

• Conditional Sigma Power parameter is ’lambda’,

• GARCH(p) parameters are ’beta1’, ’beta2’, ...,

• variance intercept parameter is ’omega’

• the external regressor parameters are ’vxreg1’, ’vxreg2’, ...,

9



2.3 Conditional Distributions

The rugarch package supports a range of univariate distributions including the Normal (’norm’),
Generalized Error (’ged’), Student (’std’) and their skew variants (’snorm’, ’sged’ and ’sstd’)
based on the transformations described in Fernandez and Steel (1998) and Ferreira and Steel
(2006).2 Additionally, the Generalized Hyperbolic (’ghyp’) and Normal Inverse Gaussian (’nig’)
distributions are also implemented as is Johnson’s reparametrized SU (’jsu’) distribution3 The
choice of distribution is entered via the ’distribution.model’ option of the ugarchspec method.
The package also implements a set of functions to work with the parameters of these distributions.
These are:

• ddist(distribution = ”norm”, y, mu = 0, sigma = 1, lambda = -0.5, skew = 1, shape = 5).
The density (d*) function.

• pdist(distribution = ”norm”, q, mu = 0, sigma = 1, lambda = -0.5, skew = 1, shape = 5).
The distribution (p*) function.

• qdist(distribution = ”norm”, p, mu = 0, sigma = 1, lambda = -0.5, skew = 1, shape = 5).
The quantile (q*) function.

• rdist(distribution = ”norm”, n, mu = 0, sigma = 1, lambda = -0.5, skew = 1, shape = 5).
The sampling (q*) function.

• fitdist(distribution = ”norm”, x, control = list()). A function for fitting data using any of
the included distributions.

• dskewness(distribution = ”norm”, skew = 1, shape = 5, lambda = -0.5). The distribution
skewness (analytical where possible else by quadrature integration).

• dkurtosis(distribution = ”norm”, skew = 1, shape = 5, lambda = -0.5). The distribution
excess kurtosis (analytical where it exists else by quadrature integration).

This section provides a dry but comprehensive exposition of the required standardization of
these distributions for use in GARCH modelling.

The conditional distribution in GARCH processes should be self-decomposable which is a
key requirement for any autoregressive type process, while possessing the linear transformation
property is required to center (xt − µt) and scale (εt/σt) the innovations, after which the mod-
elling is carried out directly using the zero-mean, unit variance, distribution of the standardized
variable zt which is a scaled version of the same conditional distribution of xt, as described in
Equations 6, 7 and 8.

2.3.1 The Normal Distribution

The Normal Distribution is a spherical distribution described completely by it first two moments,
the mean and variance. Formally, the random variable x is said to be normally distributed with
mean µ and variance σ2 (both of which may be time varying), with density given by,

f (x) =
e

−0.5(x−µ)2

σ2

σ
√

2π
. (31)

2These were originally taken from the fBasics package but have been adapted and re-written in C for the
likelihood estimation.

3From the gamlss package.
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Following a mean filtration or whitening process, the residuals ε, standardized by σ yield the
standard normal density given by,

f

(
x− µ
σ

)
=

1

σ
f (z) =

1

σ

(
e−0.5z2

√
2π

)
. (32)

To obtain the conditional likelihood of the GARCH process at each point in time (LLt), the
conditional standard deviation σt from the GARCH motion dynamics, acts as a scaling factor
on the density, so that:

LLt (zt;σt) =
1

σt
f (zt) (33)

which illustrates the importance of the scaling property. Finally, the normal distribution has
zero skewness and zero excess kurtosis.

2.3.2 The Student Distribution

The GARCH-Student model was first used described in Bollerslev (1987) as an alternative to
the Normal distribution for fitting the standardized innovations. It is described completely by a
shape parameter ν, but for standardization we proceed by using its 3 parameter representation
as follows:

f (x) =
Γ
(
ν+1

2

)
√
βνπΓ

(
ν
2

)(1 +
(x− α)2

βν

)−( ν+1
2 )

(34)

where α, β, and ν are the location, scale4 and shape parameters respectively, and Γ is the Gamma
function. Similar to the GED distribution described later, this is a unimodal and symmetric
distribution where the location parameter α is the mean (and mode) of the distribution while
the variance is:

V ar (x) =
βν

(ν − 2)
. (35)

For the purposes of standardization we require that:

V ar(x) =
βν

(ν − 2)
= 1

∴ β =
ν − 2

ν

(36)

Substituting (ν−2)
ν into 34 we obtain the standardized Student’s distribution:

f

(
x− µ
σ

)
=

1

σ
f (z) =

1

σ

Γ
(
ν+1

2

)√
(ν − 2)πΓ

(
ν
2

)(1 +
z2

(ν − 2)

)−( ν+1
2 )

. (37)

In terms of R’s standard implementation of the Student density (’dt’), and including a scaling
by the standard deviation, this can be represented as:

dt

(
εt

σ
√

(v−2)/ν
, ν

)
σ
√

(v − 2) /ν
(38)

The Student distribution has zero skewness and excess kurtosis equal to 6/(ν − 4) for ν > 4.

