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Abstract

In multivariate data analysis we observe not only a single variable or the relation be-
tween two variables but we consider several characteristics simultaneously. For a statistical
analysis of chemical data (also called chemometrics) we have to take into account the spe-
cial structure of this type of data. Classic model assumptions might not be fulfilled by
chemical data, for instance there will be a large number of variables and only few obser-
vations, or correlations between the variables occur. To avoid problems arising from this
fact, for chemometrics classical methods have to be adapted and new ones developed.

The statistical environment R is a powerful tool for data analysis and graphical repre-
sentation. It is an open source software with the possibility for many individuals to assist
in improving the code and adding functions. One of those contributed function packages
- chemometrics implemented by Kurt Varmuza and Peter Filzmoser - is designed es-
pecially for the multivariate analysis of chemical data and contains functions mostly for
regression, classification and model evaluation.

The work at hand is a vignette for this package and can be understood as a manual
for its functionalities. The aim of this vignette is to explain the relevant methods and to
demonstrate and compare them based on practical examples.
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1 Introduction

1.1 The R package chemometrics

Multivariate data analysis is the simultaneous observation of more than one characteristic. In
contrast to the analysis of univariate data, in this approach not only a single variable or the
relation between two variables can be investigated, but the relations between many attributes
can be considered. For the statistical analysis of chemical data one has to take into account the
special structure of this type of data. Very often, classic model assumptions are not fulfilled
by chemical data, for instance there will be less observations than variables, or correlations
between the variables occur. Those problems motivated the adaption and development of
several methods for chemometrics.

The statistical environment R (R Development Core Team 2006) is a powerful tool for data
analysis and graphical representation. The programming language behind it is object oriented.
As part of the GNU project (Galassi et al. 2009), it is an open source software and freely
available on http://cran.r-project.org. The fact that anyone can assist in improving the
code and adding functions makes R a very flexible tool with a constantly growing number of
add-on packages. An introduction to R can be found in Venables and Smith (2002).

Varmuza and Filzmoser (2009) wrote a book for multivariate data analysis in chemometrics,
and contributed to the R framework with a function package for corresponding applications.
The package contains about 30 functions, mostly for regression, classification and model eval-
uation and includes some data sets used in the R help examples.

The work at hand is a vignette for this R package chemometrics and can be understood as a
manual for its functionalities. It is written with the help of Sweave (Leisch 2002), a reporting
tool which allows for LATEX as well as R code and output to be presented within one document.
For details on R vignettes and how to extract the R code from the document see Leisch (2003).
The aim of this vignette is to explain the relevant methods and to demonstrate them based
on practical examples.

To get started, the package chemometrics and other internally required packages can be
loaded simultaneously by the command

> library(chemometrics)

1.2 Overview

In chemometrics very often we have to deal with multicollinear data containing a large number
of variables (and only few observations) which makes the use of some classical statistical tools
impossible.
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Therefore, in chapter 2 we start with a very important method to analyze this type of data.
The idea of principal component analysis (PCA) is to transform the original variables to a
smaller set of latent variables (principal components) with the aim to maximize the explained
variance of the data. Since the new variables are uncorrelated we get rid of the multicollinearity
this way. The usage of the respective chemometrics functions is demonstrated with the help
of a practical data example.

In chapter 3 we explain several regression methods that are suitable for chemical data. The
process of finding the optimal variables to use for the model or an adequate transformation of
the data and the optimal values for the model coefficients is called calibration of a regression
model. In order to apply ordinary least squares regression properly we need at least to apply
some method for the selection of the most important variables. An algorithm for stepwise
variable selection is implemented in chemometrics which - starting with the empty regression
model - adds and removes variables in order to reduce a certain criterion in each step. The
resulting subset of the original variables is then used for OLS regression.

A method that unlike OLS does not require uncorrelated variables or normal distribution of the
residuals is principal component regression (PCR) where not the original variables are used for
the explanation of the dependent variable but the principal components. The components are
chosen in a way to maximize the prediction performance of the regression model. In contrast
to PCR, Partial least squares (PLS) regression uses so-called PLS components similarly. Those
components are calculated in order to maximize the covariance between the independent and
the dependent variables. For the case of outliers in the data, there is a robust version of PLS
implemented in the chemometrics package.

Last but not least there are two very similar methods which are based on a modified OLS
objective function: Ridge and Lasso regression. The modification consists in adding a penalty
term to the objective function which causes a shrinkage of the regression coefficients. For
Ridge regression, this term depends on the squared coefficients and for Lasso regression on the
absolute coefficients. At the end of this section there is a section dedicated to the comparison
of the results gained by the above mentioned methods applied to a data example.

Chapter 4 finally takes us to the optimal usage of the classification methods implemented in the
R package chemometrics. The task here is to classify new objects based on a model that was
trained using data with known class membership. Two conceptually relatively simple methods
are k nearest neighbors and classification trees. The former classifies a new object according
to the class that appears mostly among its neighbors where the number k of neighbors to
consider has to be chosen optimally. Classification trees divide the object space along an
optimally chosen coordinate into two regions which are divided again and again until some
optimal tree size is reached, and classify a new object according to the majority class of the
region it belongs to.

Artificial neural networks are motivated by the neurons in the human brain and use functions
of linear combinations of the original variables - called hidden units - to model the class
membership by regression. We obtain a probability for each object to belong to a certain class
and assign it to the class with the highest probability. The number of hidden units and a
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shrinkage parameter used in the objective function have to be optimized when building the
model. Another more complex classification method are support vector machines. Here, the
original data is transformed to a space with higher dimension in order to make the groups
linearly separable by a hyperplane which is chosen in such a way that the margin between the
classes is maximized. Often the groups are not perfectly separable, and so we allow for some
objects to be on the wrong side of the hyperplane but not without constraining the sum of
their distances from their respective class. The optimization of a parameter for this restriction
is an important task here. Again the methods are demonstrated on a data example and the
results are compared in the end.

The lecture of appendix A about cross validation is highly recommended as this method is
used throughout the vignette to obtain a large number of predictions which is important for
the optimization of model parameters and the estimation of the prediction performance of a
model. In appendix B we explain some functions for the transformation of compositional data
which appear frequently in chemistry.

2 Principal Component Analysis

Functions discussed in this section:

pcaCV
nipals
pcaVarexpl
pcaDiagplot

2.1 The Method

Principal component analysis (PCA) is a method for the visualization of complex data by
dimension reduction. Besides exploratory data analysis also prediction models can be created
using PCA. The method was introduced by Pearson (1901); Hotelling (1933) made further
developments.

The high number of variables in multivariate data leads to three main problems:

1. Graphical representation of the data is not possible for more than three variables.

2. High correlation between the variables makes it impossible to apply many statistical
methods.

3. Many variables contain only very few information.

PCA is able to avoid all of these problems by transforming the original variables into a smaller
set of latent variables which are uncorrelated. Data transformed in such a way can then be
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used by other methods. The latent variables with the highest concentration of information
form lower dimensional data which can be visualized graphically. Noise is separated from
important information.

Principal Component Transformation

Definition 2.1. Considering a mean-centered n ×m-dimensional data matrix X, we define
the principal component transformation as

T = X ·P,

P being the so-called loadings matrix of dimension m × m and T the transformed n × m-
dimensional matrix of scores, the values of the principal components (PCs).

We require T to have maximum variance, P to be an orthogonal matrix and its columns pi to
be unit vectors. This transformation is a classical eigenvalue problem and nothing else than
an orthogonal rotation of the coordinate system. The loadings are the directions of the new
axes (the new variables); the scores represent the coordinates of data points with respect to
the new system (the new objects).

The mean vector of T is 0, and if the covariance matrix of X is S, the covariance of T is PSPT.
The elements of P, pij , represent the influence of the ith variable on the jth component, and
the squared correlation of xi and tj can be interpreted as the variation of xi explained by tj .

The PCA Model

The PCs resulting from the principal component transformation are ordered descendingly by
their level of information but still have the same dimension as the original data. To reach
the goal of dimension reduction we use only the first a principal components, resulting in the
matrices aT (n× a) and aP (m× a), respectively, and in a model of the form

X = aT · aPT + aE.

That means we separate the noise aE (n × m) from the relevant information. The model
complexity a can be reasonably chosen by observing the percentage of the data’s total variance
that is explained by each model belonging to a fixed number of PCs.

Finally, the fitting of the model is evaluated with regard to the representation of the original
variables in the new space and regarding potential outliers that can severely distort the results.

2.2 An R Session

The data set at hand results from the chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of 13
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constituents found in each of the three types of wines. We want to apply PCA in order to
reduce the dimension of the data by eliminating the noise.

First of all, since the principal component transformation is not scale invariant we scale the
data before we do the PCA, leaving apart the first variable which contains the class information
and is hence not relevant for PCA.

> library(gclus) # contains the data set
> data(wine)
> X <- scale(wine[,2:14]) # first column: wine type

The optimal number of components

Before we actually calculate the PCs it is necessary to determine the optimal model complex-
ity. The chemometrics function pcaCV uses repeated cross validation (see appendix A) to
calculate a large number of explained variances for different model complexities.

> res <- pcaCV(X)

For an increasing number of components the output (Figure 1, left) shows the distribution of
the explained variances obtained by 50 times repeated 4-fold CV. We choose the lowest possible
model complexity which still leads to a reasonable high percentage of explained variance. Here,
a threshold of 80% makes us compute 5 PCs.

