
Generalized Direct Sampling in R Using the
bayesGDS Package

Michael Braun
MIT Sloan School of Management

August 23, 2012

Generalized Direct Sampling (GDS, Braun and Damien 2012) is a method of
simulating from multivariate densities. It is particularly useful for simulating
from high-dimensional, complex, bounded posterior distributions that arise from
Bayesian hierarchical models. GDS is intended to replace MCMC as the preferred
sampling algorithm for many classes of hierarchical models, especially if the pos-
terior is continuous and smooth. The advantages of GDS over MCMC are:

1. all samples are collected independently, so there is no need to be concerned
with autocorrelation, convergence of estimations chains, and so forth;

2. there is no particular advantage to choosing model components that main-
tain conditional conjugacy, as is common with Gibbs sampling;

3. GDS generates samples from the target posterior entirely in parallel, which
takes advantage of the most recent advances in grid computing and placing
multiple CPU cores in a single computer; and

4. GDS permits fast and accurate estimation of marginal likelihoods of the data.

The derivation and justification for GDS are explained in Braun and Damien (2012,
henceforth BD), and the reader should start there for the details. The purpose of
this article is to show how to sample from a posterior density in R using the
bayesGDS package. I also highlight some practical issues in using GDS, and show
an example of GDS in action.

Although the trustOptim (Braun 2012) and plyr (Wickham 2011) packages are not
dependencies for bayesGDS, the example at the end of this note does use them.
Therefore, you are encouraged to install those packages before proceeding.

1

1 The GDS Algorithm

The goal is to sample θ from a posterior density

π(θ|y) = f (y|θ)π(θ)

L(y) =
D(θ, y)
L(y) (1)

where D(θ, y) is the joint density of the data and the parameters (the unnormal-
ized posterior density). Let θ∗ be the mode of D(θ, y), and define c1 = D(θ∗, y).
Choose some proposal distribution g(θ) that also has its mode at θ∗, and define
c2 = g(θ∗). Also, define the function

Φ(θ|y) = f (y|θ)π(θ) · c2

g(θ) · c1
(2)

In summary, the steps of the GDS algorithm are as follows:

1. Find the mode of D(θ, y), θ∗ and compute the unnormalized log posterior
density c1 = D(θ∗|y) at that mode.

2. Choose a distribution g(θ) so that its mode is also at θ∗, and let c2 = g(θ∗).

3. Sample θ1, . . . , θM independently from g(θ). Compute Φ(θ) for these pro-
posal draws. If Φ(θ) > 1 for any of these draws, repeat Step 2 and choose
another proposal distribution for which Φ(θ) < 1 does hold.

4. Compute vi = − log Φ((θ|y)) for the M proposal draws, and place them in
increasing order.

5. Evaluate, for each proposal draw,

qM(v) =
M

∑
i=1

1 [vi < v] (3)

which is the empirical CDF of vi for the M proposal draws.

6. Sample N draws of v = vi + ε, where a particular vi is chosen according to
the multinomial distribution with probabilities proportional to

wi = qM(v) [exp(−vi)− exp(−vi+1)] (4)

and ε is a standard exponential random variate, truncated to vi+1 − vi.

7. For each of the N required samples from the target posterior, sample θ from
g(θ) until − log Φ(θ|y) < v. Consider this first accepted draw to be a single
draw from the target posterior π(θ|y).

2

8. Repeat steps 6 and 7 until N draws are collected.

The bayesGDS package does much of this work automatically. For Step 1, use
your favorite nonlinear optimizer (the one in the trustOptim package is optimized
for Bayesian hierarchical models with sparse Hessians). The draw.MVN.proposals

and get.log.dens.MVN functions help with efficient execution of Step 3 when the
proposal density is a multivariate normal. Steps 4 through 8 are performed by the
get.GDS.draws function. The reason the algorithm is not fully automated from
start to finish is that a check for the validity of the proposal density needs to be
made at the end of Step 3.

This is all you need to do to sample from π(θ|y) using GDS. It’s not hard, but
there are some things that might cause problems with the algorithm. The rest of
the paper is meant to help you avoid these obstacles.

