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1 Purpose of the signalextraction-Package

In general, a time series may be viewed as an aggregate of various parts: for
example trend plus seasonal plus noise component. Since users are often inter-
ested in particular components only (for example the trend or the seasonally
adjusted time series), filters are used to ‘remove’ the undesirable ones.

In practice, signal extraction is based on finite samples X1, ..., XT and, very
often, current estimates of the interesting components (t = T ) import: a so-
called ‘concurrent’ or ‘real-time’ estimate of the trend or of its turning-points
has a strong prospective content, since the future evolution of the time series is
likely to be conditioned by this component. Whereas forecasting tools generally
emphasize the one-step ahead perspective (at least this is true for model-based
approaches such as ARIMA), real-time signal extraction may be used to infer
future mid-term dynamics.

The following package proposes real-time signal extraction algorithms based
on Wildi [1]. In the following, references to the book are marked by an asterisk
∗ in the text. The main difference between traditional model-based approaches
(such as ARIMA) and the direct filter approach (dfa) is that the latter opti-
mization criteria emphasize specifically two important estimation problems: the
estimation of the current level (of the interesting signal) and the early detection
of turning-points (of a trend component). Since both criteria are incongruent,
different algorithms are available which match user preferences (level or turning-
points) and time series characteristics (trending or non-trending series). Also,
important filter characteristics at frequency zero can be imposed or relaxed such
as the local level restriction1 or the instantaneous level restriction2.

This document provides a ‘step-by-step’ introduction to the dfa real-time
signal extraction package and demonstrates its functionalities based on a leading
indicator application (the so-called KOF-Economic Barometer). More generally,
the text emphasizes topics that are specific to real-time signal extraction.

1A(0) = 1, where A(ω) is the amplitude function.
2A(0) = 1 and the time delay of the filter vanishes in frequency zero.
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2 Data Import

The starting point to the case study in this chapter is a time series with at least
61 monthly or 23 quarterly entries. A very common case is that the data are
present in a column of a spreadsheet, as displayed in Figure 1. We will thus
start our tutorial from there.

Figure 1: A time series with measurement time information and informative
headers stored in a spreadsheet. Row A contains the headers time and series,
column A information about when the measurements were made and column B
is the series itself.

How can we get such data from a spreadsheet into R? We here recommend a
straightforward way: first, save the data from the spreadsheet software as a tab-
delimited text file named series.txt. Second, read them from the text file into
R and process them accordingly. Only three simple commands are necessary.

> input <- read.delim("series.txt")
> x <- as.numeric(input$series)
> names(x) <- input$time

Please note that the above commands only work if the configuration in the
spreadsheet is exactly as displayed in Figure 1. In particular, the first line of
code contains the text file name/path and needs to be set/chosen accordingly.
The case where there is no header row can be dealt with by setting the argument
header=FALSE in the read.delim() function. On the other hand, if column A
with the times of measurement is not present, the last of the three lines of
code in the above chunk gets obsolete. Further information about how to read
external text files into R is available from the manual page of the import function
read.delim, which can be called by

> help(read.delim)
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3 Business Survey Data

In fact, the business survey dataset x that we just generated is already present as
an example dataset in the signalextraction-package. Reading it from a text
file is thus not strictly necessary (and was done here for illustrative purposes
only), as it can conveniently be loaded into R via

> data(x)

This series is a monthly index of business survey data with 183 measurements
between January 1991 and March 2006. It is used by the Swiss Institute for
Business Cycle Research to anticipate movements of the GDP growth rate. For
an analysis, we employ the direct filter approach that is implemented in the
signalextraction-package by the dfa()-routine. The default call is

> dfa <- function(x, quart = FALSE, d = 0, pb = 1/14, sb = 1/7,
tpfilter = FALSE, lambda = 3, expweight = 1.5,
pbd = if (length(x)<100) 1.08 else 1.03,
limamp = if (!tpfilter) 1.5 else 3, i2 = TRUE,
n.loops = 10, verbose = 1)

The first three arguments x, quart and d describe the time series and
their properties. We are going to work with the business survey data that
we read/loaded into R before. Argument quart describes whether the series
was recorded with monthly or quarterly frequency. As evident from Figure 1,
we have monthly measurements for our series and thus use the default value
quart=FALSE. Please note: the present version of the package has been
tested with monthly data only!

