
Data input for secr

Murray Efford

November 16, 2011

Data for analysis in secr must be prepared as an object of class ‘capthist’

which includes both the detector layout and the capture data. The structure

of a capthist object is complex and depends on the detector type. Functions

make.capthist and read.capthist are used to construct a capthist object

from data already in R or from text files. This vignette describes data input

directly from text files with read.capthist, which will be adequate for most

analyses.

Contents

Introduction . 1

Text formats - general . 2

Capture data format . 2

Detector layout format . 3

Using read.capthist . 4

Count detectors . 6

Signal detectors . 6

Polygon and transect detectors . 6

Troubleshooting . 9

Further notes . 9

References . 10

Glossary . 11

Introduction

The text file formats used by read.capthist are shared with program DEN-

SITY (Efford 2009). Two types of file are needed, one for capture data and

1

one for detector (trap) layouts. We use the jargon terms ‘detector’, ‘identifier’,

‘covariate’, ‘session’ and ‘occasion’; if you are not familiar with these as used in

secr then consult the Glossary.

Text formats - general

Input files should be prepared with a text editor, not a word processing pro-

gram. Values are usually separated by blanks or tabs, but commas may also be

used. Input files with extension ‘.csv’ are recognised automatically as comma-

delimited. This makes it feasible to prepare input files with spreadsheet software.

Care should be taken to prefix header information with the comment character

(default #).

Identifiers may be numeric values or alphanumeric values with no included

spaces, tabs or commas. The underscore character should not be used in detector

(trap) identifiers. Leading zeros in identifier fields will be taken literally (‘01’

is read as ‘01’, not ‘1’), and it is essential to be consistent between the capture

data file and the detector layout file when using ‘trapID’ format.

Capture data format

Capture data are read from a single text file with one detection record per line.

Each detection record starts with a session identifier, an animal identifier, an

occasion number and the location of the detection. Location is usually given

in ‘trapID’ format as a detector (trap) identifier that matches a detector in the

trap layout file (below) 1.

Here is a simple example - the capture data for the ‘stoatDNA’ dataset:

Session ID Occasion Detector

MatakitakiStoats 2 1 A12

MatakitakiStoats 2 2 A12

MatakitakiStoats 9 2 A4

MatakitakiStoats 1 1 A9

... 22 lines omitted ...

MatakitakiStoats 7 6 G7

MatakitakiStoats 20 7 G8

MatakitakiStoats 17 4 G9

MatakitakiStoats 19 6 G9

1The older, but still supported, ‘XY’ format uses the actual x- and y-coordinates of the

detection, but this is risky as coordinates must exactly match those in the trap layout file

2

The first line is ignored and is not needed. There is a single session ‘Matak-

itakiStoats’. Individuals are numbered 1 to 20 (these identifiers could also have

been alphanumeric). Detector identifiers ‘A12’, ‘B5’ etc. match the detector

layout file as we shall see next. Animal 2 was detected at detector ‘A12’ on

both day 1 and day 2. The order of records does not matter.

A study may include multiple sessions. All detections are placed in one file

and sessions are distinguished by the identifier in the first column.

Animals sometimes die on capture or are removed during a session. Mark

these detections with a minus sign before the occasion number.

Further columns may be added for individual covariates such as length or

sex. Categorical covariates such as sex may use alphanumeric codes (e.g., ‘F’,

‘M’; quotes not needed). Individual covariates are assumed to be permanent,

at least within a session, and only the first non-missing value is used for each

individual. Missing values on a particular occasion may be indicated with ‘NA’,

but each covariate must be scored at least once for each animal.

Detector layout format

The basic format for a detector (trap) layout file simply gives the x- and y-

coordinates for each detector, one per line:

Detector X Y

A1 -1500 -1500

A2 -1500 -1250

A3 -1500 -1000

A4 -1500 -750

... 86 lines omitted ...

G10 1500 750

G11 1500 1000

G12 1500 1250

G13 1500 1500

This format may optionally be extended to identify occasions when particu-

lar detectors were not operated. A string of ones and zeros is added to each line,

indicating the occasions when each detector was used or not used. The number

of codes should equal the number of occasions. Codes may be separated by

white space (blanks, tabs, or commas). This is a fictitious example of a 7-day

study in which detector A1 was not operated on day 1 or day 2 and detector

A4 was not operated on day 6 or day 7:

3

Detector X Y Usage

A1 -1500 -1500 0011111

A2 -1500 -1250 1111111

A3 -1500 -1000 1111111

A4 -1500 -750 1111100

...

The format also allows a single detector-level covariate to be coded at the

end of each line, separated by a forward slash ‘/’:

Detector X Y Covariate

A1 -1500 -1500 /0.5

A2 -1500 -1250 /0.5

A3 -1500 -1000 /2

A4 -1500 -750 /2

...