2 Example: Hierarchical Binary Choice

To illustrate the use of bayesGDS, we will work through a simple example. Sup-
pose there is a dataset of N households, each with T opportunities to purchase a
particular product. Let yi be the number of times household i purchases the prod-
uct, out of the T purchase opportunities. Furthermore, let pi be the probability of
purchase; pi is the same for all T opportunities, so we can treat yi as a binomial
random variable. The purchase probability pi is heterogeneous, and depends on
both k continuous covariates xi, and a heterogeneous coefficient vector βi, such
that

pi =
exp(x′i βi)

1 + exp(x′i βi)
, i = 1 . . . N (5)

The coefficients can be thought of as sensitivities to the covariates, and they are
distributed across the population of households following a multivariate normal
distribution with mean µ and covariance Σ. We assume that we know Σ, but we
do not know µ. Instead, we place a multivariate normal prior on µ, with mean
0 and covariance Ω, which is determined in advance. Thus, each βi, and µ, are
k−dimensional vectors, and the total number of unknown variables in the model
is (N + 1)k.

3

The log posterior density, including normalization constants, is

log π(β1:N , µ|Y, X, Σ0, Ω0) =
N

∑
i=1

log
(

T
yi

)
+ yi log pi + (T − yi) log(1− pi) (6)

− N
2
(log |Σ|+ k log (2π))− 1

2

N

∑
i=1

(βi − µ)′ Σ−1 (βi − µ)

(7)

− 1
2

(
log |Ω0|+ k log(2π) + µ′Ω−1

0 µ
)

(8)

where pi is defined in Equation 5 as a function of βi. The functions that com-
pute the log posterior and its gradient, log.post and get.grad are in the file
inst/examples/ex funcs.R. This file also includes a function, get.hess.struct,
that returns the sparsity structure of the Hessian.

In the sections that follow, I will discuss the code in the file inst/examples/ex1.R.
These sections assume that the reader has read Braun and Damien (2012), and is
generally familiar with the GDS algorithm.

2.1 Preparing for GDS

At the top of the ex1.R file, we do some initial housekeeping, and set the param-
eters of the GDS sampler.

library(plyr)

library(Matrix)

library(mvtnorm)

library(trustOptim)

library(bayesGDS)

source("ex_funcs.R")

set.seed(123)

M <- 20000

ds.scale <- 0.92

n.draws <- 100

max.AR.tries <- 20000

The GDS proposal density g(θ) is a multivariate normal density, with a mean
at the posterior mode, and a covariance matrix of a scaled (negative) Hessian at
the mode. For a number of computational reasons (e.g., not wanting to invert
the Hessian explicitly) bayesGDS works with the precision matrix instead of the
covariance. The ds.scale corresponds to s in BD; it is the factor by which we

4

multiply the Hessian by, to get the precision matrix of the proposal density. So,
if ds.scale were 1, the proposal precision would be equal to the negative Hes-
sian. As ds.scale goes down, the proposal density becomes more “diffuse.” Set
ds.scale to be as high as possible, such that Φ(θ|y) ≤ 1 for all of the M proposal
draws. If M is large, the approximation to p(u|y) will be more accurate, but it
may require ds.scale to be smaller, and thus, the acceptance rate of the sampling
algorithm may be lower.

The parameter n.draws is the number of samples to collect from the posterior
distributon (in the rejection sampling phase of the algorithm). max.AR.tries is
an upper bound on the number of attempts on a single posterior draw. Think
of max.AR.tries as a “trap” to keep the algorithm from running forever, in case
a particular draw of u is so high that the algorithm cannot accept a draw in a
reasonable amount of time. If max.AR.tries is ever exceeded, try a somewhat
less diffuse proposal density.

2.2 Simulating data and setting priors

The code in the next section simulates some data from the model, and defines the
prior parameters.

N <- 100

k <- 3

T <- 40

x.mean <- rep(0,k)

x.cov <- diag(k)

mu <- rnorm(k,0,10)

Omega <- diag(k)

inv.Sigma <- rWishart(1,k+5,diag(k))[,,1]

inv.Omega <- solve(Omega)

X <- t(rmvnorm(N, mean=x.mean, sigma=x.cov))

B <- t(rmvnorm(N, mean=mu, sigma=Omega))

XB <- colSums(X * B)

log.p <- XB - log1p(exp(XB))

Y <- laply(log.p, function(q) return(rbinom(1,T,exp(q))))

This section should be self-explanatory, as the variables correspond to the model
specification above. The arguments X, Y, inv.Sigma and inv.Omega will be passed
to the functions that compute the log posterior and gradient.