Argument d is related to the determination of the optimization criterion and
of filter constraints, see sections 6.1∗ and 6.2∗ (ref: Wildi [1]). Roughly, one can
say that for stationary or asymptotically bounded time series (as is the case for
the business survey data x) d=0 is the right choice whereas for trending series
d=1 would be more appropriate.

Setting d=1 imposes a local level restriction (see footnote 1). A formal test
verifying the necessity of imposing d=1 is proposed in chapter 6∗, where it is
shown, also, that the proposed procedure can be interpreted as a generalization
of traditional unit root tests. In particular, d=1 should be set for integrated
processes. It should be emphasized, however, that filter constraints and the
optimal selection of optimization criteria determined by d address issues that
extend the concept of integration, see for example sections 6.6∗ and 6.7∗.

For d=0, the optimization is based on criterion 3.7∗ (periodogram) and the
amplitude function A(ω) of the one-sided filter is not constrained to satisfy
A(0) = 13, see for example the bottom left panels in Figures 2 and 3. For d=1,
the optimization is based on criterion 6.7∗ (pseudo-periodogram) and the am-
plitude function of the one-sided filter is constrained by requiring A(0) = 14.

3See section 4.5∗ for a thorough discussion on these topics.
4Altough the constraint A(0) = 1 could be obtained by a simple scaling of the filter after

optimization, it is better to impose it during the optimization process. As a consequence, this
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The remaining arguments in the call of dfa() are described next.

4 Signal

Any signal can be approximated by optimal one-sided ZPC-filters5 used in the
package. For our purpose, we have found the so called ‘ideal’ trend to be a very
convenient target-signal. The transfer function of the ideal trend is defined by

Γ(ω) :=


1 0 ≤ |ω| ≤ π · pb
π · sb− |ω|

π · sb− π · pb
π · pb ≤ |ω| ≤ π · sb

0 π · sb ≤ |ω| ≤ π

(1)

where sb and pb (pb < sb) are parameters in the above function-call: pb deter-
mines the width of the pass-band and sb determines the width of the stop-band.
They can take values in (0, 1), corresponding to the frequency band (0, π). For
our own applications we set pb< sb< 1/6, which ensures that seasonal compo-
nents are eliminated.

In-between pb and sbthe transfer function decays linearly from pass- to stop-
band. Strictly speaking, this signal cannot be computed exactly because it is
the output of a doubly-infinite MA-filter. Moreover, at the current boundary
t = T of X1, ..., XT a one-sided filter must be used necessarily.

The function dfa() computes real-time (concurrent) one-sided filters
whose output approximates the current level of the signal (see section
5 below) or for detecting turning-points of the trend (see section 6
below).

By choosing smaller pb and sb, the target (trend) signal becomes smoother
implying that its real-time approximation, through dfa(), will as well become
smoother in general. The default values pb=1/14, sb=1/7 in the above function-
call have been determined in the context of business-cycle analysis and are, to
some extent, arbitrary6.

It is up to the user to determine which signal best fits its particular purpose:
an intra-day trader would prefer short-term trends while a climatologist would
be interested in long-term variations. Ultimately, these parameters map user
preferences to the (statistical) optimization algorithms which is impossible if
signals are determined by automatic modeling procedures such as implemented
in traditional model-based approaches.

Thus, the use of alternative target signals is possible, but this additional
flexibility has not been implemented in the package yet. Nevertheless, the user
can substitute the ‘ideal’ trend by a signal of its own by a simple source code
manipulation. More precisely, one has to change a vector called ttr in dfa():
one can search for the following piece of code

restriction entails filter performances more fundamentally by affecting the location of poles
and zeroes directly.

