
Package ‘SteinerNet’
September 27, 2012

Version 1.2

Date 2012-7-22

Title Steiner Tree Approach for Graph Analysis

License GPL-3

Author Afshin Sadeghi

Maintainer Afshin Sadeghi <sadeghi.afshin@gmail.com>

Depends R (>= 2.0), igraph0, limma, RBGL

Imports igraph0, limma, RBGL

Description A set of graph functions written in R to find Steiner trees on graphs. It pro-
vides tools for analysing Steiner tree application on networks. It has applications in biologi-
cal pathway network analysis.

R topics documented:

generate_st_samples . 2
steinertree . 3
steiner_comparison_plots . 5
steiner_comparison_wilcox . 7
steiner_simulation . 9

Index 11

1

2 generate_st_samples

generate_st_samples generate_st_samples

Description

This function generates simulation data. It creates random graphs with randomly selected terminals.

Usage

generate_st_samples(test, graph, folder= NULL, listofterminaltest, repetition)

Arguments

test test selects the test type to make random data for it. the random walk for exact
algorithm makes subgraphs that include random terminals, but for heuristics it
selects random terminals on the base graph and returns the terminal set only

graph graph is the base graph for generating random subgraphs and random terminal
set.

folder folder specifies a folder name to store the simulated data inside it.
listofterminaltest

listofterminaltest is an input list. Elements of the list are number of termi-
nals to select for a simulation.

repetition repetition is a list of probabilites. Its length declares the number of elements
if random data set that is created for terminals. Each element of the list is the
probability of selecting a node as terminal while the random walk is traversing
the base graph.

Details

This function generates random data for two type of simulations. For experiments that include exact
algorithms, it generates random subgraphs with randomly selected terminals. Otherwise it returns
only a set of random terminals to be used with the base graph.

Test specifies the type of simulation. test can be exact or appr,

exact refers to generation of data for an experiment that includes exact Steiner tree algorithm.

appr refers to generation of data for a experiment that involves only approximate Steiner tree algo-
rithms.

If folder is NULL, it will use default value "steinerdata2" for folder when type is exact and
"steinerdata" when type is appr.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate algo-
rithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

In our study, we repeated the tests 50 times, and we made the random walk to select a node to
be terminal with 0.5 probability. Therefore repetition in our comparison was a list of fifty 0.5
values.

steinertree 3

Value

The function stores the random data in address that is stated in folder. When test is exact the
output includes random subgraphs and random set of terminals. When test is appr the function
returns random sets of terminals.

Author(s)

Afshin Sadeghi

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))

steinertree steinertree

Description

A function which involves a set of steiner tree algorithms on networks. This set involves an exact
algorithm and five heuristic algorithms.

Usage

steinertree(type, ter_list = NULL, graph, enumerate = FALSE, coloring = FALSE)

Arguments

type type specifies which steiner algorithm to use.
ter_list ter_list is an input list of terminals. This list should have character type.

Steiner tree algorithm finds a solution according to this list.
graph graph is an input igraph object which is delivered to one of the steiner tree

algorithms of the package. This graph should be connected and it should have
undirected edges.

enumerate enumerate a boolean value to specify EXA and SPM algorithms. It tells the
steiner tree function to return a merged enumerated set of solutions.

coloring coloring is a boolean value. When it is TRUE, the function will return two
results in a list. The first member of this list represents resulted steiner tree
within the input graph by coloring it. In this case the terminals are specified by
red color and Steiner nodes are represented by green. Second member of the
output list is a single Steiner tree which is represented with a new graph object.
When coloring is FALSE the function returns the answer in form of a new
single graph.

4 steinertree

Details

This function withholds six steiner tree algorithms for networks. type specifes the steiner algo-
rithm to deploy to the input graph and terminal set. type can be SP, KB, RSP, EXA or SPM. The
explanation of the abbreviations is listed below.

SP refers to the shortest path heuristic algorithm. [1,2]

KB exerts to Kruskal-Based Heuristic algorithm. [3]

RSP exerts a random approximation algorithm developed by the package developers. [4]

EXA in single mode uses an exact algorithm to return one of the optimal solutions of the problem.
In enumerate mode, returns the merged enumerated solution. [4,5]

SPM in single mode returns one of heuristic enumeration algorithm solutions for the problem. In
enumerate mode, returns the merged enumerated solution.[4]

EXA and SPM algorithms can return a single solution or run in enumerating mode. The boolean
value of enumerate specefies one of the two cases. If this value is FALSE they return one of their
enumerated steiner solutions without merging it to other solutions. If it is TRUE they return the
merged enumerated solutions of the steiner tree problem.