4In some representations, mostly Bayesian, this is represented in its inverse form to denote the precision.
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2.3.3 The Generalized Error Distribution

The Generalized Error Distribution (GED) is a 3 parameter distribution belonging to the expo-
nential family with conditional density given by,

f (x) =
κe
−0.5

∣∣∣x−αβ ∣∣∣κ
21+κ−1βΓ (κ−1)

(39)

with α, β and κ representing the location, scale and shape parameters. Since the distribution
is symmetric and unimodal the location parameter is also the mode, median and mean of the
distribution (i.e. µ). By symmetry, all odd moments beyond the mean are zero. The variance
and kurtosis are given by,

V ar (x) = β222/κΓ
(
3κ−1

)
Γ (κ−1)

Ku (x) =
Γ
(
5κ−1

)
Γ
(
κ−1

)
Γ (3κ−1) Γ (3κ−1)

(40)

As κ decreases the density gets flatter and flatter while in the limit as κ→∞, the distribution
tends towards the uniform. Special cases are the Normal when κ = 2, the Laplace when κ = 1.
Standardization is simple and involves rescaling the density to have unit standard deviation:

V ar (x) = β222/κΓ
(
3κ−1

)
Γ (κ−1)

= 1

∴ β =

√
2−2/κ

Γ (κ−1)

Γ (3κ−1)

(41)

Finally, substituting into the scaled density of z:

f

(
x− µ
σ

)
=

1

σ
f (z) =

1

σ

κe
−0.5

∣∣∣∣√2−2/κ Γ(κ−1)
Γ(3κ−1)

z

∣∣∣∣κ√
2−2/κ Γ(κ−1)

Γ(3κ−1)
21+κ−1Γ (κ−1)

(42)

2.3.4 Skewed Distributions by Inverse Scale Factors

Fernandez and Steel (1998) proposed introducing skewness into unimodal and symmetric dis-
tributions by introducing inverse scale factors in the positive and negative real half lines. Given
a skew parameter, ξ5, the density of a random variable z can be represented as:

f (z|ξ) =
2

ξ + ξ−1

[
f (ξz)H (−z) + f

(
ξ−1z

)
H (z)

]
(43)

where ξ ∈ R+ and H(.) is the Heaviside function. The absolute moments, required for deriving
the central moments, are generated from the following function:

Mr = 2

∫ ∞
0

zrf (z) dz. (44)

The mean and variance are then defined as:

E (z) = M1

(
ξ − ξ−1

)
V ar (z) =

(
M2 −M2

1

) (
ξ2 + ξ−2

)
+ 2M2

1 −M2

(45)

The Normal, Student and GED distributions have skew variants which have been standardized
to zero mean, unit variance by making use of the moment conditions given above.

5When ξ = 1, the distribution is symmetric.

12



2.3.5 The Generalized Hyperbolic Distribution and Sub-Families

In distributions where the expected moments are functions of all the parameters, it is not im-
mediately obvious how to perform such a transformation. In the case of the GHYP distribution,
because of the existence of location and scale invariant parametrizations and the possibility of
expressing the variance in terms of one of those parametrization, namely the (ζ, ρ), the task of
standardizing and estimating the density can be broken down to one of estimating those 2 param-
eters, representing a combination of shape and skewness, followed by a series of transformation
steps to demean, scale and then translate the parameters into the (α, β, δ, µ) parametrization
for which standard formulae exist for the likelihood function. The (ξ, χ) parametrization, which
is a simple transformation of the (ζ, ρ), could also be used in the first step and then transformed
into the latter before proceeding further. The only difference is the kind of ’immediate’ inference
one can make from the different parametrizations, each providing a different direct insight into
the kind of dynamics produced and their place in the overall GHYP family particularly with
regards to the limit cases.
The rugarch package performs estimation using the (ζ, ρ) parametrization6, after which a series
of steps transform those parameters into the (α, β, δ, µ) while at the same time including the
necessary recursive substitution of parameters in order to standardize the resulting distribution.

Proof 1 The Standardized Generalized Hyperbolic Distribution. Let εt be a r.v. with mean (0)
and variance (σ2) distributed as GHY P (ζ, ρ), and let z be a scaled version of the r.v. ε with
variance (1) and also distributed as GHY P (ζ, ρ).7 The density f(.) of z can be expressed as

f(
εt
σ

; ζ, ρ) =
1

σ
ft(z; ζ, ρ) =

1

σ
ft(z; α̃, β̃, δ̃, µ̃), (46)

where we make use of the (α, β, δ, µ) parametrization since we can only naturally express the
density in that parametrization. The steps to transforming from the (ζ, ρ) to the (α, β, δ, µ)
parametrization, while at the same time standardizing for zero mean and unit variance are given
henceforth.
Let

ζ = δ
√
α2 − β2 (47)

ρ =
β

α
, (48)

which after some substitution may be also written in terms of α and β as,

α =
ζ

δ
√

(1− ρ2)
, (49)

β = αρ. (50)

6Credit is due to Diethelm Wurtz for his original implementation in the fBasics package of the transforma-
tion/standardization function.

