
Performance of the BICq: Simulation Experiment

C. Xu
University of Western Ontario

A. I. McLeod
University of Western Ontario

Abstract

A more detailed presentation is given for the simulation experiment reported in Xu
and McLeod (2010, Table 2) comparing the performance of the bicq with the aic, bic and
bicγ for linear model selection. The scripts displayed in this document may be manually
extracted using an editor from the file SimExperimentBICq.Rnw which is located in the
subdirectory inst/doc. Alternatively if the R package Sweave is installed the command:
R CMD Stangle SimExperimentBICq.Rnw may be used.

Keywords: AIC, extended BIC.

1. Introduction

The performance of the aic, bic, bicγ and bicq were compared by simulation. We used the
regression, yi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + β5xi,5 + ei, i = 1, . . . , 40, where ei are
independent and identically distributed as N(0, 1), xi,1 = 1 and xi,2, . . . , xi,5 are specified in
Shao (1993, Table 1).

To compare the models we may consider the model error, ‖ Xβ − X(S)β̂(S) ‖2, as well as
counts of the number of times a correct model is chosen, a model which underfits is chosen
or a model which overfits is chosen.

For the bicqwe consider q = 0.15, 0.25, 0.5, and 0.75 as well as q = q̂1 ∈ (q1,k1 , q2,k1) and
q = q̂2 ∈ (q1,k2 , q2,k2). The interval (q1,k1 , q2,k2) is obtained using the method given in Xu and
McLeod (2010) with α = 0.99.

2. Main Simulation Function

The basic workhorse for the simulation is our function BICqSimulation shown below.

R> `BICqSimulation` <-

+ function(X, beta, NumSim, g=c(0.5,1),q=c(0.15,0.25,0.75))

+ {

+ ### y=[1,X]*beta+sigma*N(0,1)

+ #Arguments: X - n*p design matrix for regression

+ # beta - vector of p+1 coefficients (including intercept)

+ # NumSim - number of simulations

+ # g - adjustable parameters for EBIC

+ # q - tuning parameters for BICq

2 Performance of the BICq: Simulation Experiment

+ #

+ stopifnot(ncol(X)==length(beta)-1)

+ n<- nrow(X)

+ K<- ncol(X)

+ b0<- beta[1]

+ b<- beta[-1]

+ s0<- (b!=0)

+ X1<- as.matrix(X[,b!=0])

+ b1<- b[b!=0]

+ y0<- b0+X1%*%b1

+ k0<- length(b1)

+ out<- 0

+ meMean<- 0

+ meSum2<- 0

+ for (i in 1:NumSim){

+ y<- y0+rnorm(n)

+ Xy<- data.frame(X,y=y)

+ #AIC

+ m<- bestglm(Xy,IC="AIC")

+ Subs<- m$Subsets[,-1]

+ sAIC<- as.matrix(Subs[which.min(Subs[,ncol(Subs)]),][1:K])

+ fit<- m$BestModel

+ meAIC<- sum((y0-fit$fitted.values)^2)

+ sAICst<- as.matrix(Subs[m$Bestq[1,3]+1,][1:K])

+ sBICst<- as.matrix(Subs[m$Bestq[2,3]+1,][1:K])

+ fit<- lm(y~., data=data.frame(X[,sAICst],y=y))

+ meAICst<- sum((y0-fit$fitted.values)^2)

+ fit<- lm(y~., data=data.frame(X[,sBICst],y=y))

+ meBICst<- sum((y0-fit$fitted.values)^2)

+ #BIC

+ m<- bestglm(Xy,IC="BIC")

+ Subs<- m$Subsets[,-1]

+ sBIC<- as.matrix(Subs[which.min(Subs[,ncol(Subs)]),][1:K])

+ fit<- m$BestModel

+ meBIC<- sum((y0-fit$fitted.values)^2)

+ #EBICs

+ sBICg<- matrix(rep(NA,K*length(g)),ncol=K)

+ meBICg<- rep(NA,length(g))

