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1 Background; terminology

Species of interest (or simply species) are chosen by the user to represent the possible species in a chemical
system. Basis species combine linearly to make up the species of interest. Basis species are analogous to
thermodynamic components in that they are the minimum number to describe the compositional variation,
but unlike components basis species can be charged.

The calculations of chemical equilibrium in CHNOSZ are formulated for a system that is open with re-
spect to the basis species. Therefore, the natural variables are temperature, pressure and chemical potentials
of the basis species.

To calculate the equilibrium distribution of species in a given system, a single linear balancing constraint
must be specified. Therefore, we say things like “the reactions are balanced on CO2” or “the reactions are
balanced on protein length”. The balancing coefficients describe these constraints. At different times in the
documentation of CHNOSZ, the balancing constraint has been associated with the conserved component,
immobile component, or conserved basis species, all with the same meaning.

The “reactions” in the preceding statements refer to transformations between species. The actual calcula-
tions, however, start with the definitions of the formation reactions. The formation reaction for any species
has one mole of the species as a product, and the mass balance is made up of the basis species.

By definition, the formation reaction is written to form one mole of a species. For many systems, the
extent of the molar formula of the species is not a matter of concern. However, for systems made of poly-
mers, such as proteins, it is often desirable to normalize the molar formula by the balancing coefficients.
This normalization has been referred to previously as using the residue equivalents of proteins [2]; here the
terminology of normalize will be used preferentially1.

Two different methods of calculating the equilibrium activities of species in a system are described below.
These are referred to as the reaction-matrix approach and the Boltzmann distribution. Each method is illustrated
using specific example that has been described previously [2, 3] (the “CSG” example). The example system
demonstrates that two approaches are equivalent when the molar formluas are normalized.

2 Standard states, the ideal approximation and sources of data

By chemical activity we mean the quantity ai that appears in the expression

µi = µ◦i + RT ln ai , (1)

where µi and µ◦i stand for the chemical potential and the standard chemical potential of the ith species, and
R and T represent the gas constant and the temperature in Kelvin. Chemical activity is related to molality
(mi) by

ai = γimi , (2)

where γi stands for the activity coefficient of the ith species. For this discussion, we take γi = 1 for all
species, so chemical activity is assumed to be numerically equivalent to molality. Since molality is a measure

1The older style of function call using diagram(..., residue=TRUE) has been replaced by equilibrate(..., normalize=TRUE)
or diagram(..., normalize=TRUE) starting with version 0.9-9 of CHNOSZ.
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of concentration, calculating the equilibrium chemical activities can be a theoretical tool to help understand
the relative abundances of species, including proteins.

For the CSG examples below, we would like to reproduce exactly the values appearing in publications.
Because recent versions of CHNOSZ incorporate data updates for the methionine sidechain group, we
should therefore revert to the previous values before proceding. The add.obigt() function does just that,
as well as adds other species from the “supplemental” database provided with CHNOSZ:

> library(CHNOSZ)
> data(thermo)
> add.obigt()

add.obigt: file has 303 rows; made 84 replacements, 219 additions, units = cal
add.obigt: file was /tmp/Rtmp5RFokj/Rinst1e745e5f5a79/CHNOSZ/extdata/thermo/OBIGT-2.csv
add.obigt: use data(thermo) to restore default database

3 Reaction-matrix approach

3.1 CSG Example: Whole formulas

Let us calculate the equilibrium activities of two proteins in metastable equilibrium. To do this we start by
writing the formation reactions of each protein as

stu f f3 
 CSG_METVO (3)

and
stu f f4 
 CSG_METJA . (4)

The basis species in the reactions are collectively symbolized by stu f f ; the subscripts simply refer to the
reaction number in this document. In these examples, stu f f consists of CO2, H2O, NH3, O2, H2S and H+ in
different molar proportions. To see what stu f f is, try out these commands in CHNOSZ:

> basis("CHNOS+")

