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Figure 1: Flowchart of parallel computing for principal component analysis and identity-by-
descent analysis.

1 Overview

Genome-wide association studies (GWAS) are widely used to help determine the genetic
basis of diseases and traits, but they pose many computational challenges. We developed
gdsfmt and SNPRelate (high-performance computing R packages for multi-core symmetric
multiprocessing computer architectures) to accelerate two key computations in GWAS: prin-
cipal component analysis (PCA) and relatedness analysis using identity-by-descent (IBD)
measures1. The kernels of our algorithms are written in C/C++ and have been highly
optimized. The calculations of the genetic covariance matrix in PCA and pairwise IBD co-
efficients are split into non-overlapping parts and assigned to multiple cores for performance
acceleration, as shown in Figure 1. Benchmarks show the uniprocessor implementations of
PCA and IBD are ∼8 to 50 times faster than the implementations provided in the popu-
lar EIGENSTRAT (v3.0) and PLINK (v1.07) programs respectively, and can be sped up to
30∼300 folds by utilizing multiple cores.

GDS is also used by an R/Bioconductor package GWASTools as one of its data storage
formats2,3. GWASTools provides many functions for quality control and analysis of GWAS,
including statistics by SNP or scan, batch quality, chromosome anomalies, association tests,
etc.

R is the most popular statistical programming environment, but one not typically opti-
mized for high performance or parallel computing which would ease the burden of large-scale
GWAS calculations. To overcome these limitations we have developed a project named
CoreArray (http://corearray.sourceforge.net/) that includes two R packages: gdsfmt
to provide efficient, platform independent memory and file management for genome-wide nu-
merical data, and SNPRelate to solve large-scale, numerically intensive GWAS calculations
(i.e., PCA and IBD) on multi-core symmetric multiprocessing (SMP) computer architectures.
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This vignette takes the user through the relatedness and principal component analysis
used for genome wide association data. The methods in these vignettes have been introduced
in the paper of Zheng et al. (2012)1. For replication purposes the data used here are taken
from the HapMap Phase II project. These data were kindly provided by the Center for
Inherited Disease Research (CIDR) at Johns Hopkins University and the Broad Institute of
MIT and Harvard University (Broad). The data supplied here should not be used for any
purpose other than this tutorial.

2 Preparing Data

2.1 Data formats used in SNPRelate

To support efficient memory management for genome-wide numerical data, the gdsfmt
package provides the genomic data structure (GDS) file format for array-oriented bioinfor-
matic data, which is a container for storing annotation data and SNP genotypes. In this
format each byte encodes up to four SNP genotypes thereby reducing file size and access
time. The GDS format supports data blocking so that only the subset of data that is be-
ing processed needs to reside in memory. GDS formatted data is also designed for efficient
random access to large data sets.

> # load the R packages: gdsfmt and SNPRelate

> library(gdsfmt)

> library(SNPRelate)

Here is a typical GDS file:

> snpgdsSummary(snpgdsExampleFileName())

The file name: /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/hapmap_geno.gds

The total number of samples: 279

The total number of SNPs: 9088

SNP genotypes are stored in individual-major mode.

snpgdsExampleFileName() returns the file name of a GDS file used as an example in
SNPRelate, and it is a subset of data from the HapMap project and the samples were geno-
typed by the Center for Inherited Disease Research (CIDR) at Johns Hopkins University
and the Broad Institute of MIT and Harvard University (Broad). snpgdsSummary() sum-
marizes the genotypes stored in the GDS file. “Individual-major mode” indicates listing all
SNPs for an individual before listing the SNPs for the next individual, etc. Conversely,
“SNP-major mode” indicates listing all individuals for the first SNP before listing all indi-
viduals for the second SNP, etc. Sometimes “SNP-major mode” is more computationally
efficient than “individual-major model”. For example, the calculation of genetic covariance
matrix deals with genotypic data SNP by SNP, and then “SNP-major mode” should be more
efficient.
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> # open a GDS file

