
The boolfun Package : Cryptographic Properties

of Boolean Functions

Frédéric Lafitte

November 7, 2012

Contents

1 Introduction 2

2 Representations 3
2.1 Truth table . 3
2.2 Algebraic Normal Form . 3
2.3 The Walsh spectrum . 5

3 Cryptographic properties 6
3.1 Resiliency . 6
3.2 Nonlinearity . 7
3.3 Algebraic immunity . 8

4 Implementation details 10
4.1 Generic functions . 10
4.2 Inherited methods . 11
4.3 Optimizations . 11

5 Conclusion 12

References 13

List of Algorithms

1 Computing the algebraic normal form. 5
2 Computing the Walsh spectrum (FWT). 6

1

1 Introduction

This document has two goals (1) guide the user in using the boolfun package (2)
explain some implementation choices and features.

Boolean functions. A Boolean function is a mapping from {0, 1}n to {0, 1}.
They have many applications (...) and this package has been developed con-
sidering cryptographic ones. In particular the security of stream ciphers relies
on a careful choice of the Boolean functions used in the cipher. The same ap-
plies to S-Boxes. However functionality to assess those objects has not been
implemented yet.

Motivations. The lack of open source software to assess cryptographic prop-
erties of Boolean functions and the increasing interest for statistical testing of
properties related to random Boolean functions [7, 12, 6, 1] are the main moti-
vations for the development of this package.

The R language. R is a free open-source collaborative effort widely used
for (but not restricted to) data analysis and numerical computing. It is an
implementation of S, a statistical programming language that appeared around
1975. More information can be found in [8, 11] and www.r-project.org.

Notations. In this document as well as in the package documentation the
following notation is used.
Bn is the set of Boolean functions with n input variables.
An is the set of affine functions, that is {f ∈ Bn | deg(f) = 1}.
Ln is the set of linear functions, that is {f ∈ An | f(0, ..., 0) = 0}.
deg(f) is the algebraic degree of f .
supp(f) is the support of f ∈ Bn, that is the set {x̄ ∈ Fn

2 | f(x̄) 6= 0}.
x̄ = (x1, ..., xn) is an element of Fn

2 (equivalently {0, 1}n).
dH(f, g) is the Hamming distance betweeen f and g, that is

dH(f, g) = #{x̄ ∈ Fn
2 | f(x̄) 6= g(x̄)}.

wH(f) is the Hamming weight of f , that is wH(f) = #supp(f).
f ⊕ g with f, g ∈ Bn is the bitwise exor of their thruth tables.
f(x̄)⊕ g(x̄) is the exor of values returned by f and g on input x̄.
‖ denotes concatenation. For example, 0 ‖ 1 ‖ 1 = 011.

The remainder of this document goes as follows. Section 2 defines and explains
the three representations implemented in the package, namely the truth table,
algebraic normal form and Walsh spectrum, as well as how they are computed.
Section 3 focuses on cryptographic properties of Boolean functions that are
relevant for the design of stream ciphers (i.e. cryptographic pseudo-random
generators), namely nonlinearity, algebraic immunity, correlation immunity and
resiliency. Section 4 discusses some implementation details, such as the object

2

www.r-project.org

oriented features that are inherited from Object which is defined in the R.oo
package [3]. Finally section 5 concludes the document.

2 Representations

Three representations are implemented, the algebraic normal form, the truth
table and the Walsh spectrum. The truth table is given by the user who initial-
izes the object, the other representations are both computed in O(n2n) using C
code. An effort has been made to optimize execution speed rather than memory
usage.

2.1 Truth table

The truth table is the most natural way to represent a Boolean function. It is
a table with two columns, one for the input/assignment, and the other for the
corresponding output/return value. Note that if a total order is defined over the
assignments (inputs) of the Boolean function, the truth table can be uniquely
represented by a vector of length 2n.