5See section 3.2∗ for a formal definition of the latter filter class.
6sb=1/7 implies that components with frequency equal or greater to π/7 are eliminated by

the ideal trend. Note that the first (fundamental) seasonal frequency is π/6.
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## Symmetrical transfer function
ttr <- as.numeric(((1:(npg2+1)) <= npg2*sb))
weli <- floor((npg2*sb+1):(npg2*pb+1))
term1 <- npg2*sb+1-((npg2*pb+1):(npg2*sb+1))
ttr[weli[1]+weli[length(weli)]-weli] <- term1/(npg2*sb-npg2*pb)

and replace the values in ttr7 by (almost) any other (transfer) function.

It is worth to emphasize that the present version of the package has been
developed with trend-estimation in mind. It is best suited for approximating
low-pass filters. The optimization procedure is not optimally designed for high-
or band-pass applications (although this could be implemented of course) be-
cause of particular initial value settings and fixed filter constraints.

5 Level-Approximation

In analogy to d, the argument tpfilter is a very crucial input for the signal
extraction, since it preselects the optimization criterion that is employed. For
the default value, tpfilter=FALSE, we are in the case of level-estimation, see
chapters 3∗, 4∗ and 6∗. This means that the dfa()-routine fits a best level filter,
i.e. tries to track the trend signal as closely as possible, without a special focus
on turning points.

By setting tpfilter=FALSE, two level-specific optimization criteria can be ac-
cessed :

• For d=0 criterion 3.7∗ is used (best suited for stationary or asymptotically
bounded time series).

• For d=1 criterion 6.7∗ is used (pseudo-periodogram) and A(0) = 1 is im-
posed (low-pass filter).

Let us now run the direct filter approach with default arguments (thus they are
not visible in the call) which implies best level approximation. The command
is as follows:

> fit <- dfa(x)

Note that the numerical optimization algorithm may need some time to complete:
progress can be viewed in the R-window. Technically, we obtain a R-object
named fit. It is an instance of class dfa, for which (among others) a plot
method has been defined. It is called by

> plot(fit)

and yields a 3x2 panel of 6 diagnostic diagrams, see Figure 2. The top left
plot shows an overlay of the business survey series x (black) with the filter
output (red). The two panels in the middle show the periodogram input and

7A plot of ttr would reveal that it corresponds to the transfer function of the ideal trend
(restricted to positive frequencies only). More precisely, ttr[i] corresponds to the value of the
(intended) transfer function in frequency ωi := (i − 1) · π/(L − 1) whereby L is the length of
ttr: therefore ω1 = 0 and ωL = π.
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Figure 2: Graphical output after a signal extraction using the dfa() routine for
best level estimation (with default arguments) on the business survey data x.
The top two panels show the original and filtered time series, the middle two
periodogram input and output, and the bottom two amplitude and time shift
characteristics of the one-sided filter.

output: this is a very convenient way to check whether the filter has removed
(damped) undesirable components in the original time series or not. Finally,
filter characteristics such as amplitude and time shift8 functions can be viewed
in the bottom panels, see chapter 3∗ for an overview on filter characteristics in
the frequency-domain.

6 Turning Point Detection

In the following, turning-points are defined as local extrema of the ideal trend,
see section 5.1∗ for a more comprehensive discussion about these topics. There-

8The time shift function is simply the phase divided by frequency, see 2.9∗.
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fore, altering the signal definition (through pb and/or sb) affects the turning-
points, too.

If turning points are of interest, then argument tpfilter should be set to
tpfilter=TRUE in the function call. As a consequence, the error criterion op-
timized by dfa() is the one in equation 5.4∗. We also strongly recommend to
set d=0 and i2=TRUE which is the standard configuration (more on these below).

The filter output in Figure 3 has been obtained by using the following func-
tion call:

> fit <- dfa(x, quart = FALSE, d = 0, pb = 1/6.5, sb = 1/6,
tpfilter = TRUE, lambda = 5, expweight = 1.5,
pbd = 1.02, limamp = 3, i2 = TRUE, n.loops = 10,
verbose = 1)

>
> plot(fit)

Before motivating this particular choice (parameter-setting) we note that the
output series is much smoother than for the previous level estimate. Level per-
formances are generally worse but turning-points are detected very early and the
enhanced smoothness ensures that the rate of ‘false alarms’ is small, see chapter
5∗9. The smoothness is due to stronger damping of undesirable high-frequency
components in the stop-band and the improved speed is obtained by very small
time delays in the pass-band, as confirmed by the bottom panels in Figure 310.