> (genofile <- openfn.gds(snpgdsExampleFileName()))

file name: /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/hapmap_geno.gds

+ [ ]

|--+ sample.id [ FStr8 279 ZIP(23.10%) ]

|--+ snp.id [ Int32 9088 ZIP(34.76%) ]

|--+ snp.rs.id [ FStr8 9088 ZIP(42.66%) ]

|--+ snp.position [ Int32 9088 ZIP(94.73%) ]

|--+ snp.chromosome [ UInt8 9088 ZIP(0.94%) ] *

|--+ snp.allele [ FStr8 9088 ZIP(14.45%) ]

|--+ genotype [ Bit2 9088x279 ] *

|--+ sample.annot [ data.frame ] *

| |--+ sample.id [ FStr8 279 ZIP(23.10%) ]

| |--+ family.id [ FStr8 279 ZIP(28.37%) ]

| |--+ geneva.id [ Int32 279 ZIP(80.29%) ]

| |--+ father.id [ FStr8 279 ZIP(12.98%) ]

| |--+ mother.id [ FStr8 279 ZIP(12.86%) ]

| |--+ plate.id [ FStr8 279 ZIP(1.29%) ]

| |--+ sex [ FStr8 279 ZIP(28.32%) ]

| |--+ pop.group [ FStr8 279 ZIP(7.89%) ]

The output lists all variables stored in the GDS file. At the first level, it stores variables
sample.id, snp.id, etc. The additional information are displayed in the square brackets
indicating data type, size, compressed or not + compression ratio. The second-level variables
sex and pop.group are both stored in the folder of sample.annot. All of the functions
in SNPRelate require a minimum set of variables in the annotation data. The minimum
required variables are

• sample.id, a unique identifier for each sample.

• snp.id, a unique identifier for each SNP.

• snp.position, the base position of each SNP on the chromosome, and 0 for unknown
position; it does not allow NA.

• snp.chromosome, an integer mapping for each chromosome, with values 1-26, mapped
in order from 1-22, 23=X,24=XY (the pseudoautosomal region), 25=Y, 26=M (the mi-
tochondrial probes), and 0 for probes with unknown positions; it does not allow NA.

• genotype, a SNP genotypic matrix. SNP-major mode: nsample×nsnp, individual-major
mode: nsnp × nsample.
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Users can define the numeric chromosome codes which are stored with the variable
snp.chromosome as attributes. For example, snp.chromosome has the attributes of
chromosome coding:

> # get the attributes of chromosome coding

> get.attr.gdsn(index.gdsn(genofile, "snp.chromosome"))

$autosome.start

[1] 1

$autosome.end

[1] 22

$X

[1] 23

$XY

[1] 24

$Y

[1] 25

$M

[1] 26

$MT

[1] 26

autosome.start is the starting numeric code of autosomes, and autosome.end is the last
numeric code of autosomes. put.attr.gdsn can be used to add a new attribute or modify
an existing attribute.

There are four possible values stored in the variable genotype: 0, 1, 2 and 3. For bi-
allelic SNP sites, “0” indicates two B alleles, “1” indicates one A allele and one B allele, “2”
indicates two A alleles, and “3” is a missing genotype. For multi-allelic sites, it is a count of
the reference allele (3 meaning no call). “Bit2” indicates that each byte encodes up to four
SNP genotypes since one byte consists of eight bits.

> # Take out genotype data for the first 3 samples and the first 5 SNPs

> (g <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(5,3)))

[,1] [,2] [,3]

[1,] 2 1 2

[2,] 1 1 1

[3,] 0 0 1
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[4,] 1 1 2

[5,] 2 2 2

> # Get the attribute of genotype

> get.attr.gdsn(index.gdsn(genofile, "genotype"))

$snp.order

NULL

The returned value could be either“snp.order”or ”sample.order”, indicating individual-major
mode (snp is the first dimension) and SNP-major mode (sample is the first dimension)
respectively.