NIPALS Algorithm

In most chemical applications it will be necessary to compute only a few principal components.
For this purpose chemometrics offers an implementation of the so-called nonlinear iterative
partial least-squares algorithm (NIPALS, Algorithm 2.1), developed by H. Wold (1966).

Assuming an initial score vector u which can be arbitrarily chosen from the variables in X,
the corresponding loading vector b is calculated by XTu and normalized to length 1. This
approximation can be improved by calculating X · b. Until the improvement does not exceed
a small threshold ε, the improved new vector is used to repeat this procedure.

If convergence is reached, the first principal component, u·bT, is subtracted from the currently
used X matrix, and the resulting residual matrix Xres (that contains the remaining informa-
tion) is used to find the second PC. This procedure is repeated until the desired number of
PCs is reached or until the residual matrix contains very small values.

Passing the argument a = 5, as determined before, nipals works as follows:
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> X_nipals <- nipals(X, a=5)

X is the data matrix; a the number of computed principal components. nipals gives us back
two matrices: one containing the scores for each component and one with the loadings for
each component. Furthermore, the improvement of the score vector in each step is displayed.
In our case, warning messages occur:

WARNING! Iteration stop in h= 2 without convergence!
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Figure 1: Left: output of pcaCV. Determination of the optimal number of PCs. The data for the
boxplots was obtained by 4-fold CV, repeated 50 times. Right: output of pcaVarexpl.
Control the explained variance of each variable.
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Algorithm 2.1. The following scheme illustrates the algorithm used
by the R function nipals (see Varmuza and Filzmoser 2009).
1. X X is a mean-centered data matrix of dimension n×m.
2. u = xj Arbitrarily choose a variable of X as initial score vector.
3. b = XTu/uTu Calculate the corresponding loading vector and

b = b/||b|| normalize it to length 1.
4. u∗ = Xb Calculate an improved score vector.
5. u∆ = u∗ − u Calculate the summed squared differences

∆u = uT
∆u∆ between the previous scores and the improved scores.

if ∆u > ε Continue with step 6.
if ∆u < ε Convergence is reached. Continue with step 7.

6. u = u∗ Use the improved score vector to continue with step 3.
7. t = u∗ Calculation of a PC is finished.

Store score vector t in score matrix T;
store loading vector p in loading matrix P.

p = b Stop if no further components are needed.
8. Xres = X− ubT Calculate the residual matrix of X.

Stop if the elements of Xres are very small.
No further components are reasonable in this case.

9. X = Xres Replace X with Xres.
For calculation of the next PC continue with step 2.

By raising the maximum number of iterations for the approximation of scores and loadings
(argument it which defaults to 10) to 160 we get a better result. If this measure still did not
lead to convergence one would have the possibility to lower the tolerance limit for convergence
(argument tol) which is preset to 10−4. Another way would be to rethink the number of
computed components.

We finally decide on the following option:

> X_nipals <- nipals(X, a=5, it=160)

In the new orthogonal coordinate system the variables (components) are not correlated any-
more, and we are able to use the transformed data with classical methods. However, this
should not be started without evaluating the model’s quality before.

Evaluation

The numerical accuracy of the NIPALS algorithm makes it very attractive for PC computation.
However, since the calculation happens stepwise it is not the fastest algorithm. Singular value
decomposition or eigenvalue decomposition are hence more recommendable if a higher number
of components is required and for evaluation procedures in which PCA is carried out many
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Figure 2: Types of outliers in principal component analysis.

times. The earlier described function pcaCV as well as the following pcaVarexpl work in this
sense.

We want to evaluate the quality of our model taking a look at the representation of the original
variables in the rotated coordinate system. Therefore, the function pcaVarexpl generates a
plot (Figure 1, right) that shows how much of each variable’s variance is explained by our
model with 5 PCs.

> res <- pcaVarexpl(X, a=5)

In some cases (for example if we consider the model with 5 or only 4 PCs) some variables may
be under-represented. In order to avoid this we can add more PCs to the model.

Another important thing to do is to examine the existence of outliers in the data because they
are able to severely influence the results of the PCA. For this purpose we need to calculate
the score distance (SD) and the orthogonal distance (OD) of each object.
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We understand the SD as the distance of an object in the PCA space from the center of the
transformed data. Objects with an SD beyond a certain threshold are called leverage points.
For the critical value of this threshold we can take the root of the 97.5% quantile of the
chi-square distribution with a degrees of freedom, in our case√

χ2
5;0.975 = 3.8.

On the other hand, the OD is calculated in the original space as the orthogonal distance of
an object to the PCA subspace or, in other words, the distance between the object and its
orthogonal projection on the PCA subspace. A robust cutoff value to distinguish between
orthogonal outliers and non-outliers can be taken as

[median(OD2/3) + MAD(OD2/3) · z0.975]3/2.

With the help of those two distance measures we can subdivide the data points in four classes:
Regular points, orthogonal outliers as well as good and bad leverage points. Figure 2 taken
from Varmuza and Filzmoser (2009) shows three dimensional data the majority of which lies
in a two dimensional subspace spanned by the first two PCs. Both SD and OD are lower
than the respective critical values; those objects form the regular part. If, instead, the OD
exceeds its critical value (with an SD that is still in a low range), like for object 1, we have
an orthogonal outlier. That means the original object lies far from the PCA space but its
projection on the PCA space is within the range of the regular data. A point of that type can
cause a shift of the PCA space, away from the majority of the data. A similar effect occurs in
the case of bad leverage points (object 2), when both SD and OD are higher than the critical
values. Points of this type lever the PCA space by pulling it in their direction and are hence
able to completely distort the results. Object 3, on the other hand, is a good leverage point
with large SD but low OD, causing a stabilization of the PCA space.

The function pcaDiagplot gives us a nice graphical possibility to detect outliers. It requires at
least X (the original data), X.pca (the PCA transformed data) and a (the number of principal
components computed). Figure 3 shows the output of pcaDiagplot with the classic NIPALS
PCA.

> X_nipals <- list(scores=X_nipals$T, loadings=X_nipals$P,
sdev=apply(X_nipals$T, 2, sd))

> res <- pcaDiagplot(X, X.pca=X_nipals, a=5)

However, for pcaDiagplot to work properly (i.e. to detect outliers correctly), robust PCA
should be used (see Figure 4).
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Figure 3: Output of pcaDiagplot with NIPALS PCA.

●
●

●

●

●●

●

●

●
●●●●

●●

●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●
●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150

0
1

2
3

Object number

S
co

re
 d

is
ta

nc
e 

S
D

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●●●
●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

0 50 100 150

0
1

2
3

4

Object number

O
rt

ho
go

na
l d

is
ta

nc
e 

O
D

Figure 4: Output of pcaDiagplot with robust PCA.

> X.rob <- scale(wine[,2:14], center = apply(wine[,2:14], 2, median),
scale = apply(wine[,2:14], 2, mad))

> library(pcaPP) # robust PCA based on projection pursuit
> X.grid <- PCAgrid(X.rob,k=5,scale=mad)
> res1 <- pcaDiagplot(X.rob,X.grid,a=5)

The difference is hard not to notice. Extracting the relevant object numbers we see for instance
that if we do not use robust PCA pcaDiagplot detects only one of the two bad leverage points
correctly.

DIAGNOSTICS WITH NIPALS:
orthogonal outliers: 40 72 79 85 100 116 159 160
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good leverage points: 60 70 97 124 125
bad leverage points: 74 96 111 122

DIAGNOSTICS WITH ROBUST PCA:
orthogonal outliers: 61 65 69 70 79 96 97 111 113 122 124 125 151 152 153 159 160
good leverage points:
bad leverage points: 60

If we treat outliers like regular data we risk to determine a wrong PCA space; just to omit them
is not a wise choice either. Those objects should rather be examined more closely regarding
their origin and meaning.

3 Calibration

In data analysis very often we are interested in possible (linear) relations between the variables
which might allow us to explain one or more dependent variables by several regressor variables.
Such a linear regression model can be written as

y = X · b + e (1)

in case of a single dependent variable (univariate model). y = (y1, . . . , yn) is the variable to
be modelled, the n× (m+ 1) matrix X contains the predictor variables xj = (x1j , . . . , xnj)T,
j = 1, . . . ,m, and a column of ones in the first place. The according regression coefficients are
collected in the vector b = (b0, b1, . . . , bm)T where b0, the coefficient belonging to the vector
of ones, is called intercept. e = (e1, . . . , en)T is the residual vector.

If we want to predict several variables simultaneously, the multivariate model is

Y = X ·B + E (2)

with p dependent variables collected in the n× p matrix Y, the n× (m+ 1) predictor matrix
X and the residual matrix E. There is a coefficient vector with intercept for each dependent
variable which results in an (m+ 1)× p matrix B = (b1, . . . ,bp).

Given the basic form of a predictive model (1) or (2) we want to estimate the model parameters
in such a way that the prediction performance (see below) is maximized. This estimation
process is called calibration of the model and is carried out applying some regression method
to known data. In the end, we examine the performance of the final model applying some
validation method with data that was not used to find the model. This gives more realistic
results.