It is worth to emphasize that filter-outputs obtained by dfa() are
not subject to revisions (as would be the case for traditional model-
based approaches) because causal (one-sided) filters are used only.

7 Other Arguments to dfa()

While it is far beyond the scope of this document to display or discuss the results
with all possible combinations in the multi-dimensional space of the arguments
lambda, expweight, pbd, pb, sb, limamp and i2, we will shed light on some of
the most important aspects:

• lambda is a Lagrange parameter for phase restriction, where larger values
induce smaller time delays in the pass-band of the filter, but noisier signal
estimates. It emphasizes the filter error due to the time delay in the
generalized criterion 5.4∗.

• expweight is a parameter that determines the shape of the frequency
weighting function W (ω) = |ω|expweight in criterion 5.4∗. Larger values

9Empirical comparisons of turning-point filters, level filters and logit-models are shown in
section 5.3.2∗.

10A comparison with filter characteristics of the level-filter in Figure 2 illustrates that the
damping effect of the turning-point filter is much stronger in the stop-band and that the
time delay is barely larger in the pass-band (in particular in the vicinity of the low-frequency
spectral bulk).
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Figure 3: Graphical output after a signal extraction using the dfa() routine
for turning point detection. The top two panels show the original and filtered
time series, the middle two periodogram input and output, and the bottom two
amplitude and time delay boundary filters.

emphasize damping efforts in the stop-band of the filter. For lambda=1
and expweight=0 the best level filter results. Emphasizing simultane-
ously the time delay (in the pass-band), through lambda, and the amount
of high-frequency (noise) damping in the stop-band, through expweight,
generates distortions of the amplitude function in the pass-band which are
associated to poorer level performances, see section 5.3∗, for a comprehen-
sive discussion on these topics. In particular, it is shown that the detection
of turning points and the approximation of the level (of the signal) are to
some extent incongruent criteria which require specific solutions provided
in dfa().

• pbd implements a regularity constraint which must exceed one. Roughly
speaking, the shorter the time series, the larger pbd should be set (see
section 10.5∗ for details). More precisely, pbd is the value that the moduli
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of poles of the ARMA filter are constrained to exceed, see 3.20∗, and
therefore it ensures stability of the resulting one-sided filter. The larger
it is, the smoother the transfer function usually is (which does not mean
that the output signal will be smoother, of course). So far, we have found
that pbd=1.08 is a good choice if T < 100 whereas if T > 100 ony may
set pbd=1.03, see 3.20∗ (deviations are possible, of course).

• In the case of turning-point filters, the amplitude in the pass-band may be
subject to more or less severe distortions. The parameter limamp enables
to limit the extent of such distortions. More precisely, the parameter
constrains the amplitude A(ω) to be smaller than limamp ∗ A(0) in the
pass-band of the filter: this amounts to a particular (additional) regularity
constraint. The parameter should be larger than one. From a practical
point of view, we have found that values between 1.5 and 2 are fine in the
case of level approximation (tpfilter=FALSE) whereas values between 3
and 5 are reasonable constraints in the case of turning-point filters.

• i2 is a logical which determines whether the time delay of the one-sided fil-
ter vanishes at frequency zero (default-value i2=TRUE) or not. If i2=TRUE
and d=1 then an instantaneous level restriction is imposed, see section
6.2.1∗: it is shown that this constraint can be associated to processes
whose trend-slope grows unboundedly in absolute value such as, for ex-
ample, I(2)-processes. However, as for d, the scope of i2 transcends ‘inte-
gration orders’. If i2=TRUE, then the constraint is implemented formally
by using an additional zero-pole pair satisfying 6.12∗. In practice, we
have found evidence that this constraint is often useful (whether series
are integrated or not), in particular if turning points are of interest. Em-
pirical results in chapter 4∗ suggest that level performances are enhanced
also by imposing this restriction. Note that the analyzed series there are
asymptotically bounded (and thus cannot be I(2)) which illustrates that
methodological issues related to the values of i2 or d (i.e. the choice of
corresponding optimization criteria and/or filter restrictions) encompass
model assumptions such as ‘integration’ (see the discussion in sections 6.6∗

and 6.7∗).