7The parameters ζ and ρ do not change as a result of being location and scale invariant

13



For standardization we require that,

E (X) = µ+
βδ√
α2 − β2

Kλ+1 (ζ)

Kλ (ζ)
= µ+

βδ2

ζ

Kλ+1 (ζ)

Kλ (ζ)
= 0

∴ µ = −βδ
2

ζ

Kλ+1 (ζ)

Kλ (ζ)
(51)

V ar (X) = δ2

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

(
Kλ+2 (ζ)

Kλ (ζ)
−
(
Kλ+1 (ζ)

Kλ (ζ)

)2
))

= 1

∴ δ =

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

(
Kλ+2 (ζ)

Kλ (ζ)
−
(
Kλ+1 (ζ)

Kλ (ζ)

)2
))−0.5

(52)

Since we can express, β2/
(
α2 − β2

)
as,

β2

α2 − β2
=

α2ρ2

a2 − α2ρ2
=

α2ρ2

a2 (1− ρ2)
=

ρ2

(1− ρ2)
, (53)

then we can re-write the formula for δ in terms of the estimated parameters ζ̂ and ρ̂ as,

δ =

Kλ+1

(
ζ̂
)

ζ̂Kλ

(
ζ̂
) +

ρ̂2

(1− ρ̂2)

Kλ+2

(
ζ̂
)

Kλ

(
ζ̂
) −

Kλ+1

(
ζ̂
)

Kλ

(
ζ̂
)
2


−0.5

(54)

Transforming into the (α̃, β̃, δ̃, µ̃) parametrization proceeds by first substituting 54 into 49 and
simplifying,

α̃ =

ζ̂

Kλ+1(ζ̂)
ζ̂Kλ(ζ̂)

+
ρ̂2

(
Kλ+2(ζ̂)
Kλ(ζ̂)

− (Kλ+1(ζ̂))2

(Kλ(ζ̂))2

)
(1−ρ̂2)


√

(1− ρ̂2)

0.5

,

=

 ζ̂Kλ+1(ζ̂)
Kλ(ζ̂)

+
ζ̂2ρ̂2

(
Kλ+2(ζ̂)
Kλ(ζ̂)

− (Kλ+1(ζ̂))2

(Kλ(ζ̂))2

)
(1−ρ̂2)


√

(1− ρ̂2)

0.5

,

=


ζ̂Kλ+1(ζ̂)
Kλ(ζ̂)

(1− ρ̂2)
+

ζ̂2ρ̂2

(
Kλ+2(ζ̂)
Kλ+1(ζ̂)

Kλ+1(ζ̂)
Kλ(ζ̂)

− (Kλ+1(ζ̂))
2

(Kλ(ζ̂))
2

)
(1− ρ̂2)2


0.5

,

=


ζ̂Kλ+1(ζ̂)
Kλ(ζ̂)

(1− ρ̂2)

1 +

ζ̂ ρ̂2

(
Kλ+2(ζ̂)
Kλ+1(ζ̂)

− Kλ+1(ζ̂)
Kλ(ζ̂)

)
(1− ρ̂2)




0.5

. (55)

Finally, the rest of the parameters are derived recursively from α̃ and the previous results,

β̃ = α̃ρ̂, (56)

δ̃ =
ζ̂

α̃
√

1− ρ̂2
, (57)

µ̃ =
−β̃δ̃2Kλ+1

(
ζ̂
)

ζ̂Kλ

(
ζ̂
) . (58)
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For the use of the (ξ, χ) parametrization in estimation, the additional preliminary steps of con-
verting to the (ζ, ρ) are,

ζ =
1

ξ̂2
− 1, (59)

ρ =
χ̂

ξ̂
. (60)

Particular care should be exercised when choosing the GH distribution in GARCH models since
allowing the GIG λ parameter to vary is quite troublesome in practice and may lead to identi-
fication problems since different combinations of the 2 shape (λ, ζ) and 1 skew (ρ) parameters
may lead to the same or close likelihood. In addition, large sections of the likelihood surface
for some combinations of the distribution parameters is quite flat. Figure 1 shows the skewness,
kurtosis and 2 quantiles surfaces for different combinations of the (ρ, ζ) parameters for two
popular choices of λ.
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2.3.6 Johnson’s Reparametrized SU Distribution

The reparametrized Johnson SU distribution, discussed in Rigby (2005), is a four parameter
distribution denoted by JSU (µ, σ, ν, τ), with mean µ and standard deviation σ for all values
of the skew and shape parameters ν and τ respectively. The implementation is taken from the
GAMLSS package of Rigby (2005) and the reader is referred there for further details.

3 Fitting

Once a uGARCHspec has been defined, the ugarchfit method takes the following arguments:

> args(ugarchfit)

function (spec, data, out.sample = 0, solver = "solnp", solver.control = list(),

fit.control = list(stationarity = 1, fixed.se = 0, scale = 0),

...)