In regression we encounter the same problems with multivariate data like listed in chapter
2: Ordinary least squares (OLS) regression can not be applied to data with more predictor
variables than objects because the data matrix will be singular and the inverse can no longer
be calculated. Furthermore, dependencies between the predictor variables are not allowed,
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which is not a very realistic assumption in many practical cases. In the following, multiple as
well as multivariate regression methods are presented alternatively to OLS.

In order to depict the various methods in this section we use a data example prepared by
Liebmann et al. (2009) and enclosed in the R package chemometrics. For n = 166 alco-
holic fermentation mashes of different feedstock (rye, wheat and corn) we have the matrix
Y containing the concentration of glucose and ethanol (in g/L), respectively, as the two de-
pendent variables. The m = 235 variables in X contain the first derivatives of near infrared
spectroscopy (NIR) absorbance values at 1115-2285 nm.

> data(NIR)
> X <- NIR$xNIR
> Y <- NIR$yGlcEtOH
> namesX <- names(X)
> attach(X)

Prediction Performance

In the following we give a short overview over measures for prediction performance assuming
a univariate model (1). Using the predicted values ŷi = xT

i b̂, where b̂ are the estimated
regression coefficients, we can write the residuals ei = yi − ŷi, i = 1, . . . , z. Since we always
aim to obtain a large number of predictions to get more reliable results, very often z (the
number of predictions) will be larger than n.

An estimate for the spread of the error distribution is the standard error of prediction (SEP),
the standard deviation of the residuals:

SEP =

√√√√ 1
z − 1

z∑
i=1

(ei − ē)2

where ē is the arithmetric mean of the residuals (or bias). The fact that the SEP is measured in
units of y is an advantage for practical applications. It can be used to compare the performance
of different methods, which we will do later.

Robust measures for the standard deviation are the interquartile range (sIQR) or the median
absolute deviation (sMAD). sIQR is calculated as the difference between the empirical 3rd and
1st quartile and states the range of the middle 50% of the residuals. sMAD is the median of
the absolute deviations from the residuals’ median.

sIQR = Q3 −Q1

sMAD = mediani |ei −medianj(ej)|
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Being the mean of the squared residuals, the mean squared error of prediction (MSEP)

MSEP =
1
z

z∑
i=1

e2
i

is not measured in units of y and mostly used for model selection (determination of coefficients
and other model parameters, variable selection, etc.).

With the relation SEP2 = MSEP−ē2 we see that if the bias is close to zero, SEP2 and MSEP
are almost identical. In the case of (almost) zero bias, the square root of the MSEP

RMSEP =

√√√√1
z

z∑
i=1

e2
i

is almost identical to the SEP.

Another important measure is the PRESS (predicted residual error sum of squares),

PRESS =
z∑
i=1

e2
i = z ·MSEP

the sum of the squared residuals, which is minimized for the determination of regression
coefficients and often applied in CV.

In the best case (if the method we apply is fast enough), we split the data into a calibration
set and a test set. The calibration set is then used for model selection by CV and with the test
set we estimate the prediction performance for new data (model assessment). The test error
we obtain from this procedure is the most realistic measure we can get (SEPtest, MSEPtest,
RMSEPtest).

Since some algorithms are too slow for this costly procedure though, we do CV with the whole
data set (without splitting off a test set) and obtain measures that are still acceptable (SEPCV,
MSEPCV, RMSEPCV).

Calculating ”predictions” from the data that was used to develop the model, in general leads
to too optimistic estimations and is not recommended (SEC, MSEC, RMSEC - the C stands
for calibration).

3.1 Stepwise Regression

Functions discussed in this section:

stepwise
lmCV

Stepwise regression is a common method for variable selection (compare Hocking 1976). The
number of predictors is reduced in order to find the most parsimonious (simplest) possible

16



model that still guarantees a good prediction performance. Our goal is a good fit of the data
at a relatively low model complexity.

The chemometrics function stepwise does stepwise variable selection starting with the
empty univariate model where the dependent variable y is explained only by the intercept and
adding or removing in each step one variable until no more improvement can be done or until
a certain number of steps is reached. The criterion used for the decision which variable to add
is the Bayesian information criterion (Schwarz 1978):

Definition 3.1. For a linear model with normally distributed residuals, the Bayesian infor-
mation criterion (BIC) is a function of the sum of squares of the model residuals and given
as

BIC = n · ln RSS
n

+ a · lnn.

Since the RSS decreases with increasing a (number of predictor variables used), the BIC con-
tains a penalty term depending on that number.

Note that the absolute BIC value has no meaning because it describes the loss of information
compared to an exact model. Thus, the lower the BIC value the closer to reality is the model
and the better is its performance. That is why we choose the variable that causes the model
with the lowest BIC value.

For our NIR data, let us predict only the glucose concentration from the given x-variables.

> y <- Y[,1]
> NIR.Glc <- data.frame(X=X, y=y)

> res.step <- stepwise(y~., data=NIR.Glc)

From the result of stepwise regression we can extract the number of steps and seconds needed
for the algorithm and the number and names of the variables used for the final model:

> steps <- length(res.step$usedTime)
> seconds <- res.step$usedTime[steps]
> varnbr <- sum(finalvars <- res.step$models[steps,])
> varnames <- namesX[as.logical(finalvars)]

steps needed: 22
seconds needed: 15
number of variables: 16
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Figure 5: Change of the BIC value during stepwise regression. In steps 12, 15 and 21 a variable is
dropped. After 22 steps the final model with 16 variables is reached. This result highly
depends on the choice of the initial model.

In Figure 5 the change of the BIC value throughout the algorithm is tracked. We can see that
the number of predictors decreases from time to time. In each of the first 11 steps one variable
was added, whereas in step 12 one variable (the one that was added in step 5) is dropped
again, and so on until in step 22 we reach the final model with 16 variables because no adding
or removing of variables can achieve a further reduction of the BIC.

> # produce Figure 5
> modelsize <- apply(res.step$models, 1, sum)
> plot(modelsize, res.step$bic, type="b", pch=20,

main="BIC during stepwise regression",
xlab="model size", ylab="BIC value")
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Validation of the final model

We measure the prediction performance of the final model resulting from stepwise regression
by repeated cross validation (see appendix A).

> finalmodel <- as.formula(paste("y~", paste(varnames, collapse = "+"),
sep = ""))

> res.stepcv <- lmCV(finalmodel, data=NIR.Glc, repl=100, segments=4)

Here, lmCV carries out 100 times repeated 4-fold CV and computes the predicted values and
residuals for each repetition as well as the performance measures SEP and RMSEP and their
respective means. We analyze the performance of stepwise regression by graphical represen-
tation of those values (Figure 6).

> par(mfrow=c(1,2))
> plot(rep(y,100), res.stepcv$predicted, pch=".",

main="Predictions from repeated CV",
xlab="Measured y", ylab="Predicted y")

> abline(coef=c(0,1))
> points(y, apply(res.stepcv$predicted, 1, mean), pch=20)
> plot(res.stepcv$SEP, main="Standard Error of Prediction",

xlab="Number of repetitions", ylab="SEP")
> abline(h=res.stepcv$SEPm)
> abline(h=median(res.stepcv$SEP), lty=2)

The left hand side shows 100 small dots for each measured glucose concentration and their
means by a bigger point. We see some noise in the data for small y-values which might result
from roundoff errors and one object (at a glucose concentration of around 45) with suspiciously
disperse predictions. However, on the right hand side we see the SEP for each CV repetition
with

SEP mean: 4.599
SEP median: 4.599
SEP standard deviation: 0.156

If the cross validation did not give as stable SEP values as it is the case here one should consider
other validation methods. For instance to carry out repeated double CV to obtain PLS models
based on the regressor variables of the final model (compare Varmuza and Filzmoser 2009,
section 4.9.1.6).

Note that the regression model found by stepwise variable selection highly depends on the
choice of the starting model. In order to find the most parsimonious model it is recommended
to start with the empty model though.
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Figure 6: Left side: measured versus predicted glucose concentrations. Right side: standard error of
prediction for each CV repetition. The horizontal solid and dashed line represent the mean
and the median of the errors, respectively. The standard deviation of those 100 SEP values
is relatively low.

3.2 Principal Component Regression

Functions discussed in this section:

mvr_dcv
plotcompmvr
plotpredmvr
plotresmvr
plotSEPmvr

Another way to face the multicollinearity problem is principal component regression (Jolliffe
1982). This method consists in replacing the matrix X by its principal components to explain
the dependent variable y. As discussed in chapter 2, these PCs are uncorrelated.

The Method

Considering an n×m matrix X that contains the predictor variables (but no intercept!), and
additionally a dependent variable y with n observations, our univariate regression model is

y = X · b + e (3)

Here we assume that X is centered.

The first step of PCR is now to determine the optimal number a of principal components of
X. However, contrary to PCA, our goal here is not the maximization of the total explained
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variance of X but to find the regression model with the best prediction performance. An
important measure therefore is the mean squared error of prediction (MSEP).

Once the predictors are approximated by the chosen n × a scores matrix T and the m × a
loadings P with 1 ≤ a < m, we replace X in (3) according to

X ≈ TPT

and we obtain the new regression model with uncorrelated regressors

y = Tg + eT (4)

where g = PTb and eT the new residual vector. The regression coefficients for the original
model (3) can then be estimated by b̂PCR = Pĝ, where ĝ are the OLS coefficients of (4).