C H N O S Z ispecies logact state
CO2 1 0 0 2 0 0 69 -3 aq
H2O 0 2 0 1 0 0 1 0 liq
NH3 0 3 1 0 0 0 68 -4 aq
H2S 0 2 0 0 1 0 70 -7 aq
O2 0 0 0 2 0 0 3097 -80 gas
H+ 0 1 0 0 0 1 3 -7 aq

> species("CSG",c("METVO", "METJA"))

CO2 H2O NH3 H2S O2 H+ ispecies logact state name
1 2575 1070 645 11 -2668.0 0 3590 -3 aq CSG_METVO
2 2555 1042 640 14 -2643.5 0 3591 -3 aq CSG_METJA

Although the basis species are defined, the temperature is not yet specified, so it is not immediately
possible to calculate the ionization states of the proteins. That is why the coefficient on H+ is zero in the
output above. To see what the computed protein charges are at 25 ◦C and 1 bar and at pH 7 (which is the
opposite of the logarithm of activity of H+ in the basis species), try this:

> protein.info(species()$name)

2



subcrt: 2 species at 298.15 K and 1 bar (wet)
subcrt: 18 species at 298.15 K and 1 bar (wet)
subcrt: 18 species at 298.15 K and 1 bar (wet)

protein length formula G Z
1 CSG_METVO 553 C2575H4040.93490596228N645O884S11-56.0650940377185 -24880934 -56.06509
2 CSG_METJA 530 C2555H3976.12975396577N640O865S14-55.8702460342319 -24236262 -55.87025

G.Z ZC
1 -24976763 -0.1444660
2 -24413723 -0.1385519

Note that affinity() is called twice by protein.info(); this so that both charges and standard Gibbs
energies of ionization of the proteins can be calculated. The Z values in the table are the charges of the
proteins computed using the ionization constants of sidechain and terminal groups, and the G.Z values
are the calculated Gibbs energies of formation of the ionized proteins [1]. The ZC values are the average
oxidation states of carbon of the proteins. Let us now calculate the chemical affinities of formation of the
ionized proteins:

> a <- affinity()

energy.args: temperature is 25 C
energy.args: pressure is Psat
subcrt: 8 species at 298.15 K and 1 bar (wet)
subcrt: 18 species at 298.15 K and 1 bar (wet)

> a$values

$`3590`
[1] 107.6774

$`3591`
[1] 317.1877

Since affinity() returns a list with a lot of information (such as the basis species and species defi-
nitions) the last command was written to only print the values part of that list. The values are actually
dimensionless, i.e. A/2.303RT.

The affinities of the formation reactions above were calculated for a reference value of activity of the proteins,
which is not the equilibrium value. Those non-equilibrium activities were 10−3. How do we calculate the
equilibrium values? Let us write specific statements of the expression for chemical affinity (2.303 is used
here to stand for ln 10),

A = 2.303RT log(K/Q) , (5)

for Reactions 3 and 4 as

A3/2.303RT = log K3 − log Q3
= log K3 + log astu f f ,3 − log aCSG_METVO
= A∗3/2.303RT − log aCSG_METVO

(6)

and

A4/2.303RT = log K4 − log Q4
= log K4 + log astu f f ,4 − log aCSG_METJA
= A∗4/2.303RT − log aCSG_METJA .

(7)

The A∗ denote the affinities of the formation reactions when the activities of the proteins are unity. I like
to call these the “starved” affinities. From the output above it follows that A∗3/2.303RT = 104.6774 and
A∗4/2.303RT = 314.1877.

Next we must specify how reactions are balanced in this system: what is conserved during transforma-
tions between species (let us call it the immobile component)? For proteins, one possibility is to use the
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repeating protein backbone group. Let us use ni to designate the number of residues in the ith protein,
which is equal to the number of backbone groups, which is equal to the length of the sequence. If γi = 1 in
Eq. (2), the relationship between the activity of the ith protein (ai) and the activity of the residue equivalent
of the ith protein (aresidue,i) is

aresidue,i = ni × ai . (8)

We can use this to write a statement of mass balance:

553× aCSG_METVO + 530× aCSG_METJA = 1.083 . (9)

At equilibrium, the affinities of the formation reactions, per conserved quantity (in this case protein
backbone groups) are equal. Therefore A = A3/553 = A4/530 is a condition for equilibrium. Combining
this with Eqs. (6) and (7) gives

A/2.303RT = (104.6774− log aCSG_METVO) /553 (10)

and
A/2.303RT =

(
314.1877− log aCSG_METJA

)
/530 . (11)

Now we have three equations (9–11) with three unknowns. The solution can be displayed in CHNOSZ as
follows. Because the balancing coefficients differ from unity, the function called by equilibrate() in this
case is equil.reaction(), which implements the equation-solving strategy described in the next section.