> # Take out snp.id

> head(read.gdsn(index.gdsn(genofile, "snp.id")))

[1] 1 2 3 4 5 6

> # Take out snp.rs.id

> head(read.gdsn(index.gdsn(genofile, "snp.rs.id")))

[1] "rs1695824" "rs13328662" "rs4654497" "rs10915489" "rs12132314"

[6] "rs12042555"

There are two additional variables:

• snp.rs.id, a character string for reference SNP ID that may not be unique.

• snp.allele, it is not necessary for the analysis, but it is necessary when merging geno-
types from different platforms. The format of snp.allele is “A allele/B allele”, like
“T/G” where T is A allele and G is B allele.

The information of sample annotation can be obtained by the same function read.gdsn.
For example, population information. “FStr8” indicates a character-type variable.

> # Read population information

> pop <- read.gdsn(index.gdsn(genofile, path="sample.annot/pop.group"))

> table(pop)

pop

CEU HCB JPT YRI

92 47 47 93

> # close the GDS file

> closefn.gds(genofile)
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2.2 Create a GDS File of Your Own

2.2.1 snpgdsCreateGeno

The function snpgdsCreateGeno can be used to create a GDS file. The first argument
should be a numeric matrix for SNP genotypes. There are possible values stored in the
input genotype matrix: 0, 1, 2 and other values. “0” indicates two B alleles, “1” indicates
one A allele and one B allele, “2” indicates two A alleles, and other values indicate a missing
genotype. The SNP matrix can be either nsample × nsnp (snpfirstdim=FALSE, the argument
in snpgdsCreateGeno) or nsnp × nsample (snpfirstdim=TRUE).

For example,

> # load data

> data(hapmap_geno)

> # create a gds file

> snpgdsCreateGeno("test.gds", genmat = hapmap_geno$genotype,

+ sample.id = hapmap_geno$sample.id, snp.id = hapmap_geno$snp.id,

+ snp.chromosome = hapmap_geno$snp.chromosome,

+ snp.position = hapmap_geno$snp.position,

+ snp.allele = hapmap_geno$snp.allele, snpfirstdim=TRUE)

> # open the gds file

> (genofile <- openfn.gds("test.gds"))

file name: test.gds

+ [ ]

|--+ sample.id [ VStr8 279 ZIP(29.89%) ]

|--+ snp.id [ VStr8 1000 ZIP(42.42%) ]

|--+ snp.position [ Float64 1000 ZIP(55.97%) ]

|--+ snp.chromosome [ Int32 1000 ZIP(2.00%) ]

|--+ snp.allele [ VStr8 1000 ZIP(13.85%) ]

|--+ genotype [ Bit2 1000x279 ] *

> # close the genotype file

> closefn.gds(genofile)

2.2.2 Uses of the Functions in the gdsfmt Package

In the following code, the functions createfn.gds, add.gdsn, put.attr.gdsn, write.gdsn,
index.gdsn, closefn.gds are defined in the gdsfmt package:

# create a new GDS file

newfile <- createfn.gds("your_gds_file.gds")

# add variables
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add.gdsn(newfile, "sample.id", sample.id)

add.gdsn(newfile, "snp.id", snp.id)

add.gdsn(newfile, "snp.position", snp.position)

add.gdsn(newfile, "snp.chromosome", snp.chromosome)

add.gdsn(newfile, "snp.allele", c("A/G", "T/C", ...))