In this example the vector of values (0.5, 0.5, 2, 2, ...) will be saved as a

variable ‘C1’ in the covariates dataframe of the traps object. The name may be

changed later. We are limited by this format to one detector covariate. secr

itself allows any number of detector covariates, but multiple covariates must be

added later.

Using read.capthist

Having described the file formats, we now demonstrate the use of read.capthist

to import data to a capthist object. The argument list of read.capthist is

read.capthist(captfile, trapfile, detector = "multi", fmt = "trapID",

noccasions = NULL, covnames = NULL, cutval = NULL, verify = TRUE,

...)

Our stoat example is very simple: apart from specifying the input file names

we only need to alter the detector type (see help(detector)). The number of

occasions (7) will be determined automatically from the input and there are no

individual covariates to be named. The data are in the folder ‘extdata’ of the

package installation, so we first set the working directory to there.

> library(secr)

> setwd (system.file(✬extdata✬, package = ✬secr✬))

> stoatCH <- read.capthist(✬stoatcapt.txt✬, ✬stoattrap.txt✬,

detector = ✬proximity✬)

4

No errors found :-)

> summary(stoatCH)

Object class capthist

Detector type proximity

Detector number 94

Average spacing 250 m

x-range -1500 1500 m

y-range -1500 1500 m

Counts by occasion

1 2 3 4 5 6 7 Total

n 3 4 8 3 3 7 2 30

u 3 3 8 2 0 3 1 20

f 12 6 2 0 0 0 0 20

M(t+1) 3 6 14 16 16 19 20 20

losses 0 0 0 0 0 0 0 0

detections 3 4 8 3 3 7 2 30

detectors visited 3 4 8 3 3 7 2 30

detectors used 94 94 94 94 94 94 94 658

These results match those from loading the ‘stoatDNA’ dataset provided

with secr (not shown). The message ‘No errors found’ is from verify which

can be switched off (verify = FALSE in the call to read.capthist). The labels

‘n’, ‘u’, ‘f’, and ‘M(t+1)’ refer to summary counts from Otis et al. (1978); for a

legend see ?summary.capthist.

Under the default settings of read.capthist:

❼ values should be separated by blanks or tabs.

❼ blank lines are ignored

❼ any text on a line after the comment character ‘#’ is ignored

The defaults may be changed with settings that are passed by read.capthist

to read.table, specifically

❼ sep = ’,’ for comma-delimited data

❼ comment.char = ’;’ to change the comment character

If the study includes multiple sessions and the detector layout or usage varies

between sessions then it is necessary to provide session-specific detector layout

5

files. This is done by giving trapfile as a vector of names, one per session

(repetition allowed; all ‘.csv’ or all not ‘.csv’). Sessions are sorted numerically

if all session identifiers are numeric, otherwise alphanumerically. Care is needed

to match the order of layout files to the session order: always confirm the result

matches your intention by reviewing the summary.

Count detectors

The ‘proximity’ detector type allows at most one detection of each individual at

a particular detector on any occasion. Detectors that allow repeat detections are

called ‘count’ detectors in secr. [In fact, proximity detectors are a special case of

count detectors in which the count always has a Bernoulli distribution]. Count

data can result from devices such as automatic cameras, or from collapsing data

collected over many occasions (Efford et al. 2009).

Count data are input by repeating each line in the capture data the required

number of times. Yes, it would have been more elegant to code the frequency,

but this detector type was an afterthought. See ?make.capthist for an exam-

ple that automatically replicates rows of a capture dataframe according to a

frequency vector f (f could be a column in the capture dataframe).

Signal detectors

Signal strength detectors are described in the document ‘secr-sound.pdf’ (see

also Efford et al. 2009). Here we just note that signal strength data may be

input with ‘read.capthist’ using a minor extension of the DENSITY format: the

signal strength for each detection is appended as the fifth (‘fmt = trapID’) or

sixth (‘fmt = XY’) value in each row of the capture data file. There will usually

be only one sampling ‘occasion’ as sounds are ephemeral. The threshold below

which signals were classified as classified as ‘not detected’ must be provided in

the ‘cutval’ argument. Detections with signal strength coded as ‘NA’ or less

than ‘cutval’ are discarded.

> write.capthist(signalCH, ✬temp✬) ## export data for demo

> tempCH <- read.capthist(✬tempcapt.txt✬, ✬temptrap.txt✬,

detector = ✬signal✬, cutval = 52.5)

No errors found :-)

6

Polygon and transect detectors

‘Detectors’ are usually modelled as if they exist at a point, and each row of

the ‘trapfile’ for read.capthist gives the x-y coordinates for one detector, as

we have seen. However, sometimes detections are made across an area , as

when an area is searched for faecal samples that are subsequently identified to

individual by microsatellite DNA analysis. Then the observations comprise both

detection or nondetection of each individual on each occasion, and the precise

x-y coordinates at which each cue (e.g., faecal deposit) was found.