> e <- equilibrate(a)

balance: coefficients are protein length
equilibrate: balancing coefficients are 553 530
equilibrate: logarithm of total protein length is 0.0346284566253204

> e$loga.equil

[[1]]
[1] -225.9512

[[2]]
[1] -2.689647

Those are the logarithms of the equilibrium activities of the proteins. Combining these values with either
Eqs. (10) or (11) gives us the same value for affinity of the formation reactions per residue (or per protein
backbone group), A/2.303RT = 0.5978817. Equilibrium activities that differ by such great magnitudes
make it appear that the proteins are very unlikely to coexist in metastable equilibrium. Later we explain the
concept of using residue equivalents of the proteins to achieve a different result.

3.2 Implementing the reaction-matrix approach

The implementation used in CHNOSZ for finding a solution to the system of equations relies on a difference
function for the activity of the immobile component. The steps to obtain this difference function are:

1. Set the total activity of the immobile (conserved) component as aic (e.g., the 1.083 in Eqn. 9).

2. Write a function for the logarithm of activity of each of the species of interest: A = (A∗i − 2.303RT log ai) /nic,i,
where nic,i stands for the number of moles of the immobile component that react in the formation of
one mole of the ith species. (e.g., for systems of proteins where the backbone group is conserved, nic,i
is the same as ni in Eq. 8). Calculate values for each of the A∗i . Metastable equilibrium is implied by
the identity of A in all of the equations.

3. Write a function for the total activity of the immobile component: a
′
ic = ∑ nic,iai.

4. The difference function is now δaic = a
′
ic − aic.
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Now all we have to do is solve for the value of A where δaic = 0. This is achieved in the code by first looking
for a range of values of A where at one end δaic < 0 and at the other end δaic > 0, then using the uniroot()
function that is part of R to find the solution.

This approach is subject to failure if for all trial ranges of A the δaic are of the same sign, which gives an
error message like “i tried it 1000 times but can’t make it work”. Even if values of δaic on either side of zero
can be located, the algorithm does not guarantee an accurate solution and may give a warning about poor
convergence if a certain (currently hard-coded) tolerance is not reached.

3.3 CSG Example: normalized formulas (residue equivalents)

Let us consider the formation reactions of the normalized formulas (residue equivalents) of proteins, for
example

stu f f12 
 CSG_METVO(residue) (12)

and
stu f f13 
 CSG_METJA(residue) . (13)

The formulas of the residue equivalents are those of the proteins divided by the number of residues in each
protein. With the protein.basis() function it is possible to see the coefficients on the basis species in these
reactions:

> protein.basis(species()$name, normalize=TRUE)

subcrt: 18 species at 298.15 K and 1 bar (wet)
CO2 H2O NH3 H2S O2 H+

[1,] 4.656420 1.934901 1.166365 0.01989150 -4.824593 -0.1013835
[2,] 4.820755 1.966038 1.207547 0.02641509 -4.987736 -0.1054156

Let us denote by A12 and A13 the chemical affinities of Reactions 12 and 13. We can write

A12/2.303RT = log K12 + log astu f f ,12 − log aCSG_METVO(residue) (14)

and

A13/2.303RT = log K13 + log astu f f ,13 − log aCSG_METJA(residue) , (15)