+ for (j in 1:length(g)){

+ m<- bestglm(Xy,IC="BICg",t=g[j])

+ Subs<- m$Subsets[,-1]

+ sBICg[j,]<- as.matrix(Subs[which.min(Subs[,ncol(Subs)]),][1:K])

+ fit<- m$BestModel

+ meBICg[j]<- sum((y0-fit$fitted.values)^2)

+ }

+ #BICq's

+ sBICq<- matrix(rep(NA,K*length(q)),ncol=K)

C. Xu, A. I. McLeod 3

+ meBICq<- rep(NA,length(q))

+ for (j in 1:length(q)){

+ m<- bestglm(Xy,IC="BICq",t=q[j])

+ Subs<- m$Subsets[,-1]

+ sBICq[j,]<- as.matrix(Subs[which.min(Subs[,ncol(Subs)]),][1:K])

+ fit<- m$BestModel

+ meBICq[j]<- sum((y0-fit$fitted.values)^2)

+ }

+ #

+ SS<- rbind(sAIC,sBIC,sBICg,sBICq,sAICst,sBICst)

+ rownames(SS)<- c("AIC","BIC", paste("BICg(g=",g,")",sep=""),

+ paste("BICq(q=",q,")",sep=""), "BICq1","BICq2")

+ meSS<- c(meAIC,meBIC,meBICg,meBICq,meAICst,meBICst)

+ Delta<- meSS-meMean

+ meMean<- meMean+Delta/i

+ meSum2<- meSum2+Delta*(meSS-meMean)

+ SS_s0<- SS-matrix(rep(s0,nrow(SS)),nrow=nrow(SS),byrow=TRUE)

+ SS_s0<- rowSums(SS_s0)

+ kSS<- rowSums(SS)

+ overfit <- kSS>k0

+ underfit <- kSS<k0

+ correct <- as.numeric(SS_s0==0)

+ out <- out+cbind(overfit=(kSS>k0), underfit=(kSS<k0), correct=(SS_s0==0))

+ }

+ overfit <- out[,"overfit"]/NumSim

+ underfit <- out[,"underfit"]/NumSim

+ correct <- out[,"correct"]/NumSim

+ cbind(overfit=overfit, underfit=underfit, correct=correct, me=meMean, se.me= sqrt(meSum2/(NumSim*(NumSim-1))))

+ }

3. R Script for Simulations

Here we do only 10 simulations to get some timings. It took about 4.8 seconds on our
computer, so for 105 simulations, it would take about 13.3 hours or about 3.3 hours per
model.

The results are in the R list, OutTable, and show for each model the model error as well as
counts for number correct, number overfit and number underfit.

R> library(bestglm)

Loaded lars 0.9-8

R> data(Shao)

R> NumSim <- 10^1

R> SEED<-123123321

4 Performance of the BICq: Simulation Experiment

R> X <- Shao

R> #intercept is 2 for all, ie. beta[1,]

R> BETA <- matrix(c(c(2,0,0,4,0),c(2,0,0,4,8),c(2,9,0,4,8),c(2,9,6,4,8)), ncol=4)

R> Start <- proc.time()[3]

R> OutTable<-lapply(1:4, FUN=function(i){

+ set.seed(SEED)

+ BICqSimulation(X,b=BETA[,i],NumSim=NumSim)

+ })

R> End <- proc.time()[3]

R> Total <- End-Start

R> Total

elapsed

3.04

4. Using Rmpi

The main simulations were run on a Mac computer with 8 CPU’s using the package Rmpi
(Yu 2002, 2009). Since 105 simulations were needed, we simply divided the job up into four
parts, giving each CPU one model to simulate. In this case, essentially all that is needed is
to replace apply by mpi.apply in the above R script.

Running the script below required about 3.4 hours. Making use of the multi-core CPU by
using the Rmpi package, the total time to run all four models is about the same as running
just one model on a single CPU. The results are identical to what is obtained if the R script in
Section 3 was run on a single CPU NumSim increased to 100,000. This was verified by running
the script in Section 3 overnight and setting NumSim to 100000.