According to our knowledge RSP, EXA Enumeration, SPM and KB are represented for the first
time in this package and in the paper that comes with its. [4]

ter_list value can be NULL. In this case, the function will observe graph vertex colors to find
terminals. To call the function in this approach, the terminal nodes should be colored in red and the
non-terminal nodes should be yellow.

This function handles input igraph objects which their vertices have labels and names. To apply
the function on graphs with no label and name, steinertree function automatically recognizes
non-labeled graph vertices and creates names and labels for them. The new labels and names for
vertices are created according to the vertice ID of each vertice.

Value

When coloring is FALSE returns a Steiner tree in form of a new igraph object. When coloring
is TRUE returns a list that consists of two objects. The first is a steiner tree and the second object is
a colored version of the input graph with distinguished steiner nodes and terminals.

Author(s)

Afshin Sadeghi

References

1. Path heuristic and Original path heuristic ,Section 4.1.3 of the book "The Steiner tree Problem",
Petter,L,Hammer

2. "An approximate solution for the Steiner problem in graphs" , H Takahashi, A Matsuyama

3. F K. Hwang, D S. Richards and P Winter,"The steiner tree Problem", Kruskal-Based Heuristic
Section 4.1.4,ISBN: 978-0-444-89098-6

4. Please refer to the paper that is pulished with this package.

5. F K. Hwang, D S. Richards and P Winter,"The steiner tree Problem", Kruskal-Based Heuristic
Section 4.1.4, The Optimal solution for stiner trees on networks,ISBN: 978-0-444-89098-6.

steiner_comparison_plots 5

Examples

#example 1
library(SteinerNet)
g <- graph.ring(10)
ter_list= c("1","2","9")
#SP=steinertree("SP", ter_list, g)
#SPM=steinertree("SPM", ter_list, g , TRUE)

#example 2

g2 <- graph(c(0,2,1,2,2,3,3,4,5,6,3,6,2,7,2,5,2,6,5,8), directed=FALSE)
V(g2)$color="yellow"
V(g2)$color[c(1,4)]="red"
OP=steinertree("SP", NULL, g2, FALSE, TRUE)

#example 3: A case study with a sample graph and a given gene list

g <- graph(c(0,2,1,2,2,3,3,4,5,6,3,6,2,7,2,5,2,6,5,8), directed=FALSE)
V(g)$name= c("1058", "51203", "6515", "83879", "160897", "10531", "8659", "2947", "643008")
geneid_list= c("1058","83879", "160897","643")
#we include into the test those geneIDes who exist within the base graph.
r = 1:(length(geneid_list))
t = sapply (r ,function(r) !is.na(match(geneid_list[r],V(g)$name)))
glist = geneid_list[t==TRUE]
ST1= steinertree("SP", glist, g)
#tkplot(result1) # tkplot function displays labels instead of names

steiner_comparison_plots

steiner_comparison_plots

Description

This function plots the comparison results of Steiner tree algorithms excutions on simulated data.

Usage

steiner_comparison_plots (test_name, test_folder =NULL, outputname = NULL, listofterminaltest = NULL ,repetition= NULL)

Arguments

test_name test_name selects the plot type to creat. 14 type of comparison are available to
perform.

test_folder testfolder specifies a folder name to read the result of steiner tree simulations.

outputname outputname is name of a pdf file to store the result.

6 steiner_comparison_plots

listofterminaltest

listofterminaltest is an input list. Elements of the list are number of termi-
nals that are selected for a simulation.

repetition repetition is a list of probabilities. Its length declares the number of elements
if random data set that is created for each terminal number.

Details

This function creates 12 different comparison types and depicts them by plots. test_name specifies
the type of comparison.

test_name can be on of the following character values.

exact refers to time and edge number comparison of Steiner tree algorithms including the exact
algorithm.

appr refers to time and edge number comparison of Steiner tree algorithms without the exact algo-
rithm.

Enum refers to time and edge number comparison of Steiner tree enumeration algorithms.