For metastable equilibrium we have A12/1 = A13/1. The 1’s in the denominators are there as a reminder
that we are still conserving residues, and that each reaction now is written for the formation of a single
residue equivalent. So, let us write A for A12 = A13 and also define A∗12 = A12 + 2.303RT log aCSG_METVO(residue)
and A∗13 = A13 + 2.303RT log aCSG_METJA(residue). At the same temperature, pressure and activities of basis
species and proteins as shown in the previous section, we can write A∗12 = A∗3/553 = 2.303RT × 0.1892901
and A∗13 = A∗4/530 = 2.303RT × 0.5928069 to give

A/2.303RT = 0.1892901− log aCSG_METVO(residue) (16)

and
A/2.303RT = 0.5928069− log aCSG_METJA(residue) , (17)

which are equivalent to Equations 12 and 13 in the paper [2] but with more decimal places shown. A third
equation arises from the conservation of amino acid residues:

aCSG_METVO(residue) + aCSG_METJA(residue) = 1.083 . (18)

The solution to these equations is aCSG_METVO(residue) = 0.3065982, aCSG_METJA(residue) = 0.7764018 and
A/2.303RT = 0.7027204.

The corresponding logarithms of activities of the proteins are log (0.307/553) = −3.256 and log (0.776/530) =
−2.834. These activities of the proteins are much closer to each other than those calculated using formation
reactions for whole protein formulas, so this result seems more compatible with the actual coexistence of
proteins in nature.

The approach just described is not used by diagram() when residue=TRUE (which is the default setting).
Instead, the Boltzmann distribution, described next, is implemented for that situation.
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4 Boltzmann distribution

4.1 CSG Example: Normalized formulas

An expression for Boltzmann distribution, relating equilibrium activities of species to the affinities of their
formation reactions, can be written as (using the same definitions of the symbols above)

ai

∑ ai
=

eA∗i /RT

∑ eA∗i /RT . (19)

Using this equation, we can very quickly (without setting up a system of equations) calculate the equilib-
rium activities of proteins using their residue equivalents. Above, we saw A∗12/2.303RT = 0.1892901 and
A∗13/2.303RT = 0.5928069. Multiplying by ln 10 = 2.302585 gives A∗12/RT = 0.4358565 and A∗13/RT =

1.364988. We then have eA∗12/RT = 1.546287 and eA13/RT = 3.915678. This gives us ∑ eA∗i /RT = 5.461965,
a12/ ∑ ai = 0.2831009 and a13/ ∑ ai = 0.7168991. Since ∑ ai = 1.083, we arrive at a12 = 0.3065982 and
a13 = 0.7764018, the same result as above.

5 Notes on implementation

5.1 CSG example: another look

All the tedium of writing reactions, calculating affinities, etc., above does help to understand the application
of the reaction-matrix and Boltzmann distribution methods to protein equilibrium calculations. But can we
automate the step-by-step calculation for any system, including more than two proteins? And can we be
sure that higher-level functions in CHNOSZ, particularly equilibrate(), match the output of the step-by-
step calculations? Now we can, with the protein.equil() function introduced in version 0.9-9. Below is
its output when configured for CSG example we have been discussing.

> # get an error if we don't data(thermo), only in the re-building vignettes of R CMD check
> data(thermo)
> protein <- iprotein(c("CSG_METVO", "CSG_METJA"))
> basis("CHNOS+")

C H N O S Z ispecies logact state
CO2 1 0 0 2 0 0 69 -3 aq
H2O 0 2 0 1 0 0 1 0 liq
NH3 0 3 1 0 0 0 68 -4 aq
H2S 0 2 0 0 1 0 70 -7 aq
O2 0 0 0 2 0 0 3097 -80 gas
H+ 0 1 0 0 0 1 3 -7 aq

> swap.basis("O2", "H2")

C H N O S Z ispecies logact state
CO2 1 0 0 2 0 0 69 -3.000000 aq
H2O 0 2 0 1 0 0 1 0.000000 liq
NH3 0 3 1 0 0 0 68 -4.000000 aq
H2S 0 2 0 0 1 0 70 -7.000000 aq
H2 0 2 0 0 0 0 66 -4.657486 aq
H+ 0 1 0 0 0 1 3 -7.000000 aq