#####################################################################

# create a snp-by-sample genotype matrix

# add genotypes

var.geno <- add.gdsn(newfile, "genotype",

valdim=c(length(snp.id), length(sample.id)), storage="bit2")

# indicate the SNP matrix is snp-by-sample

put.attr.gdsn(var.geno, "snp.order")

# write SNPs into the file sample by sample

for (i in 1:length(sample.id))

{

g <- ...

write.gdsn(var.geno, g, start=c(1,i), count=c(-1,1))

}

#####################################################################

# OR, create a sample-by-snp genotype matrix

# add genotypes

var.geno <- add.gdsn(newfile, "genotype",

valdim=c(length(sample.id), length(snp.id)), storage="bit2")

# indicate the SNP matrix is sample-by-snp

put.attr.gdsn(var.geno, "sample.order")

# write SNPs into the file sample by sample

for (i in 1:length(snp.id))

{

g <- ...

write.gdsn(var.geno, g, start=c(1,i), count=c(-1,1))

}
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# get a description of chromosome codes

# allowing to define a new chromosome code, e.g., snpgdsOption(Z=27)

option <- snpgdsOption()

var.chr <- index.gdsn(newfile, "snp.chromosome")

put.attr.gdsn(var.chr, "autosome.start", option$autosome.start)

put.attr.gdsn(var.chr, "autosome.end", option$autosome.end)

for (i in 1:length(option$chromosome.code))

{

put.attr.gdsn(var.chr, names(option$chromosome.code)[i],

option$chromosome.code[[i]])

}

# add your sample annotation

samp.annot <- data.frame(sex = c("male", "male", "female", ...),

pop.group = c("CEU", "CEU", "JPT", ...), ...)

add.gdsn(newfile, "sample.annot", samp.annot)

# close the GDS file

closefn.gds(newfile)

2.3 Format conversion from PLINK binary files

The SNPRelate package provides a function snpgdsBED2GDS for converting a PLINK
binary file to a GDS file:

> # the PLINK BED file, using the example in the SNPRelate package

> bed.fn <- system.file("extdata", "plinkhapmap.bed", package="SNPRelate")

> bim.fn <- system.file("extdata", "plinkhapmap.bim", package="SNPRelate")

> fam.fn <- system.file("extdata", "plinkhapmap.fam", package="SNPRelate")

Or, uses your own PLINK files:

> bed.fn <- "C:/your_folder/your_plink_file.bed"

> bim.fn <- "C:/your_folder/your_plink_file.bim"

> fam.fn <- "C:/your_folder/your_plink_file.fam"

> # convert

> snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "test.gds")

Start snpgdsBED2GDS ...

open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/plinkhapmap.bed in the individual-major mode

open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/plinkhapmap.fam DONE.
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open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/plinkhapmap.bim DONE.

Mon Feb 25 15:50:34 2013 store sample id, snp id, position, and chromosome.

start writing: 279 samples, 5000 SNPs ...

Mon Feb 25 15:50:34 2013 0%

Mon Feb 25 15:50:34 2013 100%

Mon Feb 25 15:50:34 2013 Done.

> # summary

> snpgdsSummary("test.gds")

The file name: test.gds

The total number of samples: 279

The total number of SNPs: 5000

SNP genotypes are stored in individual-major mode.

2.4 Format conversion from VCF files

The SNPRelate package provides a function snpgdsVCF2GDS to reformat a VCF file.
There are two options for extracting markers from a VCF file for downstream analyses: (1) to
extract and store dosage of the reference allele only for biallelic SNPs and (2) to extract and
store dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic
SNPs, indels and structural variants.

> # the VCF file, using the example in the SNPRelate package

> vcf.fn <- system.file("extdata", "sequence.vcf", package="SNPRelate")

Or, uses your own VCF file:

> vcf.fn <- "C:/your_folder/your_vcf_file.vcf"

> # reformat

> snpgdsVCF2GDS(vcf.fn, "test.gds", method="biallelic.only")

Start snpgdsVCF2GDS ...

Extracting bi-allelic and polymorhpic SNPs.

Scanning ...

file: /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/sequence.vcf

content: 5 rows x 12 columns

Mon Feb 25 15:50:35 2013 store sample id, snp id, position, and chromosome.

start writing: 3 samples, 2 SNPs ...

file: /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/RtmphnEHuj/Rinst17ec241a66e25/SNPRelate/extdata/sequence.vcf

[1] 1

Mon Feb 25 15:50:35 2013 Done.
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> # summary

> snpgdsSummary("test.gds")

The file name: test.gds

The total number of samples: 3

The total number of SNPs: 2

SNP genotypes are stored in SNP-major mode.