NULL

The out.sample option controls how many data points from the end to keep for out of sample
forecasting, while the solver.control and fit.control provide additional options to the fitting rou-
tine. Currently, 4 solvers are supported, with the main one being the augmented Lagrange solver
solnp of Ye (1987) implemented in R by Ghalanos and Theussl (2011). The main functionality,
namely the GARCH dynamics and conditional likelihood calculations are done in C for speed.
For reference, there is a benchmark routine called ugarchbench which provides a comparison
of rugarch against 2 published GARCH models with analytic standard errors, and a small scale
comparison with a commercial GARCH implementation. The fitted object is of class uGARCHfit
which can be passed to a variety of other methods such as show (summary), plot, ugarchsim,
ugarchforecast etc. The following example illustrates its use, but the interested reader should
consult the documentation on the methods available for the returned class.

> spec = ugarchspec()

> data(sp500ret)

> fit = ugarchfit(spec = spec, data = sp500ret, solver.control = list(trace = 0))

> show(fit)

*---------------------------------*

* GARCH Model Fit *

*---------------------------------*

Conditional Variance Dynamics

-----------------------------------

GARCH Model : sGARCH(1,1)

Mean Model : ARFIMA(1,0,1)

Distribution : norm

Optimal Parameters

------------------------------------

Estimate Std. Error t value Pr(>|t|)

mu 0.000517 0.000090 5.7620 0

ar1 0.834804 0.058900 14.1732 0

ma1 -0.865358 0.054076 -16.0028 0

omega 0.000001 0.000000 5.2865 0
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alpha1 0.087730 0.007667 11.4428 0

beta1 0.904987 0.008387 107.9058 0

Robust Standard Errors:

Estimate Std. Error t value Pr(>|t|)

mu 0.000517 0.000101 5.1181 0.000000

ar1 0.834804 0.048413 17.2435 0.000000

ma1 -0.865358 0.044909 -19.2691 0.000000

omega 0.000001 0.000001 2.1924 0.028351

alpha1 0.087730 0.029486 2.9753 0.002927

beta1 0.904987 0.028773 31.4530 0.000000

LogLikelihood : 17901.99

Information Criteria

------------------------------------

Akaike -6.4805

Bayes -6.4733

Shibata -6.4805

Hannan-Quinn -6.4780

Q-Statistics on Standardized Residuals

------------------------------------

statistic p-value

Lag10 14.11 0.078859

Lag15 27.78 0.009717

Lag20 31.01 0.028675

H0 : No serial correlation

Q-Statistics on Standardized Squared Residuals

------------------------------------

statistic p-value

Lag10 3.069 0.9299

Lag15 5.905 0.9495

Lag20 8.424 0.9716

ARCH LM Tests

------------------------------------

Statistic DoF P-Value

ARCH Lag[2] 1.482 2 0.4765

ARCH Lag[5] 1.738 5 0.8841

ARCH Lag[10] 3.018 10 0.9810

Nyblom stability test

------------------------------------

Joint Statistic: 175.774

Individual Statistics:

mu 0.1978
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ar1 0.2202

ma1 0.1678

omega 21.5725

alpha1 0.1341

beta1 0.1122

Asymptotic Critical Values (10% 5% 1%)

Joint Statistic: 1.49 1.68 2.12

Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

------------------------------------

t-value prob sig

Sign Bias 0.3309 7.407e-01

Negative Sign Bias 3.0036 2.680e-03 ***

Positive Sign Bias 2.4489 1.436e-02 **

Joint Effect 29.0989 2.135e-06 ***

Adjusted Pearson Goodness-of-Fit Test:

------------------------------------

group statistic p-value(g-1)

1 20 182.8 8.624e-29

2 30 188.2 3.007e-25

3 40 230.3 5.779e-29

4 50 234.0 6.090e-26

Elapsed time : 1.628

3.1 Fit Diagnostics

The summary method for the uGARCHfit object provides the parameters and their standard er-
rors (and a robust version), together with a variety of tests which can also be called individually.
The robust standard errors are based on the method of White (1982) which produces asymp-
totically valid confidence intervals by calculating the covariance (V ) of the parameters (θ) as:

V̂ = (−A)−1B(−A)−1 (61)

where,

A = L′′
(
θ̂
)

B =

n∑
i=1

gi

(
xi

∣∣∣θ̂)T gi (xi ∣∣∣θ̂) (62)

which is the Hessian and covariance of the scores at the optimum. The robust standard errors
are the square roots of the diagonal of V .
The inforcriteria method on a fitted or filtered object returns the Akaike (AIC), Bayesian
(BIC), Hannan-Quinn (HQIC) and Shibata (SIC) information criteria to enable model selection
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by penalizing overfitting at different rates. Formally, they may be defined as:

AIC =
−2LL

N
+

2m

N

BIC =
−2LL

N
+
mloge (N)

N

HQIC =
−2LL

N
+

(2mloge (loge (N)))

N

SIC =
−2LL

N
+ loge

(
(N + 2m)

N

)
(63)

The Q-Statistics are the test statistics from the Box-Pierce test on the Standardized Resid-
uals with (10, 15, 20) lags and d.o.f the number of the AR and MA parameters, and Squared
Standardized Residuals with (10, 15, 20) lags and d.o.f the number of ARCH and GARCH pa-
rameters (q, p) Looking at the summary report, the high p-values for the Standardized Squared
Residuals indicates that there is little chance of serial correlation at the lags tested. The evi-
dence for the Standardized Residuals is not as convincing but one should consider other factors,
particularly when it comes to forecasting models.