> library(boolfun)

> f <- BooleanFunction(c(0,1,1,1,0,1,0,0)) # n = 3

> g <- BooleanFunction('01010101')

> h <- BooleanFunction(c(tt(f), tt(g)))

For now, the only way to define a Boolean function is with its truth table. The
truth table can be a vector of integers or a string of length a power of 2. In the
above code h is defined by the concatenation of the truth tables of f and g.

> h

[1] "Boolean function with 4 variables."

> h$tt()

[1] 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1

The returned value of h$tt() (which is equivalent to tt(h)) is a vector of
integers. The order ≤ over Fn

2 mentioned above is defined as follows. Let ‖
denote concatenation. Then xn ‖ · · · ‖ x1 is the assignment number (counting
from zero) in base 2. For example, with n = 3 we have

(0, 0, 0) ≤ (1, 0, 0) ≤ (0, 1, 0) ≤ (1, 1, 0) ≤ (0, 0, 1) ≤ (1, 0, 1) ≤ (0, 1, 1) ≤ (1, 1, 1)

2.2 Algebraic Normal Form

Any Boolean function f(x1, ..., xn) can be written as

f(0, x2, ..., xn)⊕ x1 · f(1, x2, ..., xn)⊕ x1 · f(0, x2, ..., xn)

3

because if x1 = 0, the expression becomes f(0, x2, ..., xn), and if x1 = 1, it
becomes f(1, x2, ..., xn). The functions f(1, x2, ..., xn) and f(0, x2, ..., xn) have
n− 1 variables and each can be further decomposed in two functions with n− 2
variables. Once f is expressed with (2n) constant functions it is expressed in
algebraic normal form, i.e. as a sum of all possible products of input variables.
For example, 1⊕x3⊕x1x2⊕x2x3⊕x1x2x3 is the algebraic normal form of some
function in B3. The algebraic normal form is thus a multivariate polynomial and
the constant functions (those obtained by decomposition) are the coefficients of
the 2n products of input variables (i.e. monomials).
A more formal definition follows, where ≤ is the ordering of vectors in Fn

2 defined
at the end of section 2.1.

Definition 1. The algebraic normal form of f ∈ Bn is the multivariate poly-
nomial P defined as follows.

P (x̄) =
⊕
ā∈Fn

2

h(ā) · x̄ā

where x̄ā =
∏n−1

i=0 xai
i and h(ā), the coefficient of the monomial x̄ā, is defined by

h(x̄) =
⊕
ā≤x̄

f(ā) (1)

which is known as the Möbius inversion.

Note that the algebraic normal form can be easily determined if the values of h(·)
are known. Those values are returned by the method anf() as in the following
code.

> anf <- f$anf()

> anf

[1] 0 1 1 1 0 0 1 0

The returned value is a vector of 2n binary integers and anf[i] equals one if
the ith monomial (according to the order defined over the assignments) appears
in the algebraic normal form. That is, the monomials are sorted as follows

1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3

and f can thus be written x1 ⊕ x2 ⊕ x1x2 ⊕ x2x3.

Implementation The algebraic normal form is computed in O(n2n) using C
code according to the following algorithm.

4

Data: tt (truth table), n (number of variables)
Result: tt (will hold the coefficients of the anf)
u← all zero vector of length 2n−1

v ← all zero vector of length 2n−1

for i = 0, ..., n− 1 do
for j = 0, ..., 2n−1 − 1 do

t[j]← tt[2j]
u[j]← tt[2j]⊕ tt[2j + 1]

end
tt← t ‖ u

end
Algorithm 1: Computing the algebraic normal form.