PCR with R

The crucial step in PCR is the calculation of a, the optimum number of PCs. The chemo-
metrics function mvr_dcv is designed especially for this purpose and carefully determines
the optimal value for a by repeated double cross validation (see appendix A). Furthermore,
predicted values, residuals and some performance measures are calculated. Take into account
that the function mvr_dcv is made exclusively for univariate PLS models.

> res.pcr <- mvr_dcv(y~., data=NIR.Glc, ncomp=40, method = "svdpc",
repl = 100)

Note that the maximum value of ncomp is min(n−1,m) and that only the method = "svdpc"
leads to the fitting of PCR models (other methods exist that fit PLS models, see section
3.3). This method uses singular value decomposition of the X matrix to calculate its principal
components (see chapter 2).

For the actual selection of an optimum number of principal components one of three strate-
gies can be chosen: selstrat = c("diffnext", "hastie", "relchange"). To clarify some
terms we have to be aware of the results we get from RDCV: 100 repetitions yield 100 mod-
els for each number of components and thus 100 MSEP values. If we say ”MSEP mean” we
are talking about the mean over the CV replications for one model complexity. Analogously
for ”MSEP standard error”. For all of those three selection strategies the maximum model
complexity that can be chosen is the one that yields the lowest MSEP mean. Let us call this
model starting model.

• diffnext: This strategy adds stdfact MSEP standard errors to each MSEP mean and
observes the difference of this value and the MSEP mean of the model with one number
of components less. If this change is negative a model is among the possible optima.
The winner is the most complex of these candidates that still has less components than
the starting model.
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• hastie (default): The so-called standard-error-rule described by Hastie et al. (2001)
adds sdfact MSEP standard errors to the lowest MSEP mean and decides in favour of
the least complex model with an MSEP mean under this boundary. (See also appendix
A.)

• relchange: Taking into consideration only the models with lower or the same complexity
like the starting model, we use the largest MSEP mean to relativize the difference of each
MSEP mean and the smallest MSEP mean. Among all models with a sufficiently high
relative change (decrease larger than 0.001), we take the one with the highest complexity.
Again among all models with lower or the same complexity the model with the lowest
MSEP mean is chosen. From this one, the sdfact-standard-error-rule is applied.

The selection of the principal components happens in the inner CV loop after the calculation
of the principal components which is done by the function mvr from package pls applying
singular value decomposition. This function can be used later as well to calculate the loadings,
scores and other details for the optimal model. That is to say that the output of mvr_dcv
does not include those things but, in fact, predicted values, residuals and various (also robust)
performance measures for each CV replication and the optimum number of PCs and the SEP
for the final model. This output can be visualized by some ready-made plots.

> plotcompmvr(res.pcr)

Figure 7 shows the optimum number of PCs to use by plotting the frequencies of their occu-
rance throughout the CV (segments0 × repl values, in our case 400) against the number of
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Figure 7: Output of function plotcompmvr for PCR. The relative frequency for the optimal number
of PCR components throughout the CV. The maximum is marked by a dashed vertical line.
For a better visualization, frequencies that are zero on the edges are left out.
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Figure 8: Output of plotSEPmvr for PCR. SEP values resulting from RDCV for each number of PCR
components. One single CV (black line) is rather optimistic, especially for higher numbers
of components.

components. A dashed vertical line at the number corresponding to the maximum frequency
marks the optimum, here at 31.

The randomness of cross validation is depicted in Figure 8 where the standard errors of predic-
tion (SEP) of the repeated double CV for each number of components are plotted. We can see
100 grey lines (one for each CV replication) and one black line resulting from one single CV
carried out additionally that shows very well how optimistic it would be to use only a single
CV. There is a dashed horizontal line at the SEP (7.5) of the model with the optimum number
of components and the dashed vertical line indicates the optimum number of components.

> optpcr <- res.pcr$afinal
> plotSEPmvr(res.pcr, optcomp=optpcr, y=y, X=X, method="svdpc")

For the optimal model, two very similar plot functions, plotpredmvr and plotresmvr, present
the distribution of the predicted values (Figure 9) and the residuals (Figure 10), respectively.
Both demonstrate the situation for a single cross validation on the one hand and for repeated
double CV on the other hand. The latter plot contains grey crosses for all CV replications
and black crosses for the average of all replications. A straight line indicates where the exact
prediction would be. The linear structure for lower glucose concentrations in Figure 10 derive
from the data structure and probable rounding effects.

> plotpredmvr(res.pcr, optcomp=optpcr, y=y, X=X, method="svdpc")

> plotresmvr(res.pcr, optcomp=optpcr, y=y, X=X, method="svdpc")
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Figure 9: Output of plotpredmvr for PCR. Predicted versus measured glucose concentrations. The
right plot shows the variation of the predictions resulting from RDCV.
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Figure 10: Output of plotresmvr for PCR. Residuals versus predicted values. The right plot shows
again the variation of the residuals resulting from RDCV.
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The SEP at the optimal number of components is indeed higher than the one we get from
stepwise regression in section 3.1. On the other hand, the cross validation of PCR leads to
a higher number of used principal components than the number of variables used in stepwise
regression. Let us see which results partial least squares regression yields for the same example.

optimal number of PCs: 31
SEP mean: 7.433
SEP median: 7.449
SEP standard deviation: 0.373

3.3 Partial Least Squares Regression

Besides the functions based on the pls function mvr that were discussed in the previous section,
and that fit not only PCR but also PLS models, this section shall be dedicated to the following
functions:

pls1_nipals
pls2_nipals
pls_eigen

Partial least squares regression is another multivariate linear regression method, i.e. our goal
is to predict several characteristics simultaneously. The stucture is basically the same as in
PCR. However, while in the previous section we used the principal components of X to predict
Y we shall now use the so-called PLS components. Instead of maximizing only the explained
variance of the predictor variables, PLS components take into account the dependent variables
by maximizing, for example, the covariance between the scores of X and Y. That means that
PLS components are relevant for the prediction of Y, not for the modelling of X.

Since covariance is the product of variance and correlation, PLS regression incorporates PCR
(that maximizes the variance of X) as well as OLS regression (that maximizes the correlation of
X and Y), and thus models the structural relation between dependent variables and predictors.
Similar to PCR, PLS regression is able to process collinear data with more variables than
objects by using a relatively small number of PLS components. The optimal number of
components can be found once again by cross validation.

First developed by H. Wold (1966), the partial least squares regression got established in the
field of chemometrics later, for example by Hoeskuldsson (1988). A review of PLS regression
in chemometrics is given by S. Wold (2001), who also proposed the alternative name projection
to latent structures.
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The Method

In general, we consider a multivariate linear regression model (2) with an n×m matrix X of
predictors and an n × p matrix Y of dependent variables; both matrices are mean-centered.
Similar to PCR, we approximate

X ≈ TPT

Y ≈ UQT

where T and U (both of dimension n × a) are the respective score matrices that consist of
linear combinations of the x- and y-variables and P (m× a) and Q (p× a) are the respective
loadings matrices of X and Y. Note that, unlike in PCR, in PLS in general not the loadings
are orthogonal, but the scores. a ≤ min(n,m) is the number of PLS components (chosen by
means of CV).

Additionally, the x- and y-scores are related by the so-called inner relation

U = TD + H,

a linear regression model maximizing the covariance between the x- and y-scores. The regres-
sion coefficients are stored in a diagonal matrix D = diag(d1, . . . , da) and the residuals in the
matrix H.

The OLS estimator for D gives us an estimate Û = TD̂ and thus Ŷ = TD̂QT. Using Ŷ = XB̂
we obtain

B̂PLS = PD̂QT (5)

The inner relation can destroy the uniqueness of the decomposition of the data matrices X
and Y. Normalization constraints on the score vectors t and u avoid this problem. To fulfill
these restrictions we need to introduce (orthogonal) weight vectors w and c such that

t = Xw and u = Yc with
‖t‖ = ‖Xw‖ = 1 and ‖u‖ = ‖Yc‖ = 1 (6)

Consequently, here the score vectors do not result from projection of X on loading vectors but
on weights.

The objective function of PLS regression can then be written as

max Cov(Xw,Yc) (7)

ormax tTu = (Xw)TYc = wTXTYc (8)

with the constraints (6). The maximization problems (7) and (8) are equivalent. From (8) we
see that the first weight vectors w1 and c1 are the left and right eigenvectors of the SVD of
XTY corresponding to the largest singular value.
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In the univariate case y = Xb + e (also referred to as PLS1) we approximate only X ≈ TPT

and the inner relation reduces to
y = Td + h (9)

and the PLS estimator for b to
b̂PLS = Pd̂ (10)

Algorithms

The algorithms provided by the R package chemometrics differ slightly in the results they
give and also in computation time and numerical accuracy.

The kernel algorithm (Algorithm 3.1) proposed by Hoeskuldsson (1988) is based on the cal-
culation of the so-called kernel matrices XTYYTX and YTXXTY and computes weights,
scores and loadings step by step, in each step removing the extracted information from the
data matrix. An efficiency brake might be the eigenvalue decomposition of the kernel matrices
which is fast if the number of x- and y- variables does not get too high (the number of objects
has no impact on the dimensions of the kernel matrices).