3 Data Analysis

We developed gdsfmt and SNPRelate (high-performance computing R packages for multi-
core symmetric multiprocessing computer architectures) to accelerate two key computations
in GWAS: principal component analysis (PCA) and relatedness analysis using identity-by-
descent (IBD) measures.

> # open the GDS file

> genofile <- openfn.gds(snpgdsExampleFileName())

> # get population information

> # or pop_code <- scan("pop.txt", what=character()), if it is stored in a text file "pop.txt"

> pop_code <- read.gdsn(index.gdsn(genofile, path="sample.annot/pop.group"))

> # display the first six values

> head(pop_code)

[1] "YRI" "YRI" "YRI" "YRI" "CEU" "CEU"

3.1 LD-based SNP pruning

It is suggested to use a pruned set of SNPs which are in approximate linkage equilibrium
with each other to avoid the strong influence of SNP clusters in principal component analysis
and relatedness analysis.

> set.seed(1000)

> # try different LD thresholds for sensitivity analysis

> snpset <- snpgdsLDpruning(genofile, ld.threshold=0.2)

SNP pruning based on LD:

Sliding window: 500000 basepairs, Inf SNPs

|LD| threshold: 0.2

Removing 365 non-autosomal SNPs

Removing 1 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 8722 SNPs

Chromosome 1: 75.42%, 540/716
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Chromosome 2: 72.24%, 536/742

Chromosome 3: 74.71%, 455/609

Chromosome 4: 73.31%, 412/562

Chromosome 5: 77.03%, 436/566

Chromosome 6: 75.58%, 427/565

Chromosome 7: 75.42%, 356/472

Chromosome 8: 71.31%, 348/488

Chromosome 9: 77.88%, 324/416

Chromosome 10: 74.33%, 359/483

Chromosome 11: 77.40%, 346/447

Chromosome 12: 76.81%, 328/427

Chromosome 13: 75.58%, 260/344

Chromosome 14: 76.95%, 217/282

Chromosome 15: 76.34%, 200/262

Chromosome 16: 72.66%, 202/278

Chromosome 17: 74.40%, 154/207

Chromosome 18: 73.68%, 196/266

Chromosome 19: 85.00%, 102/120

Chromosome 20: 71.62%, 164/229

Chromosome 21: 76.98%, 97/126

Chromosome 22: 75.86%, 88/116

6547 SNPs are selected in total.

> names(snpset)

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8" "chr9"

[10] "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"

[19] "chr19" "chr20" "chr21" "chr22"

> head(snpset$chr1) # snp.id

[1] 1 2 4 5 7 10

> # get all selected snp id

> snpset.id <- unlist(snpset)

3.2 Principal Component Analysis

The functions in SNPRelate for PCA include calculating the genetic covariance matrix
from genotypes, computing the correlation coefficients between sample loadings and geno-
types for each SNP, calculating SNP eigenvectors (loadings), and estimating the sample
loadings of a new dataset from specified SNP eigenvectors.

> # uses different colors with respect to ethnicities

> race <- as.factor(pop_code)
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> # run PCA

> pca <- snpgdsPCA(genofile, maf=0.05, missing.rate=0.05,

+ snp.id=snpset.id, num.thread=2)

Principal Component Analysis (PCA) on SNP genotypes:

Removing 1112 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 5435 SNPs

Using 2 CPU cores.