Enum-median-venn-node-edge refers edge and node number comparison of subgraphs made by
Steiner tree enumeration algorithms via Venn diagram.

org refers to edge number comparison of random subgraphs that are made by simulations.

org-dens-e refers to edge density comparison of random graphs that are made by random graph
generator.

appr-vfreq refers to vertex frequency comparison of Steiner tree algorithms without the exact
algorithm.

exact-vfreq refers to vertex frequency comparison of Steiner tree algorithms including the exact
algorithm.

Enum-vfreq refers to vertex frequency comparison of Steiner tree enumeration algorithms.

appr-density-e refers to edge density comparison of steiner tree algorithms excluding the exact
algorithm.

exact-density-e refers to edge density comparison of steiner tree algorithms including the exact
algorithm.

Enum-density-e refers to edge density comparison of steiner tree enumeration algorithms.

If testfolder is NULL, it will use default value "steinerdatae" for folder when test is exact and
"steinerdataenum" when test is enum.

When outputname is NULL, a default value would be used for output pdf file name with consider-
ation of selected type.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate algo-
rithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

In our study, we repeated the tests 50 times, and we made the random walk to select a node to be
terminal with 0.5 probability while it traverses the base graph. Therefore repetition in our com-
parison was a list of fifty 0.5 values. If repetition is NULL, the function regards the repetition
and listofterminaltest values that were used in our study.

steiner_comparison_wilcox 7

Value

The function stores a resulted plot in a PDF file.

Author(s)

Afshin Sadeghi

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))
#steiner_simulation("exact", "testfolder", c(2,3), c(.8,.8))
#steiner_comparison_plots ("exact", "testfolder", c(2,3), c(.8,.8))

steiner_comparison_wilcox

steiner_comparison_wilcox

Description

This function stores the wilcox comparison results of Steiner tree algorithms excutions in RData
files.

Usage

steiner_comparison_wilcox (test_name, test_folder =NULL, outputname = NULL, listofterminaltest = NULL ,repetition= NULL)

Arguments

test_name test_name selects the plot type to creat. 14 type of comparison are available to
perform.

test_folder testfolder specifies a folder name to read the result of steiner tree simulations.

outputname outputname is name of a pdf file to store the result.
listofterminaltest

listofterminaltest is an input list. Elements of the list are number of termi-
nals that are selected for a simulation.

repetition repetition is a list of probabilities. Its length declares the number of elements
if random data set that is created for each terminal number.

8 steiner_comparison_wilcox

Details

This function creates 12 different comparison types and depicts them by plots. test_name specifies
the type of comparison.

test_name can be on of the following character values.

exact refers to time and edge number comparison of Steiner tree algorithms including the exact
algorithm.

appr refers to time and edge number comparison of Steiner tree algorithms without the exact algo-
rithm.

Enum refers to time and edge number comparison of Steiner tree enumeration algorithms.

Enum-median-venn-node-edge refers edge and node number comparison of subgraphs made by
Steiner tree enumeration algorithms via Venn diagram.

org refers to edge number comparison of random subgraphs that are made by simulations.

org-dens-e refers to edge density comparison of random graphs that are made by random graph
generator.

appr-vfreq refers to vertex frequency comparison of Steiner tree algorithms without the exact
algorithm.

exact-vfreq refers to vertex frequency comparison of Steiner tree algorithms including the exact
algorithm.

Enum-vfreq refers to vertex frequency comparison of Steiner tree enumeration algorithms.

appr-density-e refers to edge density comparison of steiner tree algorithms excluding the exact
algorithm.

exact-density-e refers to edge density comparison of steiner tree algorithms including the exact
algorithm.

Enum-density-e refers to edge density comparison of steiner tree enumeration algorithms.

If testfolder is NULL, it will use default value "steinerdatae" for folder when test is exact and
"steinerdataenum" when test is enum.

When outputname is NULL, a default value would be used for output pdf file name with consider-
ation of selected type.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate algo-
rithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

In our study, we repeated the tests 50 times, and we made the random walk to select a node to be
terminal with 0.5 probability while it traverses the base graph. Therefore repetition in our com-
parison was a list of fifty 0.5 values. If repetition is NULL, the function regards the repetition
and listofterminaltest values that were used in our study.

Value

The function stores a resulted plot in a PDF file.

Author(s)

Afshin Sadeghi

steiner_simulation 9

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))
#steiner_simulation("exact", "testfolder", c(2,3), c(.8,.8))
#steiner_comparison_wilcox ("exact", "testfolder", c(2,3), c(.8,.8))

steiner_simulation steiner_simulation

Description

This function executes Steiner algorithms on simulated data and stores their results into files.