In order to illustrate the effect of the above parameters we compare filter outputs
obtained by alternative settings:

• Black line in Figure 4: the series is based on the original setting, whose
outcome was already plotted in Figure 3.

• Red line in Figure 4: the series is based on expweight=0.5 (instead of 1.5),
everything else being equal to the original setting. The smaller weight
(|ω|0.5 instead of |ω|1.5 in the original setting) attributed to the ‘unde-
sirable’ high-frequency components in criterion 5.4∗ implies that damping
properties of the filter in the stop-band aren’t emphasized as strongly as in
the original setting. Therefore, the resulting filter output is contaminated
by high-frequency ‘noise’ which makes an assessment of turning-points (in
real-time) a more difficult task in practice.

• Blue line in Figure 4: the series is based on lambda=2 (instead of lambda=5),
everything else being equal to the original setting. The filter output is close
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to the black-line. However, the smaller lambda-weight attributed to the
time-delay in criterion 5.4∗ generates a filter which is slightly delayed (a
closer look at the figure reveals that the delay with respect to the black
line is approximately one month).

• Green line in Figure 4: the series is based on lambda=2 and pb=1/15,
sb=1/13. The filter output is smoother and it is delayed. Note that
the signal has changed by choosing pb=1/15, sb=1/13, recall section 4.
Therefore, turning-points have changed too. Strictly speaking, the green
line should not be compared to the preceding ones because the optimal
signal has been altered.
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Figure 4: Effect of various parameter-settings on filter outputs

Regarding the influence of the filter arguments, one should note that lambda
and expweight have no effect on the output for best level estimation, i.e. if
tpfilter=FALSE. However, d, pbd, pb, sb, limamp and i2 can be set.
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8 Numerical Optimization Routine

Minimizing the error criteria given in 3.7∗, 5.4∗ or 6.7∗ is a difficult, highly
non-linear problem that cannot be solved explicitly and requires a numerical
approach11. As always in numerics, there is a trade-off between the accuracy
of the solution and the required computing time. In dfa(), this is governed
by argument n.loops, which corresponds to the number of initial Stochastic
Annealing proposals that are drawn, and then further optimized by a variety
of numerical optimization methods. The more of them we use, the smaller the
chance of being trapped in local extrema becomes, but the computing gets more
time consuming. To our experience, the default value n.loops=10 balances com-
puting load and precision reasonably well, and yields accurate solutions with an
average running time of around 2-3 minutes.

Finally, argument verbose controls the amount of text output that is given
during the numerical optimization. Three levels are available: 0 corresponds to
no output at all, the default value 1 allows for a rough guess which percentage
of the computing has been done, while a value of 2 yields full text output for ev-
ery optimization step and is mainly useful for debugging and exact comparisons.

Since the numerical optimization partly relies on stochastic algorithms it is
possible that the same initial parameter-setting may lead to slightly different
solutions, depending on which draw is used during optimization. While we did
not find significant departures for level-estimation problems, turning-point fil-
ters may be sensitive to such issues because the optimization problem is ‘harder’
to solve.

Storing and loading dfa-objects is possible with

> save(fit,file="myfile.rda")
> load("myfile.rda")

where myfile.rda is a file-name. This enables to circumvent laborious opti-
mizations and to access more rapidly to ‘old’ results.

Every suggestion for improving the speed and/or the precision of the
numerical optimization algorithm would be greatly appreciated! It
should be noted, however, that the problem is technically more complex (less
‘regular’) than traditional ‘amplitude fitting’ common in engineering applica-
tions. In particular, optimal turning-point filters are likely to approach the
frontier of regularity (they are prone to become nearly singular) because the
amplitude function in the pass-band is to some extent ‘sacrificed’ at the benefits
of smaller time delays (in the pass-band) and stronger damping of high-frequency
‘noise’ (in the stop-band).