5

2.3 Finding the posterior mode

Although one could use any number of methods to find the posterior mode, the
trust.optim function from the trustOptim package is a good choice for hierar-
chical models. This is because the Hessian of the log posterior is sparse. The
trust.optim function requires the user to supply a function that computes the
objective function (fn) and the gradient (gr). In this example, these functions are
log.post and get.grad, respectively.

To use the SparseFD method of trust.optim, one also needs to supply the sparsity
structure of the Hessian. This is computed by the get.hess.struct function (in
the ex funcs.R file). See the package manual and documentation for trustOptim
for more information and the various methods, arguments and control parame-
ters.

nvars <- N*k + k

start <- rnorm(nvars) ## random starting values

hess.struct <- get.hess.struct(N, k) ## sparsity structure of Hessian

opt <- trust.optim(start, fn=log.post,

gr = get.grad,

hess.struct = hess.struct,

method = "SparseFD",

control = list(

report.freq=1L,

maxit=1000L,

function.scale.factor = as.numeric(-1),

preconditioner=1L

),

Y=Y, X=X, inv.Omega=inv.Omega, inv.Sigma=inv.Sigma

)

post.mode <- opt$solution

hess <- opt$hessian

log.c1 <- opt$fval

2.4 Preparing the GDS sampler

With the posterior mode, and the Hessian at the mode, in hand, we can now
start the GDS sampler itself. As mentioned above, the proposal density is a mul-
tivariate normal. Instead of using the functions rmvnorm and dmvnorm from the
mvtnorm package (Genz et al. 2012), we use two functions that are included in

6

bayesGDS: draw.MVN.proposals and get.log.dens.MVN. The reason is that the
mvtnorm functions take a full, dense covariance matrix as an argument. Thus,
these functions can be slow, and consume a lot of memory, for large problems.
The bayesGDS functions take the Cholesky decomposition of the precision matrix,
either as a dense matrix or in a compressed sparse format (from the Matrix pack-
age). Given the sparsity of the Hessian for hierarchical models, these functions
will be more efficient than rmvnorm and dmvnorm.

Thus, before doing any GDS sampling, we need to prepare the list of parameters
for the MVN sampling and density functions. This list has two elements: mu is
the mean, and chol.prec is the lower triangle Cholesky decomposition of the
precision matrix. Since the proposal precision is the scaled Hessian, we multiply
the Cholesky decomposition by the square root of the ds.scale parameter.

chol.hess <- t(chol(-hess))

prop.params <- list(mu = post.mode,

chol.prec = sqrt(ds.scale)*chol.hess

)

log.c2 <- get.log.dens.MVN(post.mode, prop.params)

log.const <- log.c1 - log.c2

Note that the chol.prec element in the prop.params list must be the lower triangle
of the Cholesky decomposition. In R, the chol function defaults to an upper
triangle. Hence, we transpose.

2.5 Computing qM(v|y)

Next, we construct qM(v|y) which is an empirical approximation to the density
of the threshold draws that we will use in the rejection sampling phase of the
algorithm. After taking M draws from the proposal distribution, we evaluate
the log posterior and MVN densities at each of those proposals, and compute
log Φ(θi|y) for all proposals θ1 . . . θM.

draws.m <- as(draw.MVN.proposals(M,prop.params),"matrix")

log.post.m <- aaply(draws.m, 2,log.post,

Y=Y, X=X, inv.Omega=inv.Omega, inv.Sigma=inv.Sigma,

.parallel=FALSE, .progress="text")

log.prop.m <- get.log.dens.MVN(draws.m,params=prop.params)

log.phi <- log.post.m - log.prop.m +log.c2 - log.c1

cat("Are any log.phi > 0? ",any(log.phi>0),"\n")

7

If log Φ(θ|y) > 0 for any of these proposals, the proposal density is not valid,
and we need to try again. Typically, this adaptation will just mean a change in
ds.scale. However, if ds.scale is to low, the acceptance rate in the rejection
sampling phase may be unacceptably low. The trick is to get ds.scale as high
as you can, such that log Φ(θ|y) ≤ 0 for all of the proposals, but not so high that
log Φ(θ|y) > 0 for too many posterior samples in the rejection sampling phase.
There is still no guarantee that log φ(θ|y) < 0 for all of proposals in the rejection
sampling phase. Don’t be too “fine” in choosing ds.scale. The decimal places
should be plenty.