2.3 The Walsh spectrum

The Walsh transform of f ∈ Bn is denoted Wf (·) and maps elements x̄ ∈ Fn
2 to

Z as follows
Wf (x̄) =

∑
ā∈Fn

2

(−1)f(ā)⊕x̄·ā

where x̄ · ā can be seen as a linear Boolean function of ā determined by the x̄
vector. Let’s denote gx̄(ā) = x̄ · ā for a given x̄. Then, (−1)f(ā)⊕gx̄(ā) equals
1 if the outputs of functions f and gx̄ are the same, and −1 otherwise. Hence
the returned value of Wf (x̄) is the number of inputs ā for which f(ā) = gx̄(ā),
minus the number of inputs ā for which f(ā) 6= gx̄(ā).

Wf (x̄) = (2n − dH(f, gx̄))− (dH(f, gx̄)) = 2n − 2dH(f, gx̄)

As Wf (x̄) measures the similarity between f(ā) and the linear function gx̄(ā) =
x̄ · ā, the spectrum Wf (·) contains this similarity for all linear functions.

> wh <- f$wh()

> wh

[1] 0 4 0 4 -4 0 4 0

The returned value is a vector of 2n integers and wh[i] is the value of Wf (·)
on input the ith vector of Fn

2 according to the total order defined at the end
of section 2.1. For example the fourth vector of Fn

2 is (1, 1, 0) and defines the
linear function g(1,1,0)(x̄) = x1 ⊕ x2. Hence, according to f$wh(), the function
f is better approximated by g(1,1,0) than by, for example, g(1,1,1) = x1⊕x2⊕x3.

Implementation. The Walsh spectrum is computed in O(n2n) using C code
according to the Fast Walsh-Hadamard Transform [9](algorithm 2).

5

Data: tt (truth table), n (number of variables)
Result: res (vector containing Wf (x̄)∀x̄)
for i = 0, ..., 2n − 1 do

res[i]← (−1)tt[i]

end
for i = 1, ..., 2n do

m← 2i

halfm← 2i−1

for k in 0, ..., 2n − 1 by m do
t1 ← k
t2 ← k + halfm
for j = 0, ..., halfm− 1 do

a← res[t1]
b← res[t2]
res[t1]← a + b
res[t1]← a− b
t1 ← t1 + 1
t2 ← t2 + 1

end

end

end
Algorithm 2: Computing the Walsh spectrum (FWT).

3 Cryptographic properties

This section defines some properties relevant for cryptographic applications and
explains how to use the package to compute them. Those properties are re-
siliency (i.e. balancedness and correlation immunity), nonlinearity and algebraic
immunity. For further readings, the reader is refered to [4].

3.1 Resiliency

Resiliency combines balancedness and correlation immunity. A Boolean function
is said to be correlation immuned of order t if the probability distribution of its
output does not change when at most t input bits are fixed.

Definition 2. A function f ∈ Bn is t-CI if its output is statistically independent
of any subset of at most t input bits.

Correlation immunity (and resiliency) are used to assess the resistance to corre-
lation attacks [5]. Note that the statistical measure used to assess independency
between input and output bits is (conditional) mutual information.

Definition 3. A function f ∈ Bn is t−resilient if
(a) f is balanced, that is its truth table contains as many zeros as ones, and
(b) f is t-CI, i.e. correlation immuned of order t.

6

Thus a function is t−resilient if its output stays balanced when at most t in-
put variables are fixed. In other words, f is balanced if f(x1, ..., xn) ⊕ x1 ⊕
... ⊕ xn is balanced and f is t−resilient if ∀(i1, ..., it) ⊂ {1, ..., n} the function
f(x1, ..., xn) ⊕ xi1 ⊕ ... ⊕ xit is balanced. This means that ∀m ∈ {0, ..., t}, if x̄
has m variables fixed, the function (thus in Bn−m) is balanced. If we denote
this function f ′ ∈ Bn−m we thus have Wf ′(0̄) = 0. The latter being true for all
f ′ (i.e. any function with at most m variables fixed) we have Wf (x̄) = 0 for all
x̄ s.t. wH(x̄) ≤ t.