The NIPALS algorithm (Algorithm 3.3) already used for PCA (section 2) yields the same
results as the kernel method by calculating the weights, scores and loadings in a different, nu-
merically more accurate way. Remember the NIPALS algorithm as an iterative ”improvement”
of y-scores.

Hoeskuldsson (1988) describes a simpler version of the kernel algorithm. The eigenvalue
algorithm uses the eigenvectors corresponding to the largest a eigenvalues of the kernel matrices
to obtain directly the x- and y-loadings. Thus no weights have to be computed. The scores
can then be calculated as usual by projecting the loadings to the x- and y-space respectively.
Since no deflation of the data is made the scores are not uncorrelated which also means that
the maximization problem (8) is not solved. However, the loadings are orthogonal which is an
advantage for mapping.

The main difference of the SIMPLS algorithm (Algorithm 3.2 de Jong 1993) compared to the
former ones is that the deflation is not made for the data X but the cross-product matrix
XTY and that the weights are directly related to the original instead of the deflated data.
An advantage is that no matrix inversion is needed for the computation of the regression
coefficients.

Orthogonal projections to latent structures (O-PLS) by Trygg and Wold (2002) is a modification
of NIPALS that extracts the variation from X that is orthogonal to Y and uses this filtered
data for PLS:

X−ToPT
o = TPT + E

This way, not only the correlation between the x- and y-scores is maximized but also the
covariance, which helps to interpret the result.

27



Algorithm 3.1. Kernel algorithm.

1a. calculate w1 as the first eigenvector of the kernel matrix XTYYTX
1b. calculate c1 as the first eigenvector of the kernel matrix YTXXTY
1c. normalize both vectors such that ‖Xw1‖ = ‖Yc1‖ = 1
2a. project the x-data on the x-weights to calculate the x-scores t1 = Xw1

2b. project the y-data on the y-weights to calculate the y-scores u1 = Yc1

3. calculate x-loadings by OLS regression pT
1 = (tT

1 t1)−1tT
1 X = tT

1 X = wT
1 XTX

4. deflate the data matrix X1 = X− t1pT
1

Follow the steps 1-4 a times using the respective deflated data, until all a PLS components
are determined. No deflation of Y is necessary. The regression coefficients can be estimated
by

B̂ = W(PTW)−1CT

Note that the y-loadings are not needed for this purpose.
In the case of PLS1 there exists only one positive eigenvalue of XTyyTX.

Algorithm 3.2. SIMPLS algorithm.

0. initialize the cross-product matrix of X and Y S1 = XTY
1a. calculate wj as the first left singular vector of

Sj = Sj−1 −Pj−1(PT
j−1Pj−1)−1PT

j−1Sj−1

1b. and normalize it w1 = w1/‖w1‖
2a. project the x-data on the x-weights to calculate the x-scores tj = Xwj

2b. and normalize them t1 = t1/‖t1‖
3a. calculate the x-loadings by OLS regression pj = XTtj
3b. and store them in an accumulated x-loadings matrix Pj = [p1,p2, . . . ,pj ]

Follow the steps 1-3 a times, until all a PLS components are determined. Note that here the
weights are directly related to X and not to a deflated matrix (step 2). The deflated cross-
product matrix lies in the orthogonal complement of Sj−1. The regression coefficients can be
calculated by

B̂ = WTTY

which explains why no y-scores or -loadings are calculated in the algorithm. If we compare
the SIMPLS result to the kernel result we see that no matrix inversion is needed here.
In the PLS1 case the deflation step becomes simpler because Pj = pj .
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Algorithm 3.3. NIPALS algorithm.

0. initialize the first y-score vector as a column of the y-data u1 = yk
1a. calculate the x-weights by OLS regression w1 = (XTu1)/(uT

1 u1)
1b. and normalize them w1 = w1/‖w1‖
2. project the x-data on the x-weights to calculate the x-scores t1 = Xw1

3a. calculate the y-weights by OLS regression c1 = (YTt1)/(tT
1 t1)

3b. and normalize them c1 = c1/‖c1‖
4a. project the y-data on the y-weights to calculate the y-scores u∗1 = Yc1

4b. and determine the y-score improvement ∆u = uT
∆u∆

where u∆ = u∗1 − u1

If ∆u > ε go to step 1 using u∗1. If ∆u < ε the first component is found. Proceed with step
5a using the last u∗1.

5a. find the x-loadings by OLS regression p1 = (XTt1)/(tT
1 t1)

5b. find the inner relation parameter by OLS regression d1 = (uT
1 t1)/(tT

1 t1)
6a. deflate the x-data X1 = X− t1pT

1

6b. deflate the y-data Y1 = Y − d1t1cT
1

Follow the steps 0-6 a times using the respective deflated data matrices, until all a PLS
components are determined. The regression coefficients can be estimated by

B̂ = W(PTW)−1CT

which is the same result as for the kernel algorithm. Again the y-loadings are not needed for
the regression coefficients.

For PLS1 the algorithm simplifies because no iterations are necessary to find an optimal y-score
vector u∗.

PLS with R

In section 3.2 we used the chemometrics function mvr_dcv to find the optimal number of
principal components for a univariate model by repeated double CV. Several plot functions
helped us to evaluate the results graphically. We applied the method="svdpc" for PCR.
For PLS regression, we simply have to change the method to one of simpls, kernelpls or
oscorespls in our R code and can use the same functions mvr_dcv, plotcompmvr, plotSEPmvr,
plotpredmvr and plotresmvr.

> res.pls <- mvr_dcv(y~., data=NIR.Glc, ncomp=40, method = "simpls",
repl = 100)
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> plotcompmvr(res.pls)

> optpls <- res.pls$afinal
> plotSEPmvr(res.pls, optcomp=optpls, y=y, X=X, method="simpls")
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Figure 11: Output of plotcompmvr for PLS. Compare Figure 7. The relative frequency for the optimal
number of PLS components throughout the CV. The maximum is marked by a dashed
vertical line. For a better visualization, frequencies that are zero on the edges are left out.
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Figure 12: Output of plotSEPmvr for PLS. Compare Figure 8. SEP values resulting from RDCV
for each number of PLS components. The black line shows how optimistic one single CV
would be.
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> plotpredmvr(res.pls, optcomp=optpls, y=y, X=X , method="simpls")

> plotresmvr(res.pls, optcomp=optpls, y=y, X=X, method="simpls")
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Figure 13: Output of plotpredmvr for PLS. Compare Figure 9. Predicted versus measured values.
Grey crosses on the right: variation of predictions from RDCV.
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Figure 14: Output of plotresmvr for PLS. Compare Figure 10. Residuals versus predicted values.
Grey crosses on the right: variation of predictions from RDCV.
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For our example, the functions yield the following results: The optimal number of PLS com-
ponents (Figure 11) is 14, which is rather low compared to the former results. Note that
there is a second peak at 9 components which could be selected in order to obtain a possibly
small model. We can also observe that the values for the number of used PLS components
which occur during the CV are throughout lower and less spread than in the case of PCR.
Not only the number of components is lower; also the standard error of prediction, 6.4, de-
creases compared to PCR. If we track the development of the SEP for an increasing number
of components (Figure 12), we realize that it falls faster to a minimum than for PCR. The
plots of predicted values (Figure 13) and residuals (Figure 14) show a very similar picture in
both cases, though.

optimal number of PCs: 14
SEP mean: 6.489
SEP median: 6.491
SEP standard deviation: 0.408

To specifically calculate the loadings, scores and weights for a PLS model created by mvr
using the algorithms SIMPLS, kernel or O-PLS the package pls includes useful functions (e.g.
scores, loadings, loading.weights).

Additionally to those algorithms, in the chemometrics package there are also functions that
use the NIPALS and the eigenvalue algorithm. The algorithms supported by mvr_dcv are
usually sufficient for a careful analysis though.

If we have a univariate model the function pls1_nipals will calculate the scores and loadings
for X, weights for X and y as well as the final regression coefficients. The optimal number of
components can be determined consistently by mvr_dcv with the method=kernelpls.

> res.pls1nipals <- pls1_nipals(X, y, a = res.pls$afinal)

For a PLS2 model it is important to scale the Y data in order to achieve an equal treatment
of all y-variables. After the optimal number of components has been determined separately,
the scores, loadings and weights for X and Y, the coefficients for the inner relation and the
final regression coeffcients are then calculated by the function pls2_nipals.

> Ysc <- scale(Y)
> res.pls2nipals <- pls2_nipals(X, Ysc, a = 9)

Another option for PLS2 is the eigenvalue algorithm. The function pls_eigen returns the
scores and loadings for X and Y. For the number of components a ≤ min(n,m, p) holds.

> a <- min(dim(X)[1], dim(X)[2], dim(Y)[2])
> res.plseigen <- pls_eigen(X, Ysc, a = a)
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3.4 Partial Robust M-Regression

Functions discussed in this section:

prm
prm_cv
prm_dcv
plotprm
plotcompprm
plotSEPprm
plotpredprm
plotresprm

The methods PCR and PLS are not robust to outliers in the data. In order to obtain a
better prediction performance we should apply a regression method that is non-sensitive to
deviations from the normal model. However, robust regression methods like M-regression or
better robust M-regression will fail due to the multicollinearity which occurs in our data.