The ‘polygon’ detector type handles this sort of data. The area searched

is assumed to comprise one or more polygons. To simplify the analysis some

constraints are imposed on the shape of polygons: they should be convex, at

least in an east-west direction (i.e. any transect parallel to the y-axis should

cross the boundary at no more than 2 points) and cannot contain ‘holes’. See

../doc/secr-polygondetectors.pdf for more.

Despite the considerable differences between ‘polygon’ and other detectors,

input is pretty much as we have already described. Use read.capthist with

the ‘XY’ format:

> read.capthist("captXY.txt", "perimeter.txt", fmt = ✬XY✬,

detector = "polygon")

The detector file (in this case ‘perimeter.txt’) has three columns as usual,

but rows correspond to vertices of the polygon(s) bounding the search area. The

first column is used as a factor to distinguish the polygons (‘polyID’).

polyID X Y

1 576407 13915205

1 576978 13915122

1 576866 13914572

1 576256 13914661

2 575500 13915038

2 575857 13915210

2 576093 13914833

2 575905 13914438

2 575509 13914588

If the input polygons are not closed (as here) then the first vertex of each is

repeated in the resulting ‘traps’ object to ensure closure.

The fourth and fifth columns of the capture file (in this case ‘captXY.txt’)

give the x- and y- coordinates of each detection. These are matched automati-

7

../doc/secr-polygondetectors.pdf

cally to the polygons defined in the detector file. Detections with x-y coordinates

outside any polygon are rejected.

Polygons may also be input with ‘read.traps’. Here is an example in which

the preceding polygons are used to simulate some detections (we assume the

polygon data have been copied to the clipboard):

> temppoly <- read.traps(file = ✬clipboard✬, detector = ✬polygon✬)

> tempcapt <- sim.capthist(temppoly, popn = list(D = 1, buffer = 1000),

detectpar = list(g0 = 0.5, sigma = 250))

> plot(tempcapt, label = TRUE, tracks = TRUE,

title = ✬Simulated detections within polygons✬)

1

2 ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

Simulated detections within polygons
5 occasions, 164 detections, 114 animals

See ../doc/secr-polygondetectors.pdf for more on polygon and transect

detectors.

Usage and covariates are for the polygon or transect as a whole and not for

each vertex. Usage codes and covariates are appended to the end of the line, just

as for point detectors (traps etc.). The usage and covariates for each polygon or

transect are taken from its first vertex. Although the end-of-line strings of other

vertices are not used, they cannot be blank and should use the same spacing as

the first vertex.

Here is a polygon file that defines both usage and a categorical covariate. It

would also work to repeat the usage and covariate for each vertex - this is just

a little more readable.

polyID X Y usage / habitat

1 576407 13915205 11000 / A

1 576978 13915122 - / -

8

../doc/secr-polygondetectors.pdf

1 576866 13914572 - / -

1 576256 13914661 - / -

2 575500 13915038 00111 / B

2 575857 13915210 - / -

2 576093 13914833 - / -

2 575905 13914438 - / -

2 575509 13914588 - / -

Detections along a transect have a similar structure to detections within a

polygon, and input follows the same format. Locations are input as x-y coordi-

nates for the position on the transect line from which each detection was made,

not as distances along the transect.

Troubleshooting

A message like

Error in scan(file, what, nmax, sep, dec, quote, skip, nlines,

na.strings, : line 1 did not have 6 elements

indicates unequal line lengths in one of the input files, possibly just one or two

stray lines with an extra value. You can use count.fields(’filename.txt’)

to track them down, replacing filename.txt with your own filename.

Further notes

‘Filters’ are used in DENSITY to select and reconfigure data. Their function is

taken over in secr by the methods subset and reduce for capthist objects.

subset.capthist allows the user to select a subset of individuals, occasions,

detectors or sessions from a capthist object. For example:

> summary(subset(stoatCH, traps = 1:47, occasions = 1:5))

Object class capthist

Detector type proximity

Detector number 47

Average spacing 250 m

x-range -1500 0 m

y-range -1500 1500 m

Counts by occasion

1 2 3 4 5 Total

n 2 4 1 1 0 8

u 2 3 1 0 0 6

9

f 4 2 0 0 0 6

M(t+1) 2 5 6 6 6 6

losses 0 0 0 0 0 0

detections 2 4 1 1 0 8

detectors visited 2 4 1 1 0 8

detectors used 47 47 47 47 47 235

reduce.capthist allows occasions to be combined (or dropped), and certain

changes of detector type. For example, ‘count’ data may be collapsed to binary

‘proximity’ data, or ‘signal’ data converted to ‘proximity’ data.

addCovariates is used to add spatial covariate information to a traps (de-

tector) or mask object from another spatial data source.