Implementation. According to the results established above, f ∈ Bn is
t−resilient means that Wf (x̄) = 0 ∀x̄ | wH(x̄) ≤ t and f is t-CI if Wf (x̄) =
0 ∀x̄ | 0 < wH(x̄) ≤ t. The implementation of resiliency is straightforward once
a method returning the correlation immunity is available. Correlation immunity
is implemented by checking if all x̄ having (non-zero) Hamming weight at most
t have a zero entry in the Walsh spectrum. Resiliency, correlation immunity
and balancedness can be obtained using the methods res(), ci(), isBal(),
isCi(), isRes() as follows.

> if(isBal(f)) print(tt(f))

[1] 0 1 1 1 0 1 0 0

> t <- BooleanFunction('01101001')$res()

> BooleanFunction('01101001')$isRes(t)

[1] TRUE

> t

[1] 2

3.2 Nonlinearity

The nonlinearity of f , denoted nl(f), is defined as the smallest Hamming dis-
tance between the function f and its best affine approximation.

Definition 4. For all f ∈ Bn, the nonlinearity of f is

nl(f) = min
g∈An

dH(f, g)

This property has been introduced to assess the resistance of a Boolean function
to linear attacks (including correlation attacks), i.e. attacks where the function
f is approximated by a function in An.
Let W ′f (x̄, b) be a similar measure as Wf (x̄) for the affine function gx̄,b with
constant term b. That is,

W ′f (x̄, b) =
∑
ā∈Fn

2

(−1)f(ā)⊕āx̄⊕b

= (−1)b ·Wf (x̄)

= (−1)b(2n − 2dH(f, gx̄))

7

Hence,

dH(f, gx̄,b) =
2n − (−1)bWf (x̄)

2

and the definition of nl(f) can be rewritten as follows.

nl(f) = min
gx̄,b∈An

2n − (−1)bWf (x̄)

2

= min
x̄∈Fn

2

2n− |Wf (x̄) |
2

= 2n−1 − 1

2
max
x̄∈Fn

2

|Wf (x̄) | (2)

Implementation. Equation (2) is used to obtain the nonlinearity. The method
nl() can be used as follows.

> newTruthTable <- c(tt(h),tt(h),tt(h),tt(h))

> f <- BooleanFunction(newTruthTable)

> f

[1] "Boolean function with 6 variables."

> wh(f)

[1] 0 48 0 16 -16 0 16 0 0 -16 0 16 -16 0 16 0 0 0 0

[20] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[58] 0 0 0 0 0 0 0

> nl(f)

[1] 8

> ((2^f$n()) - max(abs(wh(f)))) / 2

[1] 8

3.3 Algebraic immunity

Some authors prefer to call this property annihilator immunity as it does not
reflect the resistance to all algebraic attacks, only to the ones based on anni-
hilators. Attacks on the augmented function or cube attacks use different ap-
proaches. An annihilator of f ∈ Bn is a function g ∈ Bn such that f(x̄) · g(x̄) =
0 ∀x̄ ∈ Fn

2 . In order words, a function whose support is disjoint from the support
of f so that f(x̄) · g(x̄) = 0 ∀x̄ ∈ Fn

2 . Algebraic attacks are mounted in two
steps.

8

1. Find a system of equations fi (multivariate polynomials over F2) linking
the secret bits (e.g. key bits) with the public bits (keystream, ciphertext,
plaintext, ...). The system looks like

f1(x1, ..., xn) = b1

...

fN (x1, ..., xn) = bN

where fi ∈ Bn, bi are the public bits and xi are the secret bits.

2. Solve in F2 the system of (usually highly nonlinear) equations in order to
recover the secret bits. This step involves lowering the algebraic degree of
the system. Several methods can be used to achieve this [2].