The ARCH LM test of Engle (1982) tests the presence of ARCH effects by regressing the
squared residuals of a series against its own lags. Since the NULL is of No ARCH effects, a high
p-value, as evidenced by the summary indicates that the GARCH model used was adequate to
remove any such effects present prior to fitting (i.e. it is a good idea to test the series prior to
fitting a GARCH model!).

The signbias calculates the Sign Bias Test of Engle and Ng (1993), and is also displayed
in the summary. This tests the presence of leverage effects in the standardized residuals (to
capture possible misspecification of the GARCH model), by regressing the squared standardized
residuals on lagged negative and positive shocks as follows:

ẑ2
t = c0 + c1Iẑt−1<0 + c2Iẑt−1<0ẑt−1 + c3Iẑt−1>0ẑt−1 + ut (64)

where I is the indicator function and ẑt the estimated standardized residuals from the GARCH
process. The Null Hypotheses are H0 : ci = 0 (for i = 1, 2, 3), and that jointly H0 : c1 = c2 =
c3 = 0. As can be inferred from the summary of the previous fit, there is significant Negative and
Positive reaction to shocks. Using instead a model such as the apARCH would likely alleviate
these effects.

The gof calculates the chi-squared goodness of fit test, which compares the empirical dis-
tribution of the standardized residuals with the theoretical ones from the chosen density. The
implementation is based on the test of Palm and Vlaar (1997) which adjusts the tests in the
presence on non-i.i.d. observations by reclassifying the standardized residuals not according to
their value (as in the standard test), but instead on their magnitude, calculating the probability
of observing a value smaller than the standardized residual, which should be identically stan-
dard uniform distributed. The function must take 2 arguments, the fitted object as well as the
number of bins to classify the values. In the summary to the fit, a choice of (20, 30, 40, 50) bins
is used, and from the summary of the previous example it is clear that the Normal distribution
does not adequately capture the empirical distribution based on this test.

The nymblom test calculates the parameter stability test of Nyblom (1989), as well as the
joint test. Critical values against which to compare the results are displayed.

Finally, some informative plots can be drawn either interactively(which = ’ask’), individually
(which = 1:12) else all at once (which = ’all’) as in Figure 2.
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4 Filtering

Sometimes it is desirable to simply filter a set of data with a predefined set of parameters. This
may for example be the case when new data has arrived and one might not wish to re-fit. The
ugarchfilter method does exactly that, taking a uGARCHspec object with fixed parameters.
Setting fixed or starting parameters on the GARCH spec object may be done either through
the ugarchspec function when it is called (via the fixed.pars and start.pars arguments to the
function), else by using the setfixed<- and setstart<- method on the spec object. The
example which follows explains how:

> data(sp500ret)

> spec = ugarchspec(variance.model = list(model = "apARCH"), distribution.model = "std")

> setfixed(spec) <- list(mu = 0.01, ma1 = 0.2, ar1 = 0.5, omega = 1e-05,

+ alpha1 = 0.03, beta1 = 0.9, gamma1 = 0.01, delta = 1, shape = 5)

> filt = ugarchfilter(spec = spec, data = sp500ret)

> show(filt)

*------------------------------------*

* GARCH Model Filter *

*------------------------------------*

Conditional Variance Dynamics

--------------------------------------

GARCH Model : apARCH(1,1)

Mean Model : ARFIMA(1,0,1)

Distribution : std

Filter Parameters

---------------------------------------

mu 1e-02

ar1 5e-01

ma1 2e-01

omega 1e-05

alpha1 3e-02

beta1 9e-01

gamma1 1e-02

delta 1e+00

shape 5e+00

LogLikelihood : 5627.291

Information Criteria

---------------------------------------

Akaike -2.0345

Bayes -2.0237

Shibata -2.0345

Hannan-Quinn -2.0307

Q-Statistics on Standardized Residuals
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---------------------------------------

statistic p-value

Lag10 1231 0

Lag15 1240 0

Lag20 1248 0

H0 : No serial correlation

Q-Statistics on Standardized Squared Residuals

---------------------------------------

statistic p-value

Lag10 179.2 0

Lag15 185.3 0

Lag20 189.8 0

ARCH LM Tests

---------------------------------------

Statistic DoF P-Value

ARCH Lag[2] 171.5 2 0

ARCH Lag[5] 176.4 5 0

ARCH Lag[10] 177.9 10 0

Sign Bias Test

---------------------------------------

t-value prob sig

Sign Bias 8.299 1.303e-16 ***

Negative Sign Bias 5.695 1.297e-08 ***

Positive Sign Bias 0.572 5.673e-01

Joint Effect 95.584 1.383e-20 ***

Adjusted Pearson Goodness-of-Fit Test:

---------------------------------------

group statistic p-value(g-1)

1 20 27973 0

2 30 39420 0

3 40 49738 0

4 50 58614 0

The returned object is of class uGARCHfilter and shares many of the methods as the uGARCHfit
class. Additional arguments to the function are explained in the documentation.