2.6 Collecting posterior draws

Finally, we come to the rejection sampling phase of the GDS algorithm. Details of
the arguments are in the package documentation, and most of them have already
been discussed in this note.

draws <- get.GDS.draws(n.draws = n.draws,

log.phi=log.phi,

log.const = log.const,

log.post.func = log.post,

draw.prop.func = draw.MVN.proposals,

prop.log.dens.func = get.log.dens.MVN,

prop.params = prop.params,

max.tries=max.AR.tries,

max.batch = 20,

est.acc.rate=.05,

debug=FALSE,

report.freq=10,

Y=Y, X=X, inv.Omega=inv.Omega, inv.Sigma=inv.Sigma

)

The max.batch and est.acc.rate are tuning parameters to help with memory
allocation. It is faster to collect proposal MVN draws in batches, rather than one
at a time. The expected number of proposal draws that we need is the number of
posterior draws that we need (n.draws), divided by the expected acceptance rate
(est.acc.rate). So it would make sense to draw this number of proposals in a
single batch. If it turns out that we need more proposals, we can sample a new
batch, using the acceptance rate of earlier draws as a guide for the size of the new
batch.

The problem arises when the dimension of the posterior distribution is high, and
the acceptance rate is low. For example, if we want to collect 100 independent
draws, and we think the acceptance rate is 0.01, the expected batch size 10,000

8

proposal draws. If the posterior density has 50,000 parameters, and each value
uses 8 bytes of RAM, the storage requirement is 4 GB. Depending on the circum-
stances, batches of this size might be too large, especially if multiple instances of
get.GDS.draws are run in parallel. The max.batch argument controls the number
of proposal draws in each batch.

2.7 Output

The get.GDS.draws function returns a list with the following elements:

1. draws - the samples from the target posterior distribution. each column is a
draw.

2. counts - the number of proposals that it took to get an acceptance. If a draw
is accepted on the first proposal, the count is 1.

3. gt.1 - an indicator that the log.phi for that particular draw happened to be
greater than 0. In theory, this should not happen if the posterior is suffi-
ciently dominated by the proposal density. If there are a lot of draws for
which gt.1 is 1, you might want to try again with a lower ds.scale factor. If
there are only a few of these, you could just keep the draw. This would be a
case where the posterior density is high, relative to the proposal density, so
it would not be totally unreasonable to accept the draw.

4. log.post.dens, log.prop.dens - the log posterior and proposal densities for
the draws.

5. log.thresholds - the threshold that determines if the -log.phi from a proposal
is low enough to be accepted.

6. log.phi - the log.phi of the accepted draw

The draws, counts and log.post.dens values are the ones that really matter; the
others are primarily diagnostic. The acceptance rate of the algorithm is 1/mean(counts).

If any of the posterior draws has an NA value, that means that the count exceeded
max.AR.tries. Either increase this value, or adjust the proposal density.

2.8 Log marginal likelihoods

GDS algorithm offers a straightforward way to estimate the log marginal likeli-
hood.

LML <- get.LML(draws$counts, log.phi, log.const)

9

Estimating the marginal likelihood is the only reason we included the normalizing
constants in the objective function.

3 Practical advice

Here are some suggestions on how to implement GDS effectively.

3.1 Exploiting sparsity

With Bayesian hierarchical models, under assumptions of conditional indepen-
dence, the Hessian of the log posterior density has a “block arrow” structure. For
example, the example in this note has a Hessian with a form similar to:

[1,] | | | |

[2,] | | | |

[3,] . . | | | |

[4,] . . | | | |

[5,] | | | |

[6,] | | | |

[7,] | | | |

[8,] | | | |

[9,] | | . . | |

[10,] | | . . | |

[11,] | | | |

[12,] | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

In this case, N = 6 and k = 2. There are 196 elements in this symmetric matrix, but
only 169 are non-zero, and only 76 values are unique. If N = 1000 instead, there
are 2,002 variables in the problem, and more than 4 million elements in the Hes-
sian. However, only 12,004 of those elements are non-zero. If we work with only
the lower triangle of the Hessian we only need to work with only 7,003 values (in
addition to index pointers that identify the row and column for each element). If
you are interested in sampling from a posterior density of a Bayesian hierarchical
model with thousands of parameters, chances are the Hessian is sparse.