Consider the equation f1(x1, . . . , xn) = b1. If g1 ∈ Bn is an annihilator of f1 with
low degree (i.e., deg(g) < deg(f)), then the equation f1(x̄) · g1(x̄) = g1(x̄) · b1 is
easier to solve as it becomes g1(x̄) · b1 = 0 (with lower degree).
The authors in [10] discuss several ways to lower the degree of f1(x̄) = b1 using
annihilators, that is, (a) finding a nonzero annihilator g1 as above (i.e. with low
degree) and (b) finding a nonzero function g′1 such that f1(x̄)·g′1(x̄) = h(x̄) where
h is a low degree function. Then they show that case (b) is equivalent to case (a)
for the function 1⊕f(x̄). That is, multiplying the equation f(x̄) ·g(x̄) = h(x̄) by
f we have f(x̄) · g(x̄) = f(x̄) · h(x̄) = h(x̄) as f2(x̄) = f(x̄) holds over F2. Thus
we have (1⊕ f(x̄)) · h(x̄) = 0. Consequently, we get the following definition.

Definition 5. The algebraic immunity ai(f) is the smallest value of d such that
f(x̄) or 1⊕ f(x̄) has a non-zero annihilator of degree d.

Implementation If we consider the annihilators (Boolean functions) as a sum
of monomials (of degree at most dn/2e) we see that all those monomials should
evaluate to zero for all x̄ ∈ supp(f). Hence, a matrix M is built where lines
are labeled 1, x1, x2, ... (i.e. all monomials with degree ≤ dn/2e and columns
corresponds to supp(f). The entry Mi,j is the value taken by monomial i on
input the jth vector of supp(f). For example the monomial x1x3 evaluates to 1
on inputs (1, 0, 1) and (1, 1, 1), zero elsewhere. A second step consists in using
Gauss elimination to yield zero lines, the corresponding label of such a line being
the algebraic normal form of an annihilator. If d such lines are found, their labels
form a basis of the set of annihilators. The same procedure is applied to 1⊕ f ,
that is, considering the complement of supp(f) : {x̄ ∈ Fn

2 | f(x̄) = 0}.

> randomAIs <- c()

> for(i in 1:1000) {

+ randomTruthTable <- round(runif(2^5, 0,1))

+ randomAIs <- c(randomAIs, ai(BooleanFunction(randomTruthTable)))

+ }

> max(randomAIs)

9

[1] 3

> min(randomAIs)

[1] 1

> mean(randomAIs)

[1] 2.054

> sd(randomAIs)

[1] 0.2305149

This code shows how to declare a random Boolean function using runif. The
algebraic immunity of 1000 random functions in B5 is computed and stored in
randomAIs. Several statistics are displayed (sd stands for standard deviation).

4 Implementation details

This section explains some features of the BooleanFunction object, in particular
generic and inherited methods and some optimizations.

4.1 Generic functions

Generic functions are functions that can be applied to different objects (e.g.
print(), plot(), ...). Some generic functions are overloaded in order to support
instances of BooleanFunction.

> c(tt(f), f$tt()) # concatenation

[1] 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0

[38] 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1

[75] 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0

[112] 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1

> g <- BooleanFunction(c(tt(f), tt(f)))

In the above code, g is built by concatenating the truth table of f with itself.
Note that f$tt() calls the same function as tt(f). This applies to all public
methods of BooleanFunction.

> g

[1] "Boolean function with 7 variables."

> print(g)

[1] "Boolean function with 7 variables."

10

> print(tt(g))

[1] 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0

[38] 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1

[75] 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0

[112] 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1

> print(tt)

function (...)

UseMethod("tt")

<environment: namespace:boolfun>

attr(,"export")

[1] TRUE

> print(g$tt)

function (...)

method(this, ...)

<environment: 0x91d6a94>

4.2 Inherited methods

BooleanFunction inherits from Object defined in the R.oo package. The in-
herited functions equals() and hashCode() are overriden.

> h <- BooleanFunction(tt(f))

> equals(tt(f), tt(h))

[1] TRUE

> equals(f, h)

[1] TRUE

> equals(hashCode(f), hashCode(h))

[1] FALSE

In the above code hashCode(f) calls Object’s hashCode() with a string repre-
sentation of f’s truth table as argument. Hence the functions f and h have the
same hashCode() value as they have the same truth table.