PCA: the sum of all working genotypes (0, 1 and 2) = 1520750

PCA: Mon Feb 25 15:50:35 2013 0%

PCA: Mon Feb 25 15:50:35 2013 100%

PCA: Mon Feb 25 15:50:35 2013 Begin (eigenvalues and eigenvectors)

PCA: Mon Feb 25 15:50:36 2013 End (eigenvalues and eigenvectors)

> plot(pca$eigenvect[,2], pca$eigenvect[,1], xlab="Principal Component 2",

+ ylab="Principal Component 1", type="n")

> # draw points

> points(pca$eigenvect[,2], pca$eigenvect[,1], col=race)

> legend("topleft", legend=levels(race), text.col=1:nlevels(race))
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The code below shows how to calculate the percent of variation is accounted for by the
principal component for the first 16 PCs. It is clear to see the first two eigenvectors hold the
largest percentage of variance among the population, although the total variance accounted
for is still less the one-quarter of the total.

> pc.percent <- 100 * pca$eigenval[1:16]/sum(pca$eigenval)

> pc.percent

[1] 10.9608123 6.1973872 0.9480086 0.8526434 0.7927158 0.7804631

[7] 0.7496657 0.7139979 0.6759434 0.6680874 0.6605878 0.6591129

[13] 0.6501947 0.6441370 0.6372978 0.6281596

Plot the principal component pairs for the first four PCs:

> lbls <- paste("PC", 1:4, "\n", format(pc.percent[1:4], digits=2), "%", sep="")

> pairs(pca$eigenvect[,1:4], col=race, labels=lbls)
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To calculate the SNP correlations between eigenvactors and SNP genotypes:

> # get chromosome index

> chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))

> CORR <- snpgdsPCACorr(pca, genofile, eig.which=1:4)

SNP correlations:

Working space: 279 samples, 9088 SNPs

Using 1 CPU core.

Using the top 32 eigenvectors.

SNP Correlations: the sum of all working genotypes (0, 1 and 2) = 2553065

SNP Correlations: Mon Feb 25 15:50:36 2013 0%

SNP Correlations: Mon Feb 25 15:50:36 2013 100%

> par( mfrow=c(3,1))

> for (i in 1:3)

+ {
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+ plot(abs(CORR$snpcorr[i,]), ylim=c(0,1), xlab="SNP Index",

+ ylab=paste("PC", i), col=chr, pch="+")

+ }

3.3 Relatedness Analysis

For relatedness analysis, identity-by-descent (IBD) estimation in SNPRelate can be done
by either the method of moments (MoM) (Purcell et al., 2007) or maximum likelihood
estimation (MLE) (Milligan, 2003; Choi et al., 2009). Although MLE estimates are more
reliable than MoM, MLE is significantly more computationally intensive. For both of these
methods it is preffered to use a LD pruned SNP set.

> # YRI samples

> sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

> YRI.id <- sample.id[pop_code == "YRI"]
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3.3.1 Estimating IBD Using PLINK method of moments (MoM)

> # estimate IBD coefficients

> ibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id, snp.id=snpset.id,

+ maf=0.05, missing.rate=0.05)

Identity-By-Descent analysis (PLINK method of moment) on SNP genotypes:

Removing 1285 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 93 samples, 5262 SNPs

Using 1 CPU core.

PLINK IBD: the sum of all working genotypes (0, 1 and 2) = 484520

PLINK IBD: Mon Feb 25 15:51:08 2013 0%

PLINK IBD: Mon Feb 25 15:51:08 2013 100%

> # make a data.frame

> ibd.coeff <- snpgdsIBDSelection(ibd)

> head(ibd.coeff)

sample1 sample2 k0 k1 kinshipcoeff

1 NA19152 NA19139 0.9548539 0.04514610 0.011286524

2 NA19152 NA18912 1.0000000 0.00000000 0.000000000

3 NA19152 NA19160 1.0000000 0.00000000 0.000000000

4 NA19152 NA18515 0.9234541 0.07654590 0.019136475

5 NA19152 NA19222 1.0000000 0.00000000 0.000000000

6 NA19152 NA18508 0.9833803 0.01661969 0.004154922

> plot(ibd.coeff$k0, ibd.coeff$k1, xlim=c(0,1), ylim=c(0,1),

+ xlab="k0", ylab="k1", main="YRI samples (MoM)")