An alternative function for text file input is read.SPACECAP. This uses the

formats described in the help for the R package SPACECAP (Singh et al. 2010).

The function read.DA is used to create a capthist object from polygon

detection data in an R list, structured as input for the Bayesian analysis of

Royle and Young (2008), using data augmentation.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood

methods for capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2009) DENSITY 4.4: software for spatially explicit capture–

recapture. Department of Zoology, University of Otago, Dunedin, New

Zealand http://www.otago.ac.nz/density.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density

estimated from locations of individuals on a passive detector array. Ecology

90, 2676–2682.

Miller, C. R., Joyce, P. and Waits, L. P. (2005) A new method for estimating

the size of small populations from genetic mark–recapture data. Molecular

Ecology 14, 1991–2005.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statis-

tical inference from capture data on closed animal populations. Wildlife

Monographs 62.

Pollock, K. H. (1982) A capture-recapture design robust to unequal probability

of capture. Journal of Wildlife Management 46, 752–757.

10

http://www.otago.ac.nz/density

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–

recapture data. Ecology 89, 2281–2289.

Singh, P., Gopalaswamy, A. M., Royle, A. J., Kumar, N. S. and Karanth,

K. U. (2010) SPACECAP: A program to estimate animal abundance and

density using Bayesian spatially explicit capture-recapture models. Version

1.0. Wildlife Conservation Society - India Program, Centre for Wildlife

Studies, Bangalure, India.

Glossary

Covariate Ancillary data used in a model of detection probability. Covari-

ates may be associated with detectors, individuals, sessions or occasions.

Spatial covariates of density are a separate matter – see help(mask). In-

dividual covariates2 are stored in a dataframe (one row per animal) that

is an attribute of a capthist object. Detector covariates are stored in a

dataframe (one row per detector) that is an attribute of a traps object

(remembering that capthist objects always include a traps object). Ses-

sion and occasion (=time) covariates are not stored with the data, but are

provided as arguments to secr.fit when fitting a model.

Detector A device used to detect the presence of an animal. Often used in-

terchangeably with ‘trap’ but it is helpful to distinguish true traps, which

always detain the animal until it is released, from other detectors such as

hair snags and cameras that leave the animal free to roam. A detector in

SECR has a known physical location, usually a point defined by its x-y

coordinates.

Identifier Label used to distinguish detectors, animals or sessions.

Occasion In conventional capture–recapture, ‘occasion’ refers to a discrete sam-

pling event (e.g., Otis et al. (1978) and program CAPTURE). A typical

‘occasion’ is a daily trap visit, but the time interval represented by an

‘occasion’ varies widely between studies. Although trapped samples ac-

cumulate over an interval (e.g., the preceding day), for analysis they are

treated as instantaneous. Occasions are numbered 1, 2, 3, etc. Closed

population analyses usually require two or more occasions (see Miller et

al. 2005 for an exception).

SECR follows conventional capture–recapture in assuming discrete sam-

pling events (occasions). However, SECR takes a closer interest in the

2Individual covariates may be used directly only when a model is fitted by maximizing the

conditional likelihood, but they are used to define groups for the full likelihood case.

11

sampling process, and each discrete sample is modelled as the outcome of

processes operating through the interval between trap visits. In particular,

a model of competing risks in continuous time is used for the probability

of capture in multi-catch traps (Borchers & Efford 2008).

Proximity and count detectors allow multiple occurrences of an animal

to be recorded in each sampling interval. Analysis is then possible with

data from a single occasion. For consistency we retain the term ‘occasion’,

although such a sample is clearly not ‘instantaneous’.

SECR Spatially explicit capture–recapture, an inclusive term for capture–

recapture methods that model detection probability as function of dis-

tance from unobserved ‘home-range’ centres (e.g., Borchers and Efford

2008). secr refers to the R package.

Session

A session is a set of occasions over which a population is considered closed

to gains and losses. Each ‘primary session’ in the ‘robust’ design of Pollock

(1982) is treated as a session in secr. secr also uses ‘session’ for indepen-

dent subsets of the capture data distinguished by characteristics other

than sampling time. For example, two grids trapped simultaneously could

be analysed as distinct ‘sessions’ if they were far enough apart that there

was little chance of the same animal being caught on both grids. Equally,

males and females could be treated as ‘sessions’. For many purposes, ‘ses-

sions’ are functionally equivalent to ‘groups’; sessions are (almost) set in

concrete when the data are entered whereas groups may be defined on the

fly (see help(secr.fit)).

12

	Introduction
	Text formats - general
	Capture data format
	Detector layout format
	Using read.capthist
	Count detectors
	Signal detectors
	Polygon and transect detectors
	Troubleshooting
	Further notes
	References
	Glossary