5 Forecasting and the GARCH Bootstrap

There are 2 types of forecasts available with the package. A rolling method, whereby consecutive
1-ahead forecasts are created based on the out.sample option set in the fitting routine, and an
unconditional method for n>1 ahead forecasts. It is also possible to combine the 2 creating a
rather complicated object. Additionally, it is possible to estimate the forecast density by means
of the ugarchboot method which implements the strategy described in Pascual, Romo and Ruiz
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(2006). This method also includes the option to include parameter uncertainty via a monte
carlo method. An example illustrates together with Figure 3 created using the plot command
on the resulting uGARCHboot object:

> data(sp500ret)

> spec = ugarchspec(variance.model = list(model = "eGARCH", garchOrder = c(1,

+ 1)), mean.model = list(armaOrder = c(1, 1), arfima = FALSE),

+ distribution.model = "std")

> fit = ugarchfit(spec = spec, data = sp500ret, out.sample = 0,

+ solver = "solnp", solver.control = list(trace = 0))

> bootpred = ugarchboot(fit, method = "Partial", n.ahead = 120,

+ n.bootpred = 2000)

> show(bootpred)

*-----------------------------------*

* GARCH Bootstrap Forecast *

*-----------------------------------*

Model : eGARCH

n.ahead : 120

Bootstrap method: partial

Series (summary):

min q.25 mean q.75 max forecast

t+1 -0.16970 -0.012573 0.000160 0.014647 0.087117 0.001266

t+2 -0.14045 -0.012198 0.000820 0.015917 0.088455 0.001043

t+3 -0.15926 -0.013462 0.000291 0.014136 0.097728 0.000880

t+4 -0.11009 -0.012629 0.000991 0.014653 0.088158 0.000761

t+5 -0.26634 -0.013391 -0.000698 0.013250 0.123779 0.000674

t+6 -0.24480 -0.012854 -0.000012 0.013587 0.089862 0.000610

t+7 -0.13669 -0.011373 0.001100 0.015331 0.097236 0.000564

t+8 -0.38366 -0.013117 -0.000036 0.014572 0.084560 0.000530

t+9 -0.26574 -0.012405 0.000074 0.014094 0.088518 0.000505

t+10 -0.21571 -0.011858 0.000652 0.013448 0.127877 0.000486

.....................

Sigma (summary):

min q0.25 mean q0.75 max forecast

t+1 0.024673 0.024673 0.024673 0.024673 0.024673 0.024673

t+2 0.023374 0.023534 0.024438 0.024645 0.044920 0.024368

t+3 0.022176 0.022738 0.024186 0.025007 0.049329 0.024071

t+4 0.021142 0.022094 0.023938 0.025026 0.047645 0.023781

t+5 0.020084 0.021567 0.023656 0.024912 0.051322 0.023498

t+6 0.019257 0.021188 0.023476 0.024977 0.065176 0.023221

t+7 0.018390 0.020751 0.023252 0.024853 0.065914 0.022951

t+8 0.017720 0.020401 0.023005 0.024788 0.062841 0.022688

t+9 0.016862 0.020194 0.022880 0.024554 0.093453 0.022430

t+10 0.016061 0.019880 0.022697 0.024362 0.088260 0.022178

.....................

24



Figure 3: GARCH Bootstrap Forecast Plots

6 Simulation

Simulation may be carried out either directly on a fitted object (ugarchsim) else on a GARCH
spec with fixed parameters (ugarchpath). The ugarchsim method takes the following argu-
ments:

> args(ugarchsim)

function (fit, n.sim = 1000, n.start = 0, m.sim = 1, startMethod = c("unconditional",

"sample"), presigma = NA, prereturns = NA, preresiduals = NA,

rseed = NA, custom.dist = list(name = NA, distfit = NA),

mexsimdata = NULL, vexsimdata = NULL, ...)

NULL

where the n.sim indicates the length of the simulation while m.sim the number of independent
simulations. For reasons of speed, when n.sim is large relative to m.sim, the simulation code
is executed in C, while for large m.sim a special purpose C++ code (using Rcpp and Rcp-
pArmadillo) is used which was found to lead to significant speed increase. Key to replicating
results is the rseed argument which is used to pass a user seed to initialize the random number
generator, else one will be assigned by the program. In any case, the returned object, of class
uGARCHsim (or uGARCHpath) contains a slot with the seed(s) used.