4.3 Optimizations

A first optimization consist in the use of C code for computing

� The algebraic normal form.

� The algebraic immunity.

11

� The Walsh spectrum.

A second feature is that heavy computations are carried once only, the first time
they are needed. For this, some results are stored in private fields. Those com-
putations are the ones that involve C code, that is, the three items mentionned
above.

5 Conclusion

A free open source package to manipulate Boolean functions is available at
R CRAN cran.r-project.org. The package has been developed to evaluate
cryptographic properties of Boolean functions and carry statistical analysis on
them. An effort has been made to optimize execution speed rather than memory
usage.

Acknowledgments. Thanks to Bertram Poettering for reporting an error in
the documentation of the ANF algorithm, and to Dirk Van Heule and Rob
Haelterman for their comments on early versions of this document.

12

cran.r-project.org

References

[1] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube
testers and key recovery attacks on reduced-round MD6 and trivium. In He-
lena Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway, editors,
Symmetric Cryptography, number 09031 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany.

[2] Gregory V. Bard. Algorithms for Solving Linear and Polynomial Systems
of Equations over Finite Fields with Applications to Cryptanalysis. PhD
thesis, University of Mariland, 2007.

[3] Henrik Bengtsson. The R.oo package - object-oriented programming with
references using standard R code. In Kurt Hornik, Friedrich Leisch, and
Achim Zeileis, editors, Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003), Vienna, Austria, March
2003.

[4] Ann Braeken. Cryptographic Properties of Boolean Functions and S-Boxes.
PhD thesis, Katholieke Universiteit Leuven (KUL), 2006.

[5] Anne Canteaut. Fast correlation attacks against stream ciphers and re-
lated open problems. IEEE Information Theory Workshop on Theory and
Practice in Information-Theoretic Security, 2005.

[6] H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A frame-
work for chosen IV statistical analysis of stream ciphers. In K. Srinathan,
C. Pandu Rangan, and Moti Yung, editors, Progress in Cryptology - IN-
DOCRYPT 2007, 8th International Conference on Cryptology in India,
Chennai, India, December 9-13, 2007, Proceedings, volume 4859 of Lecture
Notes in Computer Science, pages 268–281. Springer, 2007.

[7] Filiol. A new statistical testing for symmetric ciphers and hash functions.
In ICIS: International Conference on Information and Communications
Security (ICIS), LNCS, 2002.

[8] Ross Ihaka and Robert Gentleman. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299–314,
1996.

[9] James L. Massey. The discrete fourier transform in coding and cryptogra-
phy. In IEEE Inform. Theory Workshop, ITW 98, pages 9–11, 1998.

[10] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and de-
composition of boolean functions. In In Advances in Cryptology - EURO-
CRYPT 2004, pages 474–491. Springer-Verlag, 2004.

13

[11] Brian D. Ripley. The R project in statistical computing. MSOR Connec-
tions. The newsletter of the LTSN Maths, Stats & OR Network., 1(1):23–25,
February 2001.

[12] Markku-Juhani Olavi Saarinen. Chosen-IV statistical attacks on estream
ciphers. In Manu Malek, Eduardo Fernández-Medina, and Javier Her-
nando, editors, SECRYPT 2006, Proceedings of the International Confer-
ence on Security and Cryptography, Setúbal, Portugal, August 7-10, 2006,
SECRYPT is part of ICETE - The International Joint Conference on e-
Business and Telecommunications, pages 260–266. INSTICC Press, 2006.

14

	Introduction
	Representations
	Truth table
	Algebraic Normal Form
	The Walsh spectrum

	Cryptographic properties
	Resiliency
	Nonlinearity
	Algebraic immunity

	Implementation details
	Generic functions
	Inherited methods
	Optimizations

	Conclusion
	References