> protein.equil(protein, loga.protein=-3)

protein.equil: temperature from argument is 25 degrees C
protein.equil: pH from thermo$basis is 7
checkGHS: G of [Met] aq (1552) differs by 152 cal mol-1 from tabulated value
protein.equil: [Met] is from reference LD12
protein.equil [1]: first protein is CSG_METVO with length 553
protein.equil [1]: reaction to form nonionized protein from basis species has G0(cal/mol) of -47105102.0780865
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protein.equil [1]: ionization reaction of protein has G0(cal/mol) of -95829.2021553493
protein.equil [1]: per residue, reaction to form ionized protein from basis species has G0/RT of -144.061868695781
protein.equil [1]: per residue, logQstar is 63.0052264992363
protein.equil [1]: per residue, Astar/RT = -G0/RT - 2.303logQstar is -1.01302662207411
check it! per residue, Astar/RT calculated using affinity() is -1.01302662207413
protein.equil [all]: lengths of all proteins are 553 530
protein.equil [all]: Astar/RT of all residue equivalents are -1.01302662207411 -0.284203417393798
protein.equil [all]: sum of exp(Astar/RT) of all residue equivalents is 1.11573182734004
protein.equil [all]: equilibrium degrees of formation (alphas) of residue equivalents are 0.325453020153928 0.674546979846072
check it! alphas of residue equivalents from equilibrate() are 0.325453020153923 0.674546979846077
protein.equil [all]: for activity of proteins equal to 10^-3, total activity of residues is 10^0.0346284566253204
protein.equil [all]: log10 equilibrium activities of residue equivalents are -0.452883237292139 -0.136359341216436
protein.equil [all]: log10 equilibrium activities of proteins are -3.19560836859684 -2.86063521081723
check it! log10 eq'm activities of proteins from equilibrate() are -3.19560836859684 -2.86063521081722

The function checks (“check it!”) against the step-by-step calculations the values of A∗ calculated using
affinity(), and the equilibrium activities of the proteins calculated using equilibrate(). (Note that As-
tar/RT in the second line after the first “check it!” can be multiplied by ln 10 to get the values shown above
in Eqs. 16 and 17.) If the checks failed, an error would be produced and this vignette could not be pub-
lished on CRAN. Therefore, the calculations made using affinity() and equilibrate() are demonstrably
consistent with the methods we have outline above.

5.2 Visualizing the effects of normalization

A comparison of the outcomes of equilibrium calculations that do and do not use the normalized formulas
for proteins was given in a publication [2]. An expanded version of a diagram in that paper is below.

> organisms <- c("METSC", "METJA", "METFE", "HALJP",
+ "METVO", "METBU", "ACEKI", "GEOSE", "BACLI", "AERSA")
> proteins <- c(rep("CSG", 6), rep("SLAP", 4))
> basis("CHNOS+")

C H N O S Z ispecies logact state
CO2 1 0 0 2 0 0 69 -3 aq
H2O 0 2 0 1 0 0 1 0 liq
NH3 0 3 1 0 0 0 68 -4 aq
H2S 0 2 0 0 1 0 70 -7 aq
O2 0 0 0 2 0 0 3097 -80 gas
H+ 0 1 0 0 0 1 3 -7 aq

> species(proteins, organisms)

CO2 H2O NH3 H2S O2 H+ ispecies logact state name
1 2812 1066 747 16 -2909.0 0 3394 -3 aq CSG_METSC
2 2555 1042 640 14 -2643.5 0 3372 -3 aq CSG_METJA
3 2815 1071 747 14 -2914.5 0 3395 -3 aq CSG_METFE
4 3669 1367 971 0 -3608.5 0 3396 -3 aq CSG_HALJP
5 2575 1070 645 11 -2668.0 0 3371 -3 aq CSG_METVO
6 1362 519 355 4 -1400.5 0 3397 -3 aq CSG_METBU
7 3584 1431 926 4 -3730.5 0 3398 -3 aq SLAP_ACEKI
8 5676 2320 1489 3 -5904.5 0 3399 -3 aq SLAP_GEOSE
9 3977 1594 1068 2 -4131.0 0 3400 -3 aq SLAP_BACLI
10 2250 861 618 2 -2322.5 0 3401 -3 aq SLAP_AERSA