Usage

steiner_simulation(test,listofterminaltest,repetition,testfolder = NULL)

Arguments

test test selects the test type to apply the simulation. It can be exact, appr, or enum.
listofterminaltest

listofterminaltest is an input list. Elements of the list are number of termi-
nals that are selected for a simulation.

repetition repetition is a list of probabilities. Its length declares the number of elements
if random data set that is created for each terminal number.

testfolder testfolder specifies a folder name to read the simulated data from it and to
store Steiner tree algorithms results inside it.

Details

This function performs three type of experiments. Test specifies the type of comparison to perform.

test can be exact or appr or enum,

exact refers to executing the set of steiner tree algorithms including the exact algorithm.

appr forces to executing the set of steiner tree algorithms without the exact algorithm.

enum refers to to executing the set of steiner tree enumeration algorithms.

listofterminaltest in our study was made of 5, 8, 20, 50, 70 for comparing approximate algo-
rithms and it was 5, 8 for experiments that included exact Steiner tree algorithm. [1]

If testfolder is NULL, it will use default value "steinerdata2" for folder when test is exact and
"steinerdataenum" when test is enum.

10 steiner_simulation

In our study, we repeated the tests 50 times, and we made the random walk to select a node to
be terminal with 0.5 probability. Therefore repetition in our comparison was a list of fifty 0.5
values. We also survied the behavior of the algorithms when selection probability was and 0.2 and
0.8.

Value

The function stores the result of execution of Steiner trees and the time of their executions in an
address that is stated in testfolder.

Author(s)

Afshin Sadeghi

References

1. Please refer to the paper that is published with this package.

Examples

library(SteinerNet)
g <- graph.ring(10)
#generate_st_samples("exact", g, "testfolder", c(2,3), c(.8,.8))
#steiner_simulation("exact", "testfolder", c(2,3), c(.8,.8))

Index

∗Topic graphs, protein interaction,
network, graph, steiner tree

steiner_comparison_plots, 5
steiner_comparison_wilcox, 7

∗Topic graphs, protein interaction,
network, pathway data
graph, steiner tree

generate_st_samples, 2
steiner_simulation, 9
steinertree, 3

generate_st_samples, 2
generate_st_samples, character, igraph

object, character, list, list
(generate_st_samples), 2

generate_st_samples, character,
igraph object, missing, list,
list (generate_st_samples), 2

steiner_comparison_plots, 5
steiner_comparison_plots, character,

character , character, list,
list
(steiner_comparison_plots), 5

steiner_comparison_plots, character,
character, character,
missing, missing
(steiner_comparison_plots), 5

steiner_comparison_plots, character,
character, missing, list, list
(steiner_comparison_plots), 5

steiner_comparison_plots, character,
character, missing, missing,
missing
(steiner_comparison_plots), 5

steiner_comparison_plots, character,
missing, missing, missing,
missing
(steiner_comparison_plots), 5

steiner_comparison_wilcox, 7

steiner_comparison_wilcox, character,
character , character, list,
list
(steiner_comparison_wilcox), 7

steiner_comparison_wilcox, character,
character, character,
missing, missing
(steiner_comparison_wilcox), 7

steiner_comparison_wilcox, character,
character, missing, list, list
(steiner_comparison_wilcox), 7

steiner_comparison_wilcox, character,
character, missing, missing,
missing
(steiner_comparison_wilcox), 7

steiner_comparison_wilcox, character,
missing, missing, missing,
missing
(steiner_comparison_wilcox), 7

steiner_simulation, 9
steiner_simulation, list, list,

character (steiner_simulation),
9

steiner_simulation, list, list,
missing (steiner_simulation), 9

steinertree, 3
steinertree, character list, graph

(steinertree), 3
steinertree, character list, graph,

boolean (steinertree), 3
steinertree, character list, graph,

boolean, boolean (steinertree),
3

steinertree, character list, graph,
missing, boolean (steinertree),
3

steinertree, NULL, graph (steinertree),
3

steinertree, NULL, graph, boolean

11

12 INDEX

(steinertree), 3
steinertree, NULL, graph, boolean,

boolean (steinertree), 3
steinertree, NULL, graph, missing,

boolean (steinertree), 3

	generate_st_samples
	steinertree
	steiner_comparison_plots
	steiner_comparison_wilcox
	steiner_simulation
	Index