> lines(c(0,1), c(1,0), col="red", lty=2)
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3.3.2 Estimating IBD Using Maximum Likelihood Estimation (MLE)

> # estimate IBD coefficients

> set.seed(1000)

> snp.id <- sample(snpset.id, 5000) # random 5000 SNPs

> ibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snp.id,

+ maf=0.05, missing.rate=0.05)

> # make a data.frame

> ibd.coeff <- snpgdsIBDSelection(ibd)

> plot(ibd.coeff$k0, ibd.coeff$k1, xlim=c(0,1), ylim=c(0,1),

+ xlab="k0", ylab="k1", main="YRI samples (MLE)")

> lines(c(0,1), c(1,0), col="red", lty=2)
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3.4 Identity-By-State Analysis

For the n individuals in a sample, snpgdsIBS can be used to create a n × n matrix of
genome-wide average IBS pairwise identities:

> ibs <- snpgdsIBS(genofile, num.thread=2)

Identity-By-State (IBS) analysis on SNP genotypes:

Removing 365 non-autosomal SNPs

Removing 1 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 8722 SNPs

Using 2 CPU cores.

IBS: the sum of all working genotypes (0, 1 and 2) = 2446510

IBS: Mon Feb 25 15:51:08 2013 0%

IBS: Mon Feb 25 15:51:09 2013 100%

The heat map is shown:
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> library(lattice)

> L <- order(pop_code)

> levelplot(ibs$ibs[L, L], col.regions = terrain.colors)

To perform multidimensional scaling analysis on the n × n matrix of genome-wide IBS
pairwise distances:

> loc <- cmdscale(1 - ibs$ibs, k = 2)

> x <- loc[, 1]; y <- loc[, 2]

> race <- as.factor(pop_code)

> plot(x, y, col=race, xlab = "", ylab = "",

+ main = "Multidimensional Scaling Analysis (IBS Distance)")

> legend("topleft", legend=levels(race), text.col=1:nlevels(race))
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To perform cluster analysis on the n× n matrix of genome-wide IBS pairwise distances,
and determine the groups by a permutation score:

> set.seed(100)

> ibs.hc <- snpgdsHCluster(snpgdsIBS(genofile, num.thread=2))

Identity-By-State (IBS) analysis on SNP genotypes:

Removing 365 non-autosomal SNPs

Removing 1 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 8722 SNPs

Using 2 CPU cores.

IBS: the sum of all working genotypes (0, 1 and 2) = 2446510

IBS: Mon Feb 25 15:51:11 2013 0%

IBS: Mon Feb 25 15:51:12 2013 100%

> # to determine groups of individuals automatically

> rv <- snpgdsCutTree(ibs.hc)
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Determine groups by permutation (Z threshold: 15, outlier threshold: 5):

Create 3 groups.

> plot(rv$dendrogram, leaflab="none", main="HapMap Phase II")

> table(rv$samp.group)

G001 G002 G003

93 94 92

Here is the population information we have known:

> # to determine groups of individuals by population information

> rv2 <- snpgdsCutTree(ibs.hc, samp.group=as.factor(pop_code))

Create 4 groups.

> plot(rv2$dendrogram, leaflab="none", main="HapMap Phase II")

> legend("topright", legend=levels(race), col=1:nlevels(race), pch=19, ncol=4)

22



> # close the GDS file

> closefn.gds(genofile)

4 Resources

1. CoreArray project: http://corearray.sourceforge.net/

2. gdsfmt R package: http://cran.r-project.org/web/packages/gdsfmt/index.html

3. SNPRelate R package: http://cran.r-project.org/web/packages/SNPRelate/index.
html

4. GENEVA R package: https://www.genevastudy.org/Accomplishments/software

5. GWASTools: an R/Bioconductor package for quality control and analysis of Genome-
Wide Association Studies http://www.bioconductor.org/packages/2.11/bioc/html/
GWASTools.html
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