> a <- affinity(O2=c(-100, -65))
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energy.args: temperature is 25 C
energy.args: pressure is Psat
energy.args: variable 1 is log_f(O2) at 128 values from -100 to -65
subcrt: 16 species at 298.15 K and 1 bar (wet)
subcrt: 18 species at 298.15 K and 1 bar (wet)

> par(mfrow=c(2, 1))
> e <- equilibrate(a)

balance: coefficients are protein length
equilibrate: balancing coefficients are 571 530 571 828 553 278 736 1198 844 481
equilibrate: logarithm of total protein length is 0.81888541459401

> diagram(e, ylim=c(-5, -1), legend.x=NA)
> title(main="Equilibrium activities of proteins, whole formulas")
> e <- equilibrate(a, normalize=TRUE)

balance: coefficients are protein length
equilibrate: balancing coefficients are 571 530 571 828 553 278 736 1198 844 481
equilibrate: logarithm of total protein length is 0.81888541459401
equilibrate: normalizing molar formulas by the balancing coefficients

> diagram(e, ylim=c(-5, -1), legend.x=NA)
> title(main="Equilibrium activities of proteins, normalized formulas")
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The reaction-matrix approach described above can also be applied to systems having conservation coef-
ficients that differ from unity, such as many mineral and inorganic systems, where the immobile component
has different molar coefficients in the formulas. For example, consider a system like that described in [4]:

> basis("CHNOS+")

C H N O S Z ispecies logact state
CO2 1 0 0 2 0 0 69 -3 aq
H2O 0 2 0 1 0 0 1 0 liq
NH3 0 3 1 0 0 0 68 -4 aq
H2S 0 2 0 0 1 0 70 -7 aq
O2 0 0 0 2 0 0 3097 -80 gas
H+ 0 1 0 0 0 1 3 -7 aq

> basis("pH",5)

C H N O S Z ispecies logact state
CO2 1 0 0 2 0 0 69 -3 aq
H2O 0 2 0 1 0 0 1 0 liq
NH3 0 3 1 0 0 0 68 -4 aq
H2S 0 2 0 0 1 0 70 -7 aq
O2 0 0 0 2 0 0 3097 -80 gas
H+ 0 1 0 0 0 1 3 -5 aq

> species(c("H2S", "S2-2", "S3-2", "S2O3-2", "S2O4-2",
+ "S3O6-2", "S5O6-2", "S2O6-2", "HSO3-", "SO2", "HSO4-"))

CO2 H2O NH3 H2S O2 H+ ispecies logact state name
1 0 0 0 1 0.0 0 70 -3 aq H2S
2 0 -1 0 2 0.5 -2 53 -3 aq S2-2
3 0 -2 0 3 1.0 -2 54 -3 aq S3-2
4 0 -1 0 2 2.0 -2 26 -3 aq S2O3-2
5 0 -1 0 2 2.5 -2 1072 -3 aq S2O4-2
6 0 -2 0 3 4.0 -2 1077 -3 aq S3O6-2
7 0 -4 0 5 5.0 -2 1079 -3 aq S5O6-2
8 0 -1 0 2 3.5 -2 1076 -3 aq S2O6-2
9 0 0 0 1 1.5 -1 23 -3 aq HSO3-
10 0 -1 0 1 1.5 0 78 -3 aq SO2
11 0 0 0 1 2.0 -1 25 -3 aq HSO4-

> a <- affinity(O2=c(-50, -15), T=325, P=350)

energy.args: temperature is 325 C
energy.args: pressure is 350 bar
energy.args: variable 1 is log_f(O2) at 128 values from -50 to -15
subcrt: 17 species at 598.15 K and 350 bar (wet)

> par(mfrow=c(2, 1))
> e <- equilibrate(a, loga.balance=-2)

balance: coefficients are moles of H2S in formation reactions
equilibrate: balancing coefficients are 1 2 3 2 2 3 5 2 1 1 1
equilibrate: logarithm of total moles of H2S (from loga.balance) is -2