A standard matrix object in R would store each zero explicity, as a distinct floating
point value. So, the memory footprint of storing 4 million elements, at 8 bytes per
element, is about 32MB. If N = 50000, the matrix uses more than 20GB of RAM.
In addition, any mathematical operation on the matrix will operate on all of the

10

zeros. For something like a matrix-vector multiplication, that’s a lot of zeros being
multiplied by zero. So when we here statements like “R doesn’t work well with
large datasets,” or “you can’t find a posterior mode quickly if you have a lot
of parameters,” one possible (and common) reason could be that the person is
storing data in dense structures.

Fortunately, the idea of exploiting sparsity in numerical computation is not a new
idea, and R users have access to a number of tools that are optimized for sparse
matrices. The first is the Matrix package, which is now a “recommended” pack-
age in base R. The Matrix package contains classes that define different storage
schemes for matrices. The classes vary according to whether the matrix is dense
or sparse, numeric, integer, or logical, symmetric or not, triangular or not, and so
forth. For example, the “dgCMatrix” class defines a matrix that has double preci-
sion, general structure (i.e., not triangular or symmetric), and stored in CSC (com-
pressed sparse column) format. Matrix can convert among different classes, and
even identify if a matrix is best stored as sparse, symmetric, and so forth. Matrix
also has linear algebra functions that are optimized for sparse and/or structured
matrices, as well as an interface to the CHOLMOD library for sparse Cholesky
decompositions (Chen et al. 2008).

Why do we care so much about sparsity? Suppose you want to use a multivariate
normal as the GDS proposal density. The most common way to generate MVN
draws in a matrix Θ is to transform a matrix of standard normal draws.

Θ = µι′ + LZ (9)

where µ is the mean, L is the Cholesky decomposition of the covariance matrix
−H−1, Z is a matrix of standard normal draws, and ι is a vector of ones. It is easy
to show that cov(Θ) = LL′ = −H−1, which is the covariance we want.

To use the rmvnorm function in the mvtnorm package, you will need to supply a
full, dense covariance matrix. That means you need to invert the Hessian explicitly,
which is not necessarily sparse (even if the Hessian is). And since R does not
know that the Hessian is sparse, the inversion and the Cholesky decomposition
can each take a long time.

Instead, what if we stored the Hessian H in a sparse compressed format, and took
a Cholesky decomposition of that? Let H = ΛΛ′ be that decomposition. Then,
consider the the transformation

Θ = µι′ + Λ
′−1Z (10)

Again, the covariance of Θ is H−1. But more importantly, since Λ−1 is triangular,
we can compute Θ efficiently by solving for Θ−µι′ using a solver that is optimized
for sparse, triangular linear systems. This is exactly what the draw.MVN.proposal

11

function does, and why it takes a sparse representation of Λ (the Cholesky de-
composition) as an argument. The get.log.dens.MVN function computes the log
MVN density in a similar way.

Without sparse Hessian structures, GDS can take a long time to run, not because
of potentially low acceptance rates, but because of the time it takes to allocate and
manipulate huge, dense arrays. Use sparse matrices, and life is good.

3.2 Posterior modes

When first hearing about GDS, a common reaction is that finding the mode (or
modes) of the posterior density is easier said than done. It is true that optimizing
a function with 50, 000 parameters using the optim function in R is a hopeless
endeavor. Algorithms that do not use Hessian information (e.g., Nelder-Mean,
conjugate gradient) can converge slowly, especially if the objective function is ill-
conditioned or poorly scaled. Algorithms that approximate Hessians, like BFGS,
may still iterate slowly if they have to store the approximation as a dense matrix.
Also, the BFGS approximations (and those its limited-memory variant L-BFGS-B)
may not be very accurate, especially if the objective function is not convex (all
BFGS updates are positive definite). In addition, line-search methods (which in-
clude conjugate gradient and BFGS) can be unstable when the objective function
has ridges or plateaus, or if the approximation to the Hessian is poor. And even
worse, the stopping criteria in optim are the relative changes in the objective func-
tion, which may cause the algorithm to terminate long before the elements of the
gradient are all sufficiently close to zero.