4.1. R Script for Simulation Using Rmpi

library(Rmpi)

library(bestglm)

data(Shao)

NumSim <- 10^5

SEED<-123123321

X <- Shao #Note: Shao is a 40-by-4 matrix

#intercept is 2 for all, ie. beta[1,]

BETA <- matrix(c(c(2,0,0,4,0),c(2,0,0,4,8),c(2,9,0,4,8),c(2,9,6,4,8)), ncol=4)

#mpi.apply doesn't understand anonymous functions, so define:

GetTable<-function(i){

set.seed(SEED)

BICqSimulation(X,b=BETA[,i],NumSim=NumSim)

}

#

Start <- proc.time()[3]

StartDate <- date()

C. Xu, A. I. McLeod 5

#

mpi.spawn.Rslaves(nslaves=4)

mpi.bcast.Robj2slave(SEED)

mpi.bcast.Robj2slave(X)

mpi.bcast.Robj2slave(BETA)

mpi.bcast.Robj2slave(NumSim)

mpi.bcast.Robj2slave(BICqSimulation)

mpi.bcast.Robj2slave(GetTable)

mpi.bcast.cmd(library(bestglm))

#

#note: argument name is 'fun' not 'FUN'

OutTable<-mpi.apply(1:4, fun=GetTable)

End <- proc.time()[3]

EndDate<-date()

Total <- End-Start

#

#output results

for (i in 1:4)

write.table(OutTable[[i]], file=paste("tb",i,".dat",sep=""))

TotalTime<-paste("started:",StartDate,"\nended:",EndDate,"\nTotal elapsed time in seconds",Total)

write(TotalTime, file="TotalTime.txt")

#

#display files at console

dir()

file.show("TotalTime.txt")

#close and quit

mpi.close.Rslaves()

mpi.quit()

The script saves the output results in the files tb1.dat, tb2.dat, tb3.dat and tb4.dat.
These files may be processed afterwards to produce the tables shown below.

6 Performance of the BICq: Simulation Experiment

5. Tables

In the case of proportions, the maximum standard error is when p = 0.5 and corresponds to
(0.25× 10−5)−

1
2 ≈ 0.0016.

overfit underfit correct me se.me

AIC 0.44 0.00 0.56 3.83 0.01
BIC 0.19 0.00 0.81 3.00 0.01

BICg(g=0.5) 0.16 0.00 0.84 2.91 0.01
BICg(g=1) 0.13 0.00 0.87 2.87 0.01

BICq(q=0.15) 0.03 0.00 0.97 2.25 0.01
BICq(q=0.25) 0.06 0.00 0.94 2.42 0.01
BICq(q=0.75) 0.56 0.00 0.44 4.15 0.01

BICq1 0.04 0.00 0.96 2.31 0.01
BICq2 0.04 0.00 0.96 2.32 0.01

Table 1: 105 Simulations with β = (2, 0, 0, 4, 0). The percentage of overfit, underfit and correct
models as well as the model error, ME, are shown. The maximum sd of the percentages is
0.0016. For ME the sd was about 0.01 in all cases.

overfit underfit correct me se.me

AIC 0.32 0.00 0.68 4.23 0.01
BIC 0.13 0.00 0.87 3.68 0.01

BICg(g=0.5) 0.17 0.00 0.83 3.84 0.01
BICg(g=1) 0.23 0.00 0.77 4.08 0.01

BICq(q=0.15) 0.02 0.00 0.98 3.18 0.01
BICq(q=0.25) 0.04 0.00 0.96 3.30 0.01
BICq(q=0.75) 0.43 0.00 0.57 4.44 0.01

BICq1 0.03 0.00 0.97 3.22 0.01
BICq2 0.03 0.00 0.97 3.22 0.01

Table 2: 105 Simulations with β = (2, 0, 0, 4, 8). The percentage of overfit, underfit and correct
models as well as the model error, ME, are shown. The maximum sd of the percentages is
0.0016. For ME the sd was about 0.01 in all cases.