11The standard optimization routines implemented in R are used: stochastic annealing,
Nelder-Mead and BFGS.
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9 Out-of-Sample Utilization of the Filter

Behind the scenes, the direct filter approach computes a one-sided ARMA-filter.
The ARMA-coefficients are also stored in object fit, from where they can be
accessed by

> fit$ar.coef
[1] 1.0000e+00 -1.7595e+00 1.6305e+00 -2.1317e-01 -1.0193e+00
[6] 1.5434e+00 -8.9463e-01 1.3691e-01 4.0717e-01 -2.8254e-01
[11] 8.0379e-02 5.9704e-03 -8.9685e-04 -3.9952e-04 -4.1361e-05
[16] -1.7538e-06
>
>
> fit$ma.coef
[1] 0.12004985 -0.08212789 -0.02056278 0.16565752 -0.06297009
[6] 0.04579233 0.03375345 -0.00358081 0.02689532 0.02600401
[11] 0.02158400 -0.02785126 -0.01723218 0.04432262 0.01160852
[16] -0.05509042

As an alternative, there is a method for the dfa-class that extracts the coeffi-
cients directly. It is called by

> coef(fit)
AR-coefficients MA-coefficients

[1,] 1.000000e+00 0.120049851
[2,] -1.759552e+00 -0.082127897
[3,] 1.630578e+00 -0.020562783
[4,] -2.13... ...

and yields a matrix with two columns, where the first one contains the AR- and
the second one the MA-parameters. These coefficients can now in principle be
used for filtering any arbitrary time series. However, it is important to note
that this is reasonable only if the original and new series originate from a com-
mon probability distribution, or in colloquial language, if they have “the same
mathematical properties”.

The most convenient way to apply a previous filter to a new time series is
with the outsamp-method that is associated to the dfa-class. It takes an ar-
bitrary series as input and computes the filter value for every datapoint. Or
in other words, for every datapoint in the new series, a nowcast of the trend
signal is computed, based on parameters that were estimated from another time
series. Such functionality also allows for easy performance comparisons among
different filter methods.

For an illustration of the outsamp-method, we here simulate a time series
that can be interpreted as a sequel to the business survey data x. We do this by
expanding an AR(13)-model that was fitted to x. The commands are as follows.

> set.seed(21)
> fit.ar <- ar(x)
> p <- fit.ar$order
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Level−Filter: In− and Out−Of−Sample
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Figure 5: Level filter that was estimated on the business survey data (observa-
tions 1-183, filter values are in red) and then applied to a simulated series with
similar mathematical properties (observations 184-283, filter values are in blue).

> innov <- rnorm(100, sd=sqrt(fit.ar$var.pred))
> xx <- c(rev(x)[1:p], rep(0,100))
> for (i in 1:100)
+ {
+ xx[i+p] <- sum(xx[i:(i+p-1)]*rev(fit.ar$ar))+innov[i]
+ }
> newx <- xx[(p+1):length(xx)]+mean(x)

We employ the last 13 observations of x as starting values for the new series
and then generate 100 new datapoints by using the AR(13)-model fitted on x
with randomly drawn white noise innovations, whose variances are equal to the
error variance on the business survey data. After doing so, we propose that
the distributions of x and the new series newx are similar enough to justify an
out-of-sample application of the filter.
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> blf <- outsamp.dfa(fit, newdata=newx, sequel=TRUE)

The resulting series (in the object blf) corresponds to the blue line in Figure 5.

Note that there is an argument sequel that requires some explanation: since
behind the scenes, dfa() fits an ARMA-ZPC-filter, we would in theory need
an infinitely long series for an exact computation of the filter values. If the
coefficients of the MA(∞)-representation of the filter decay reasonably quickly
(which they do in most cases), this issue can be neglected. However, at the
beginning of the new series newx, we need to know from which basis the filter
values have to be computed or, in other terms, we need starting values for
initializing the AR-part of the filter. In our case, where newx is a direct sequel
to x, we set argument sequel=TRUE. In this case, the past values which are
required to compute the nowcast are taken from the “old” series x. On the other
hand, if the values from the old series cannot serve as initial values, the set
argument sequel=FALSE. The nowcasts at the beginning of newx will then be
determined on the basis of ‘artificial’ starting values, see section 10.7.3∗.
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