I contend that the frustration behind optimizing large-scale problems in R comes
from using the wrong tool for the job. Fortunately, there are alternatives for large,
sparse, ill-conditioned objective functions. The trustOptim package (Braun 2012)
finds the minimum of a function using a trust region algorithm. The primary
concern is stability, so trustOptim should succeed when line search optimizers
fail. All else being equal, trust region methods may or may not be faster than
line search methods. However, trustOptim is optimized for functions with sparse
Hessians. Although the user can supply a function that returns the Hessian in a
sparse compressed format, all that is really needed is the structure of the Hessian.
This structure is a list of the row and column indices of the nonzero elements
of the lower triangle. In our experience, trustOptim has been faster, and more
reliable, than any of the other nonlinear optimizers in R that we have tried so far.
Please see the documentation and vignette for trustOptim for more information
and details.

One may also wonder how GDS would handle posterior densities with multiple
modes. As with any sampling method (even MCMC), the user has the responsibil-

12

ity for finding these modes, or at least as many as he can. A simple approach is to
run the trust.optim function from multiple random starting points, to see if they
converge to different local optima, but there are more sophisticated approaches
as well (e.g., simulated annealing, genetic algorithms, grid search). One can then
estimate the Hessian at each mode, and use a mixture of MVNs as the proposal
density. Although there is no guarantee that we can find all of the modes of any
function, extant sampling methods like MCMC offer no such guarantees either (at
least during a finite period of time).

3.3 Computing gradients and Hessians

The optim function in R gives users the option, but not the requirement, to supply
a function that returns the gradient of the objective function. Without the explicit
gradient, optim estimates it using finite differencing. Not only does the time spent
estimating the gradient this way grow linearly with the number of parameters,
but the accuracy is subject to numerical precision issues, especially near the local
optimum where the gradient is close to zero. For derivative-free methods like
Nelder-Mead, a gradient is not required, but convergence can be very slow for
high-dimensional problems. Therefore, it is usually preferable to write a function
that computes the gradient directly.

An alternative is to use what is called “automatic” or “algorithmic” differentia-
tion’, abbreviated AD. In short, AD works by having the user write the objective
function using a library of specialized numerical types. When an operation be-
tween two variables takes place (e.g., multiplication), the types store not only the
result of the operation, but additional information that allows for efficient com-
putation of derivatives. The sequence of operations is stored in an object (called a
“tape”) that can return not only the value of the objective function, but also deriva-
tives of multiple order. In other words, the user needs to code only the objective
function, and the routines in the AD library will return gradients, Hessians, and
even higher-order objects.

The good news is that there are established AD libraries that are available for
C++, Fortran, Matlab, Python, and others (see www.autodiff.org for a list). The
bad news is that, at this time, there is no suitable AD library for R. That means
that to use AD in R, you need to write the objective function in another language.
Fortunately, the Rcpp and RcppEigen packages offer interfaces with C++ in general,
and classes and methods in the Eigen numerical library (Guennebaud et al. 2012).
I have found Eigen plays nicely with the CppAD library of AD routines (Bell 2012).

I believe that it is worth the investment in time to learn how to write objective
functions in C++, and how to use the Eigen, RcppEigen and CppAD libraries. The
next best option is to derive gradients analytically, and to note the structure of the

13

Hessian. In that case, both trustOptim and bayesGDS together should be highly
efficient.

References

B.M. Bell. CppAD: a package for C++ algorithmic differentiation. Computational In-
frastructure for Operations Research, 2012. URL http://www.coin-or.org/CppAD.

Michael Braun. trustOptim: a trust-region nonlinear optimizer for R. 2012. URL
http://CRAN.R-project.org/package=trustOptim.

Michael Braun and Paul Damien. Generalized Direct Sampling for Hierarchical
Bayesian Models. August 2012. URL http://arxiv.org/abs/1108.2245v3.

Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Ra-
jamanickam. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky
Factorization and Update/Downdate. ACM Transactions on Mathematical
Software, 35(3):1–14, October 2008. doi: 10.1145/1391989.1391995. URL
http://doi.acm.org/10.1145/1391989.1391995.

Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian
Scheipl, and Torsten Hothorn. mvtnorm: Multivariate normal and t distribu-
tions. 2012. URL http://CRAN.R-project.org/package=mvtnorm. R package
version 0.9-9992.

Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2012.

Hadley Wickham. The split-apply-combine strategy for data anal-
ysis. Journal of Statistical Software, 40(1):1–29, 2011. URL
http://www.jstatsoft.org/v40/i01/.

14