C. Xu, A. I. McLeod 7

overfit underfit correct me se.me

AIC 0.19 0.00 0.81 4.62 0.01
BIC 0.07 0.00 0.93 4.36 0.01

BICg(g=0.5) 0.16 0.00 0.84 4.57 0.01
BICg(g=1) 0.37 0.00 0.63 4.85 0.01

BICq(q=0.15) 0.01 0.00 0.99 4.15 0.01
BICq(q=0.25) 0.02 0.00 0.98 4.18 0.01
BICq(q=0.75) 0.26 0.00 0.74 4.73 0.01

BICq1 0.02 0.00 0.98 4.16 0.01
BICq2 0.02 0.00 0.98 4.16 0.01

Table 3: 105 Simulations with β = (2, 9, 0, 4, 8). The percentage of overfit, underfit and correct
models as well as the model error, ME, are shown. The maximum sd of the percentages is
0.0016. For ME the sd was about 0.01 in all cases.

overfit underfit correct me se.me

AIC 0.00 0.00 1.00 5.00 0.01
BIC 0.00 0.00 1.00 5.01 0.01

BICg(g=0.5) 0.00 0.00 1.00 5.01 0.01
BICg(g=1) 0.00 0.00 1.00 5.00 0.01

BICq(q=0.15) 0.00 0.01 0.99 5.18 0.01
BICq(q=0.25) 0.00 0.00 1.00 5.08 0.01
BICq(q=0.75) 0.00 0.00 1.00 5.00 0.01

BICq1 0.00 0.01 0.99 5.13 0.01
BICq2 0.00 0.01 0.99 5.13 0.01

Table 4: 105 Simulations with β = (2, 9, 6, 4, 8). The percentage of overfit, underfit and correct
models as well as the model error, ME, are shown. The maximum sd of the percentages is
0.0016. For ME the sd was about 0.01 in all cases.

8 Performance of the BICq: Simulation Experiment

6. Comments on the Simulation Results

The results for the mean error, ME, are identical to those reported in Xu and McLeod (2010,
Table 2). It is interesting to note that in the only case where the BICq1 or BICq2 did not do
better than all the other model selection criteria was with the full model β = (2, 9, 6, 4, 8) and
in this case the difference was very small and was apparently due to a very slight tendency to
underfit. With the other models, it was interesting to see that most of the criteria tended to
overfit the model. Underfitting was very rare. This agrees with asymptotic theory. Even in
the case of the AIC, the results of Shibata (1980) indicated that asymptotically the probability
of underfitting was zero.

Our simulation results are also available in the files tb1.dat, tb2.dat, tb3.dat and tb4.dat

included with this vignette.

References

Shao J (1993). “Linear Model Selection by Cross-Validation Linear Model Selection by Cross-
Validation.” Journal of the American Statistical Association, 88, 486–494.

Shibata R (1980). “Asymptotic Efficient Selection of the Order of the Model for Estimating
Parameters of a Linear Process.” Annals of Statistics, 7, 147Ű164.

Xu C, McLeod AI (2010). “Bayesian Information Criterion with Bernoulli prior.” Submitted
for publication.

Yu H (2002). “Rmpi: Parallel Statistical Computing in R.” R News, 2(2), 10–14. URL
http://CRAN.R-project.org/doc/Rnews/.

Yu H (2009). Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). URL http:

//CRAN.R-project.org/package=Rmpi.

Affiliation:

A.I. McLeod
University of Western Ontario
E-mail: aimcleod@uwo.ca
Changjiang Xu
University of Western Ontario
E-mail: cxu49@uwo.ca

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=Rmpi
http://CRAN.R-project.org/package=Rmpi
mailto:aimcleod@uwo.ca
mailto:cxu49@uwo.ca

	Introduction
	Main Simulation Function
	R Script for Simulations
	Using Rmpi
	R Script for Simulation Using Rmpi

	Tables
	Comments on the Simulation Results