Contrary to methods that try to robustify PLS (Wakeling and Macfie 1992, Cummins and
Andrews 1995, Hubert and Vanden Branden 2003), Serneels et al. (2005) proposed a powerful
partial version of robust M-regression for a univariate model (1).

Based on robust M-regression on the one hand and PLS regression on the other hand, partial
robust M-regression combines all advantages of those two methods: it is robust against vertical
outliers as well as outliers in the direction of the regressor variables and it is able to deal with
more regressor variables than observations. Additionally, the used algorithm converges rather
fast and exhibits a very good performance compared to other robust PLS approaches.

The Method

The idea of M-regression by Huber (1981) is to minimize not the RSS but a function of the sum
of squares of the standardized residuals using a robust estimator for the standard deviation of
the residuals. So, instead of the OLS estimator

b̂OLS = arg min
b

n∑
i=1

(yi − xib)2 (11)

with the ith observation xi = (xi1, . . . , xim) we obtain the M-estimator

b̂M = arg min
b

n∑
i=1

ρ(yi − xib) (12)

The function ρ is symmetric around zero and non-decreasing; i.e. there is a strong penalty
for large residuals. If we denote the residuals in the objective function of M-regression by
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ri = yi − xib, (12) can be rewritten with weights for the residuals:

wri =
ρ(ri)
r2
i

b̂M = arg min
b

n∑
i=1

wri (yi − xib)2

The main criticism of M-regression is that it is only robust against vertical outliers. Outliers in
the direction of the regressor variables can severely influence the estimation. By adding weights
wxi for the x-variables to the estimator, Serneels et al. (2005) obtained a robust M-estimator.

b̂RM = arg min
b

n∑
i=1

wi(yi − xib)2 (13)

with wi = wri · wxi . (14)

This is equivalent to OLS on the data X and y multiplied with
√
wi rowwise.

The multicollinear data forces us to apply the concept of partial regression to robust M-
regression. Like in PLS (equations (9) and (10)), the objective is to maximize the covariance
between the dependent variable and the scores. The difference here is that we modify the
covariance function to obtain loadings and scores according to a robust M-estimator.

Using the weighted covariance

Covw(t,y) =
1
n

n∑
i=1

(witiyi)

we determine the loading vectors p1, . . . ,pa in a sequential way by

pk = arg max
p

Covw(Xp,y)

s.t. ‖p‖ = 1
and Covw(pj ,p) = 0 for all previously calculated pj .

The loadings are t = Xp.

In practice, this is done by an iterative algorithm (see algorithm 3.4), starting with appropriate
starting weights and estimating PLS models until the new regression coefficient vector d̂
converges. As usual, the optimal number of PLS components is selected by CV.
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Algorithm 3.4. Modified IRPLS algorithm.

The algorithm used by Serneels et al. (2005) to accomplish PRM-regression is a slight mod-
ification of the Iterative Reweighted Partial Least Squares (IRPLS) algorithm proposed by
Cummins and Andrews (1995). The modification constists in using robust starting values and
making the weights depend not only on the residuals but also on the scores.

Equipped with the ”Fair” weight function f(z, c) = 1
(1+| z

c
|)2 where c is a tuning constant,

the L1-median medL1 and the mean absolute deviation of a residual vector r = (r1, . . . , rn),
σ̂ = MAD(r) = mediani |ri −medianj rj |, we start with the

0. initial residuals ri = yi −medianj yj
and initial weights wi = wri · wxi
where wri = f

(
ri
σ̂ , c
)

and wxi = f
(

‖xi−medL1(X)‖
mediani ‖xi−medL1(X)‖ , c

)
1. transform the x- and x̃i =

√
wixi

y-data rowwise ỹi =
√
wiyi

2. SIMPLS on X̃ and ỹ yields the
inner relation coefficients and loadings d̂ and P

If the relative difference in norm between the old and the new d̂ is larger than some small
threshold, e.g. 10−3, the regression coefficients can be computed as b̂PRM = Pd̂. Otherwise
go to step 3.

3. correct resulting scores rowwise ti = ti/
√
wi

calculate the new residuals ri = yi − tid̂

and the new weights with wxi = f
(

‖ti−medL1(T)‖
mediani ‖ti−medL1(T)‖ , c

)
and to to step 1.

PRM with R

The most important thing we have to keep in mind is to use the original, unscaled data for
partial robust M-regression with the package chemometrics. The scaling is done robustly
within the functions which allow us to choose between the L1-median and the coordinatewise
median for mean-centering the data. The latter is the faster calculation but the L1-median
yields orthogonally equivariant estimators (Serneels et al. 2005). That means, if X and y are
transformed with an orthogonal matrix Γ and a non-zero scalar c, respectively, the following
property holds:

b̂(XΓ, cy) = ΓTb̂(X,y)c

The optimal number of components can be determined by repeated double CV using the
function prm_dcv. However, since RDCV is computationally rather expensive in this case, we
first start with the function prm_cv which accomplishes a single CV:

> res.prmcv <- prm_cv(X, y, a = 40, opt = "median")
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Figure 15: Output of function prm_cv. PRM-regression models with 1 to 40 components. Dashed
line: mean of SEP values from CV. Solid part: mean and standard deviation of 20%
trimmed SEP values from CV. Vertical and horizontal line correspond to the optimal
number of components (after standard-error-rule) and the according 20% trimmed SEP
mean, respectively.

As a basis for decision-making the function does not use the SEP but a trimmed version of
the SEP (20% by default). That means that for the calculation of the SEP the 20% highest
absolute residuals are discarded. The difference can be seen in Figure 15 that is produced by
prm_cv. For each number of components the mean of the trimmed SEP values is plotted and
their standard deviation is added. The optimal number of components is the lowest number
that yields a trimmed SEP under the dashed horizontal line which is 2 standard errors above
the minimum SEP. In our case it is the model with 20 components have a 20% trimmed SEP
of 4.95.

optimal number of PCs: 20
classic 20% trimmed

SEP mean: 5.454 5.094
SEP median: 5.488 5.070
SEP standard deviation: 0.627 1.289

The effect of PRM on the prediction can be observed if we plot the predicted versus the
measured y and the residuals against the predicted values:

> plotprm(res.prmcv, y)

If we compare Figure 16 with the Figures 13 and 14 we do not see big differences, and com-
paring the 20% trimmed SEP values (see section 3.7, it becomes clear that there are no large
outliers in our data. In absence of outliers, the robust method usually not better than the
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Figure 16: Output of function plotprm. Compare Figures 13 and 14. Left: Predicted versus measured
glucose concentrations. Right: Residuals versus predicted values.

non-robust version. We can, however, observe artifacts in the residual plots which may be due
to rounding errors.

Now that we have the optimal number of PLS components we can use it to get the estimates
for the regression coefficients, the weights, scores, loadings and so on.

> prm(X, y, a = res.prmcv$optcomp, opt = "l1m", usesvd = TRUE)

The argument usesvd is set to TRUE if the number of predictors exceeds the number of ob-
servations. The use of SVD and a slight modification of the algorithm make the computation
faster in this case.

Repeated double CV may give a more precise answer on the optimal number of components
than a single CV. Robust estimation on the other hand is usually more time consuming, and
therefore repreated double CV will require considerably more time than single CV. Never-
theless, we will compare the results here. Repeated double CV for PRM can be executed as
follows:

> res.prmdcv <- prm_dcv(X, y, a = 40, opt = "median",repl=20)

We compute 40 components (which in practice may be too much). In total, 20 replications of
the double CV scheme are performed. While the single CV for PRM needed about 4 minutes,
repeated double CV requires more than 4 hours. Nevertheless, the plots of the results are
interesting. We have the same diagnostic plots as for repeated double CV of the classical
counterpart, and also the commands are similar.
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The frequencies of the optimal numbers of components can be seen by:

> plotcompprm(res.prmdcv)

Figure 17 shows the resulting frequency distribution. There is a clear peak at 20 components.
Note that here we obtain the same result as for single CV.
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Figure 17: Output of plotcompprm for PRM-DCV. The optimal number of components is indicated
by the vertical dashed line.

In a next plot the prediction performance measure is shown. Note that for robust methods a
trimmed version of the SEP needs to be used in order to reduce the effect of outliers. Here
we used a trimming of 20%.

> plotSEPprm(res.prmdcv,res.prmdcv$afinal,y,X)

The result of executing the above command is shown in Figure 18. The gray lines correspond
to the results of the 20 repetitions of the double CV scheme, while the black line represents
the single CV result. Obviously, single CV is much more optimistic than repeated double CV.
Note that the single CV result is computed within this plot function, and thus this takes some
time.

Similar as for repeated double CV for classical PLS, there are functions for PRM showing
diagnostic plots:

> plotpredprm(res.prmdcv,res.prmdcv$afinal,y,X)

The predicted versus measured response values are shown in Figure 19. The left picture is the
prediction from a single CV, while in the right picture the resulting predictions from repeated
double CV are shown. The latter plot gives a clearer picture of the prediction uncertainty.
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Figure 18: Output of plotSEPprmdcv for PRM. The gray lines result from repeated double CV, the
black line from single CV.
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Figure 19: Predicted versus measured response values as output of predprmdcv for PRM. The left
picture shows the results from single CV, the right picture visualizes the results from
repeated double CV.