> diagram(e, ylim=c(-30, 0), legend.x="topleft", cex.names=0.8)
> title(main="Aqueous sulfur speciation, whole formulas")
> e <- equilibrate(a, loga.balance=-2, normalize=TRUE)
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balance: coefficients are moles of H2S in formation reactions
equilibrate: balancing coefficients are 1 2 3 2 2 3 5 2 1 1 1
equilibrate: logarithm of total moles of H2S (from loga.balance) is -2
equilibrate: normalizing molar formulas by the balancing coefficients

> diagram(e, ylim=c(-30, 0), legend.x="topleft", cex.names=0.8)
> title(main="Aqueous sulfur speciation, normalized formulas")
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Aqueous sulfur speciation, normalized formulas

The first diagram is quantitatively very similar to the one shown by Seewald, 1997, but if we use the
normalized formulas, in this case divided by H2S in the formation reactions, the range of activities of species
is lower at any given log fO2(g)

. Maybe normalize=TRUE doesn’t make sense for systems like this where the
formulas of species are similar in size to those of the basis species. For biomacromolecules such as proteins
it seems to be a useful concept.

With the potential for calculating equilibrium activities of proteins comes the desire to compare these
calculations to actual measurements! To be continued...

6 The maximum affinity method

When making a predominance diagram, we don’t need to know the equilibrium activities of all species in
the system, only the species that has the higest activity at any temperature, pressure and chemical activ-
ities of basis species. The maximum affinity method for producing predominance diagrams existed in early
versions of CHNOSZ, before equilibrium calculations were implemented.

In a system where whole formulas are used in the formation reactions, derivation of the maximum
affinity method is easy. Consider a generalized reaction to form a species of interest Zi from basis species X
and Y:

nX,iX + nY,iY 
 Zi , (20)
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where nX,i and nY,i stand for the reaction coefficients on the basis species.
...
So for normalize=TRUE the maximum affinity method results in an identical predominance diagram to

one calculated using the equilibrium activities (Blood plasma proteins, “IL” for interleukin):

> data(thermo) # cleanup from previous plot
> basis(c("CO2", "NH3", "H2S", "H2O", "O2"), c(-3, -3, -10))
> f <- system.file("extdata/abundance/AA03.csv", package="CHNOSZ")
> pdat <- read.csv(f, as.is=TRUE)
> iil <- grep("^IL", pdat$name)
> species(pdat$name[iil], "HUMAN")
> a <- affinity(O2=c(-82, -78), H2O=c(-12, -2))
> par(mfrow=c(1, 2))
> dA <- diagram(a, normalize=TRUE, main="maximum affinity")
> e <- equilibrate(a, normalize=TRUE)
> dE <- diagram(e, main="equilibrium activities")
> stopifnot(identical(dA$predominant, dE$predominant))
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Here is an example where the predominant species in the equilibrium assemblage are not identical to
those calculated the maximum affinity method, and it is not possible for the maximum affinity method to
make those curved lines!!

> basis("CHNOS+")
> species(aminoacids(""))
> a <- affinity(O2=c(-71, -66), H2O=c(-8, 4))
> par(mfrow=c(1, 2))
> dA <- diagram(a, main="maximum affinity")
> e <- equilibrate(a)
> dE <- diagram(e, main="equilibrium activities")
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Take-home: when making predominance diagrams, confidently use the maximum affinity method when
normalize=TRUE (as done here for proteins); otherwise it is advisable to compute the equilibrium distribu-
tion.

7 Document Information

Revision history

• 2009-11-29 Initial version containing CSG example (title: Calculating relative abundances of proteins)

• 2012-09-30 Renamed from previous “protactiv.Rnw”: Remove activity comparisons, add maximum
affinity method.

R session information

> sessionInfo()

R version 3.0.0 RC (2013-03-27 r62427)
Platform: x86_64-slackware-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US LC_NUMERIC=C LC_TIME=en_US LC_COLLATE=C
[5] LC_MONETARY=en_US LC_MESSAGES=en_US LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] CHNOSZ_1.0.0

loaded via a namespace (and not attached):
[1] tools_3.0.0
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