7 Rolling Estimation

The ugarchroll method allows to perform a rolling estimation and forecasting of a model/dataset
combination, optionally returning the VaR at specified levels. More importantly, it returns the
distributional forecast parameters necessary to calculate any required measure on the forecasted
density. The following example illustrates the use of the method where use is also made of the
parallel option and run on 10 cores. Figure 4 is generated by calling the plot function on the
returned uGARCHroll object. Additional methods, and more importantly extractor functions
can be found in the documentation.
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> data(sp500ret)

> spec = ugarchspec(variance.model = list(model = "eGARCH"), distribution.model = "jsu")

> roll = ugarchroll(spec, data = sp500ret, n.ahead = 1, forecast.length = 500,

+ refit.every = 25, refit.window = "recursive", parallel = TRUE,

+ parallel.control = list(pkg = "snowfall", cores = 10), solver = "solnp",

+ solver.control = list(tol = 1e-05, delta = 1e-06, trace = 0),

+ calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.05))

> report(roll, type = "VaR", n.ahead = 1, VaR.alpha = 0.01, conf.level = 0.95)

VaR Backtest Report

===========================================

Model: eGARCH-jsu

Backtest Length: 500

Data: SP500RET

==========================================

alpha: 1%

Expected Exceed: 5

Actual VaR Exceed: 9

Actual %: 1.8%

Unconditional Coverage (Kupiec)

Null-Hypothesis: Correct Exceedances

LR.uc Statistic: 2.613

LR.uc Critical: 3.841

LR.uc p-value: 0.106

Reject Null: NO

Conditional Coverage (Christoffersen)

Null-Hypothesis: Correct Exceedances &

Independence of Failures

LR.cc Statistic: 2.943

LR.cc Critical: 5.991

LR.cc p-value: 0.23

Reject Null: NO

> report(roll, type = "fpm")

GARCH Roll Mean Forecast Performance Measures

---------------------------------------------

Model : eGARCH

no.refits : 20

n.ahead : 1

n.rolls : 500

n.ahead.1

MSE 4.080e-04

MAE 1.295e-02

DAC 5.500e-01

N 5.000e+02
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Figure 4: GARCH Rolling Forecast Plots

8 Simulated Parameter Distribution and RMSE

It is sometimes instructive to be able to investigate the underlying density of the estimated
parameters under different models. The ugarchdistribution method performs a monte carlo
experiment by simulating and fitting a model multiple times and for different ’window’ sizes.
This allows to obtain some insight on the consistency of the parameter estimates as the data
window increases by looking at the rate of decrease of the Root Mean Squared Error and whether
we have

√
N consistency. This is a computationally expensive exercise and as such should only

be undertaken in the presence of ample computing power and RAM. As in other functions,
parallel functionality is enabled if available. The example which follows illustrates an instance
of this test on one model and one set of parameters. Figures 5 and 6 complete this example.

> spec = ugarchspec(variance.model = list(model = "gjrGARCH"),

+ distribution.model = "ged")

> print(persistence(pars = unlist(list(mu = 0.001, ar1 = 0.4, ma1 = -0.1,

+ omega = 1e-06, alpha1 = 0.05, beta1 = 0.9, gamma1 = 0.05,

+ shape = 1.5)), distribution = "ged", model = "gjrGARCH"))

persistence

0.975

> setfixed(spec) <- list(mu = 0.001, ar1 = 0.4, ma1 = -0.1, omega = 1e-06,

+ alpha1 = 0.05, beta1 = 0.9, gamma1 = 0.05, shape = 1.5)

> dist = ugarchdistribution(fitORspec = spec, n.sim = 2000, n.start = 1,

+ m.sim = 100, recursive = TRUE, recursive.length = 6000, recursive.window = 1000,

+ rseed = 1066, solver = "solnp", solver.control = list(trace = 0),

+ parallel = TRUE, parallel.control = list(pkg = "snowfall",

+ cores = 20))

> show(dist)
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*------------------------------------*

* GARCH Parameter Distribution *

*------------------------------------*

Model : gjrGARCH

No. Paths (m.sim) : 100

Length of Paths (n.sim) : 2000

Recursive : TRUE

Recursive Length : 6000

Recursive Window : 1000

Coefficients: True vs Simulation Mean (Window-n)

mu ar1 ma1 omega alpha1 beta1 gamma1

true-coef 0.00100000 0.40000 -0.100000 1.0000e-06 0.050000 0.90000 0.050000

window-2000 0.00097122 0.39691 -0.097773 1.0672e-06 0.046603 0.90054 0.051852

window-3000 0.00101426 0.38922 -0.089512 1.0209e-06 0.047097 0.90072 0.052936

window-4000 0.00099796 0.39372 -0.095054 1.0219e-06 0.049798 0.90056 0.047732

window-5000 0.00099337 0.40143 -0.102950 1.0081e-06 0.048943 0.90087 0.049678

window-6000 0.00098468 0.39561 -0.096174 1.0102e-06 0.049052 0.90009 0.050879

shape

true-coef 1.5000

window-2000 1.4944

window-3000 1.4960

window-4000 1.4929

window-5000 1.4899

window-6000 1.4902
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9 The ARFIMAX Model with constant variance

The rugarch package implements an additional set of methods and classes, mirroring those of the
GARCH specification, for modelling ARFIMAX processes with constant variance via Maximum
Likelihood. With the exception of plots, the functionality is very similar to that covered so
far for GARCH methods. The main functions are arfimaspec, arfimafit, arfimaforecast,
arfimasim, arfimapath, arfimadistirbution and arfimaroll. The usual extractor, inference
and summary methods are replicated for all the ARFIMA classes and the user should consult
the documentation for further details.