The residuals versus predicted values are visualized by:

> plotresprm(res.prmdcv,res.prmdcv$afinal,y,X)

The results are shown in Figure 20. Again, the left picture for single CV shows artifacts of
the data, but the right picture for repeated double CV makes the uncertainty visible.
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Figure 20: Output of plotresprm for PRM. The left picture shows the resisuals from single CV, the
right picture visualizes the results from repeated double CV.

3.5 Ridge Regression

A method mainly used for multiple linear regression models like Equation (2) with much
more predictors than objects and, consequently, multicollinear x-variables is Ridge regression.
OLS estimation may lead to unbounded estimators in this case because an unreasonably large
(positive or negative) coefficient can be offset by the appropriate coefficient of a correlated vari-
able. To avoid this discomfort, Hoerl and Kennard (1970) suggested to penalize the objective
function of OLS by a term depending on the coefficients.

For a univariate linear regression model (1)

y = X · b + e

instead of minimizing the residual sum of squares (RSS) only, they estimate the coefficients
by

b̂R = arg min
b=(b0,...,bm)


n∑
i=1

(yi − b0 −
m∑
j=1

bjxij)2 + λR

m∑
j=1

b2j

 (15)

where the penalty term does not contain the coefficient for the intercept. Thus the data origin
remains untouched. λR, the so-called shrinkage parameter, is positive. If it was zero we would
have the OLS model. Its name is motivated by the fact that the modified objective function
causes a shrinkage of the estimated parameters.

The solution of the new optimization problem (15) in matrix form is

b̂R = (XTX + λR1l)−1XTy

and by adding a constant to the diagonal elements of XTX, its covariance matrix, XTX+λR1l,
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becomes non-singular for appropriate λR. This regularization allows us to calculate the inverse
in a numerically stable way. Note that the Ridge coefficients are a linear function of y.

If b̂OLS = (XTX)−1XTy is the OLS estimator, the Ridge estimator can be written as

b̂R = (1l + λR(XTX)−1)−1b̂OLS .

Let us assume a regression model with i.i.d. residuals following a normal distribution

e {N(0, σ21l).

While the OLS estimator is unbiased with variance σ2(XTX)−1, for an increasing shrinkage
parameter the Ridge estimator turns out to be more and more biased, but with a lower variance
than in the OLS case:

IE[b̂R] = (1l + λR(XTX)−1)−1b

Var[b̂R] = σ2(1l + λR(XTX)−1)−1(XTX)−1(1l + λR(XTX)−1)−1

The optimal shrinkage parameter is chosen by cross validation and finds the optimal tradeoff
between bias and variance. Note that because of the occurring bias, only asymptotic confidence
intervals and tests are available for Ridge regression (Firinguetti and Bobadilla 2009).

Ridge regression and PCR

Ridge regression can be seen as an alternative to principal component regression. In PCR,
we usually use the first k principal components, which are ordered by decreasing eigenvalues.
Remember that a large eigenvalue indicates a PC that aims to be very important for the
prediction of y because it explains a big part of the total variance of the regressors. Here,
k is usually chosen by cross validation and the critical boundary for the choice is relatively
subjective. The remaining PCs are not considered at all in the final model, i.e. they have zero
weight.

In Ridge regression, on the other hand, all variables are used with varying weights. The
difference between important and less important variables is smoother than in PCR. Hastie
et al. (2001) show that Ridge regression gives most weight along the directions of the first PCs
and downweights directions related to PCs with small variance. Thus, the shrinkage in Ridge
regression is directly related to the variance of the PCs.

Ridge regression in R

For Ridge regression, the chemometrics package provides the two functions ridgeCV and
plotRidge. The most important result of the latter is the optimal value for the shrinkage
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parameter λR. For a number of different parameter values, plotRidge carries out Ridge
regression using the function lm.ridge from package MASS. By generalized cross validation
(GCV, see appendix A), a fast evaluation scheme, the model that minimizes the prediction
error MSEP is determined. Two plots visualize the results (see Figure 21).

> res.plotridge <- plotRidge(y~., data=NIR.Glc, lambda=seq(0.5,10,by=0.05))

When the optimal parameter value is determined (1.25 in this case), the optimal model should
be carefully evaluated by repeated cross validation (for our example we do 10-fold CV with
100 repetitions), using ridgeCV which also yields two plots (see Figure 22) and, additionally,
some measures for prediction performance.

> res.ridge <- ridgeCV(y~., data=NIR.Glc, lambdaopt=res.plotridge$lambdaopt,
repl=100)

Ridge regression leads to an average SEP of 5.37 which is already a better result than achieved
by PCR and PLS but stepwise regression is still doing better. The following method is only a
slight modification of Ridge regression but with significantly different results.
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Figure 21: Output of function plotRidge. Left: The MSEP gained by GCV for each shrinkage
parameter. The dashed vertical line at the minimum MSEP indicates the optimal λR.
Right: For each λR, the regression coefficients are plotted. This shows very well the grade
of shrinkage. The optimal parameter value from the left plot is shown by a vertical dashed
line as well.
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Figure 22: Output of function ridgeCV. The left plot opposes predicted and measured glucose concen-
trations, using a grey cross for each CV replication. The black crosses indicate the mean
prediction. On the right side, we see only those black crosses of the mean predictions.
Additionally the mean SEP and sMAD are displayed in the legendbox.
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3.6 Lasso Regression

Just as in Ridge regression, in Lasso regression introduced by Tibshirani (1996) the OLS
objective function is penalized by an additional term. While Ridge regression penalized the
sum of squares of the regression coefficients (L2-norm), Lasso regression uses the sum of
absolute regression coefficients (L1-norm):

b̂L = arg min
b=(b0,...,bm)


n∑
i=1

(yi − b0 −
m∑
j=1

bjxij)2 + λL

m∑
j=1

|bj |

 (16)

Here as well, the shrinkage parameter λL is positive, and the penalty term does not contain
the intercept coefficient in order to keep the data origin.

There is the same variance-bias tradeoff as in Ridge regression but the Lasso bias is bounded
for a fixed tuning parameter by a constant that does not depend on the true parameter values
and thus it is more controllable (as commented in Knight’s discussion of Efron et al. 2004).
The optimal shrinkage parameter can be chosen as before by cross validation.

The new objective function comes down to a quadratic programming problem and its solution
can no longer be written explicitly as a function of y. A rather fast algorithm that accomplishes
a stepwise orthogonal search was described by Efron et al. (2004). They show that a slight
modification of their Least Angle Regression (LAR) algorithm implements the Lasso.

Lasso Regression and Variable Selection

To understand the R functions described below we write the objective function as a constrained
optimization problem

min
n∑
i=1

(yi − b0 −
m∑
j=1

bjxij)2 (17)

s.t.
m∑
j=1

|bj | ≤ s

If λL in (16) is zero we obviously obtain the OLS solution and the problem is unconstrained
which is equivalent to some maximum value of s; with increasing λL the coefficients are shrunk
until in the extreme case the shrinkage parameter gets so high that all coefficients turn exactly
zero. In the meantime the constraint value s in (17) decreases continuously to zero.

Here we see a major difference to Ridge regression: while the Ridge coefficients are in general
different from zero Lasso forces some coefficients to be exactly zero and thus uses only a subset
of the original x-variables in the final model. That means Lasso regression can be seen as an
alternative variable selection method.
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Lasso regression in R

For Lasso regression, the chemometrics package provides the two functions lassoCV and
lassocoef the former of which is used first and provides the optimum constraint value. The
latter calculates the Lasso coefficients of the final model.

> res.lasso <- lassoCV(y~., data = NIR.Glc, fraction = seq(0, 1, by = 0.05),
legpos="top")

The argument fraction expresses the absolute sum of Lasso coefficients for the current con-
straint value in terms of the absolute sum of OLS coefficients (which correspond to the un-
constrained case): ∑m

j=1 |bLj |∑m
j=1 |bOLSj |

(18)

Since Lasso regression is computationally more expensive than Ridge regression, we perform
only a single 10-fold CV to determine the optimal model. In Figure 23 we see the mean MSEP
values for each fraction (18) and their respective standard errors (more precisely, the standard
errors multiplied by the argument sdfact which is 2 by default). The dashed horizontal line
indicates the standard error above the minimum MSEP which serves as a bound to find the
optimum fraction: the lowest fraction below that bound. Accordingly, the dashed vertical line
at 0.05 shows the optimum fraction. The plot provides the mean SEP and MSEP values for
the optimal model in the legend on top. We see here that for our example Lasso is not very
competitive among the presented methods.
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Figure 23: Output of function lassoCV. Similar to Figure 15, the means and standard deviations of
the MSEP values calculated during CV are plotted. The dashed vertical and horizontal
line indicate the optimal fraction value and the corresponding MSEP.
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Figure 24: Output of function lassocoef. Development of the Lasso coefficients with increasing
fraction. Dashed vertical line: optimal fraction determined before.

> res.lassocoef <- lassocoef(y~., data=NIR.Glc, sopt=res.lasso$sopt)

The function lassocoef produces a plot (Figure 24) that shows the development of the Lasso
coefficients as the fraction increases. Each line corresponds to one coefficient. Again, the
vertical line indicates the optimal fraction as determined before. Besides the plot, the function
provides the coefficients for the optimal fraction model as well as the number of coefficients
that are zero and that are non-zero (this information can also be seen in the plot).