10 Miscellaneous Functions

There are a number of plain R functions exported in the package the most important of
which are the WeekDayDummy (creates a dummy, day of the week variable given a set of dates),
ForwardDates (to generate A POSIXct vector of future dates), BerkowitzLR which implements
the density forecast test of Berkowitz (2001), and the DACTest function which implements the
Directional Accuracy tests of Anatolyev and Gerko (2005) and Pesaran and Timmermann
(1992). The unconditional and conditional VaR exceedances tests are currently not exported
but may be called via rugarch:::.VaRreport (and the associated plot via rugarch:::.VaRplot).

11 FAQs and Guidelines

This section provides for answers to some Frequently Asked Questions (Q) as well as Guidelines
(G) for the use of the rugarch package.

Q: Does the package support parallel computation?

Yes. Most functions for which parallel functionality was deemed beneficial include the addi-
tional options of ’parallel’ and ’parallel.control’. For Unix based systems the multicore package
of Urbanek (2009) provides for a very efficient parallel apply on multiple cores. For Windows
and all systems, the snowfall package of Knaus (2010) allows for socket based parallel apply
which does not include shared memory of objects and can therefore be very expensive. This is
definitely not as efficient as multicore, but the only option currently on windows systems. Some
extra thought is required when using the snowfall parallel functionality as there is a trade-off to
consider between the number of cores committed via socket, the overhead for setting up each
new socket and the number of parallel iterations. As an example consider the following:

> library(rugarch)

rugarch (version 1.0) initialized.

> data(dji30ret)

> spec = ugarchspec()

> mspec = multispec(replicate(spec, n = 30))

> print(system.time(multifit(multispec = mspec, data = dji30ret[,

+ 1:30], parallel = TRUE, parallel.control = list(pkg = "snowfall",

+ cores = 20))))

user system elapsed

1.08 1.88 24.00
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> print(system.time(multifit(multispec = mspec, data = dji30ret[,

+ 1:30], parallel = TRUE, parallel.control = list(pkg = "snowfall",

+ cores = 5))))

user system elapsed

0.34 0.23 15.78

> print(system.time(multifit(multispec = mspec, data = dji30ret[,

+ 1:30], solver.control = list(trace = 0), parallel = FALSE,

+ parallel.control = list(pkg = "snowfall", cores = 10))))

user system elapsed

49.15 0.00 49.15

It is clear that the overhead for using 20 cores is too high for the size of this problem, whereas
using 5 cores does lead to a doubling of performance versus the non-parallel version. Also note
that prior to using the snowfall package, this should be manually loaded by the user, since
strange behavior has been observed when the package tries to load the snowfall itself.

Q: My model does not converge, what can I do?

There are several avenues to consider here. The package offers 4 different solvers, namely ’solnp’,
’gosolnp’, ’nlminb’ and ’L-BGFS-U’ (from optim). Each solver has its own merits, and control
parameters which may, and should be passed, via the solver.control list in the fitting routines,
depending on your particular data. For problems where neither ’solnp’ nor ’nlminb’ seem to
work, try the ’gosolnp’ solver which does a search of the parameter space based on a trun-
cated normal distribution for the parameters and then initializes multiple restarts of the ’solnp’
solver based on the best identified candidates. The numbers of randomly generated parameters
(n.sim) and solver restarts (n.restarts) can be passed via the solver.control list. Additionally, in
the fit.control list of the fitting routines, the option to perform scaling of the data prior to fitting
usually helps, although it is not available under some setups. Finally, consider the amount of
data you are using for modelling GARCH processes, which leads to another FAQ below.

Q: How much data should I use to model GARCH processes with confidence?
The distribution of the parameters varies by model, and is left to the reader to consult relevant
literature on this. However, using 100 data points to try and fit a model is unlikely to be a sound
approach as you are unlikely to get very efficient parameter estimates. The rugarch package
does provide a method (ugarchdistribution) for simulating from a pre-specified model, data
of different sizes, fitting the model to the data, and inferring the distribution of the parameters
as well as the RMSE rate of change as the data length increases. This is a very computationally
expensive way to examine the distribution of the parameters (but the only way in the non-
Bayesian world), and as such should be used with care and in the presence of ample computing
power.

Q: Where can one find more examples?

The package has a folder called ’rugarch.tests’ which contains many tests which I use for debug-
ging and checking. The files in the folder should be ’sourced’ by the user, and the ’runtests.R’
file contains some wrapper functions which describe what each test does, and optionally runs
chosen tests. The output will be a combination of text files (.txt) and figures (either .eps or
.png) in an output directory which the user can define in the arguments to the wrapper function
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’rugarch.runtests’. It is quite instructive to read and understand what each test is doing prior
to running it...
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