3.7 Comparison of Calibration Methods

The table below combines the results of this section. For each method it shows the classic
SEP, the robust 20% trimmed SEP and the number of used variables or components.

We see that stepwise variable selection combined with OLS regression actually yields the best
results. This makes us suspect that the data set does not contain outliers which disturb the
analysis. In fact, a look at the plots illustrating the measured versus predicted values for
each method (stepwise regression: Figure 6, PCR: Figure 9, PLS: Figure 13, Ridge regression:
Figure 22) substantiates this suspicion because we cannot spot real outliers but only some
sort of artefacts that occur due to the data structure. Anyway, none of the methods used
here gives better results than stepwise OLS regression. Since in case of fulfilled prerequisites
the OLS estimator is the best linear unbiased estimator (BLUE), there cannot be another
method giving better results indeed. On the other hand we see that robust PLS (i.e. PRM) is
performing somewhat better than classical PLS.
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PREDICTION PERFORMANCE
Method SEP SEP20% Nr. of Variables / Components

stepwise 4.61 4.4 16 variables
PCR 7.43 7.37 31 components
PLS 6.49 6.52 14 components
PRM-CV 5.4 4.95 20 components
PRM-DCV 5.95 5.86 20 components
Ridge 5.37 5.32 235 variables
Lasso 6.48 5.89 110 variables

Comparing the computation times (second table) and considering the type of algorithm used
for the evaluation we can say that Ridge regression is a rather fast algorithm with a relatively
good performance at the same time.

COMPUTATION TIMES
Method Algorithm Time needed

stepwise 100 x RCV 0min 44sec
PCR 100 x RDCV 2min 56sec
PLS 100 x RDCV 2min 27sec
PRM single CV 4min 15sec
PRM 20 x RDCV 241min 15sec
Ridge 100 x RCV 1min 40sec
Lasso single CV 0min 33sec

At this point it is important to underline that the conclusions made above of course hold only
for the data we used here. Another data set that for example contains outliers may lead to a
completely different rating of the regression methods.

4 Classification

Functions discussed in this section:

knnEval
nnetEval
svmEval
treeEval

Classification methods can be seen as a special case of prediction where each observation be-
longs to a specific known group of objects (for instance samples from different types of glass
as used in Varmuza and Filzmoser 2009). Knowing about the class membership of all given
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observations we can establish a classification rule that can be used to predict the class mem-
bership of new data. Hence, classification methods do not predict continuous characteristics
but nominal scale variables. We call this way of establishing classification rules supervised
learning because the used algorithm learns to classify new data by training with known data.

Like in regression, it is not enough to establish a prediction or classification rule with all the
available data but we have to validate the resulting model for new data - for instance by
dividing the data into training and test set (cross validation). As a performance measure that
has to be minimized we use a misclassification error, i.e. a measure that tells us how many
objects were not classified correctly. This can be the fraction of misclassified objects on the
total number of objects:

misclassification rate =
number of misclassified objects

number of objects

Concrete classification methods frequently used in chemometrics are for example linear dis-
criminant analysis, PLS discriminant analysis, logistic regression, Gaussian mixture models,
k nearest neighbor methods, classification trees, artificial neural networks or support vector
machines. Since the R package chemometrics provides useful functions for the latter four
methods we limit ourselves here to them. For other methods the interested reader may refer
to Hastie et al. (2001) or Varmuza and Filzmoser (2009).

The provided functions are implemented to optimize necessary parameters of those methods
with the big advantage that they all work according to the same scheme. They are made in a
way that they require similar input and create similar and thus easily comparable output. The
core of the functions knnEval, nnetEval, svmEval and treeEval is the evaluation of models
with different parameter values in order to compare them and to choose the model with the
optimal parameter.

This is done via cross validation (see appendix A): we provide the functions with the data
with known class membership, a vector of indices for training data (this can be for instance
two thirds of the whole data that are used to establish the classification rule) and a selection
of parameter values to compare. The functions use the part of the data that is not in the
training set as test data and basically compute three results for each parameter value:

• Training error = the misclassification rate that results if we apply the rule to the training
data itself. Since the training data was used to find the rule, this is of course the most
optimistic measure.

• Test error = the misclassification rate that results if we apply the rule to the test data.

• A number of s CV errors that are practically test errors that result from s-fold CV on
the training set. The mean and standard deviation are used to depict the result. The
CV error can be seen as the most realistic error measure for parameter optimization.

Those errors are plotted for each parameter value and the optimal value can be chosen ac-
cording to the one-standard-error-rule described in section 4.1.
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The data we shall use in this section result from a chemical analysis of n = 178 wines grown
in the same region in Italy but derived from three different cultivars. Of each wine, m = 13
components were measured: alcohol, malic acid, ash, alcalinity of ash, magnesium, total phe-
nols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315
of diluted wines and proline (Frank and Asuncion 2010).

This is how we load and scale the data:

> library(gclus)
> data(wine)
> X <- data.frame(scale(wine[,2:14])) # data without class information
> grp <- as.factor(wine[,1]) # class information
> wine <- data.frame(X=X, grp=grp)
> train <- sample(1:length(grp), round(2/3*length(grp)))

Scaling is necessary for knnEval, nnetEval and svmEval. We do not need it for treeEval but
it is not a problem if the method is done with scaled data. The result will not change.

4.1 k Nearest Neighbors

Probably the simplest concept of classification is to conform to the neighbors of an object with
unknown class membership. If the majority of the observations that are close to the object of
interest is of class j, then we assign this object to class j as well.

In more detail, we assume n objects xi = (xi1, . . . , xim) with the class information yi ∈
{1, . . . , p} for p groups. If our task is to classify the new object x̃, we calculate the (Euclidean)
distance to all objects xi and use the k objects with the smallest distance. The group that
is most frequent among those k objects is assumed for x̃. The parameter k has to be chosen
optimally, i.e. in order to minimize the misclassification rate. This is once again done by CV.

Since for each object to be classified the distance to all other objects has to be calculated, be
aware about possibly long computing times (especially for large data sets).

k-NN in R

The parameter k denoting the number of neighbors to be considered within the algorithm is
optimized by (10-fold) cross validation by the following function:

> knneval <- knnEval(X, grp, train, knnvec=seq(1,30), legpos="topright")

We input the whole wine data with its group memberships, the indices of training set objects
and a selection of parameter values to be tried out. The algorithm calculates training, test
and CV errors as described above and plots them as in Figure 25.
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Figure 25: Output of knnEval. For each parameter value, the training and test error as well as the CV
error mean and standard deviations are plotted. The dashed horizontal line corresponds
to one standard error above the minimum CV error mean and is used to find the optimal
number of neighbors according to the one-standard-error-rule.

For each parameter value, the solid points represent the means of the misclassification rates
over all CV segments. Coming from these points, the standard deviations are visualized.
The dashed horizontal line indicates the value one standard error above the minimal CV
misclassification error mean, which is at k = 27. The lowest prediction error mean that
lies below this line belongs to the model with k = 1 nearest neighbors. According to the
one-standard-error-rule (Hastie et al. 2001), this is the optimal parameter.

optimal number of nearest neighbors: k = 1
test error at optimum: 0.0678
CV error threshold: 0.0469

Trying this several times, we see that the optimal parameter depends on the choice of the
training set and the CV done within the evaluation scheme, so we repeat it 100 times and plot
the frequencies of the optimal parameter values (Figure 26):

> res <- array(dim=c(100,6))
> colnames(res) <- c("k","trainerr","testerr","cvmean","cvse","threshold")
> tt <- proc.time()
> for (i in 1:100) {

train <- sample(1:length(grp), round(2/3*length(grp)))
knneval <- knnEval(X, grp, train, knnvec=seq(1,30), plotit=FALSE)
indmin <- which.min(knneval$cvMean)
res[i,6] <- knneval$cvMean[indmin] + knneval$cvSe[indmin]
fvec <- (knneval$cvMean < res[i,6])
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Figure 26: Frequencies of the optimal parameter values as they appear throughout the repetition of
knnEval.

indopt <- min((1:indmin)[fvec[1:indmin]])
res[i,1] <- knneval$knnvec[indopt]
res[i,2] <- knneval$trainerr[indopt]
res[i,3] <- knneval$testerr[indopt]
res[i,4] <- knneval$cvMean[indopt]
res[i,5] <- knneval$cvSe[indopt]

}
> tt <- proc.time() - tt
> plot(table(res[,1]), xlab="Number of Nearest Neighbors", ylab="Frequency")

The most frequent number of neighbors is k = 1, but also k = 5 and other appear rather often.
Although this is not a very distinct result, if we observe the resulting errors we see that we
obtain a very low misclassification error in any case, so it does not matter so much how many
neighbors we choose to use.

median sd
training error 0.0169 0.0138
test error 0.05 0.0228
CV error mean 0.0258 0.0136
(computing time for 100 repetitions: 4 min 24 sec)

After the optimal parameter is chosen, the actual classification rule (estimation of class mem-
berships) can be determined by the function knn of package class which is also used by
knnEval internally.
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> pred <- knn(X[train,], X[-train,], cl=grp[train], k = 1)

4.2 Classification Trees

The idea of classification trees (Breiman et al. 1984) is a very simple but powerful one. The
space of objects with known class membership is partitioned by a hyperplane in a split point
along one coordinate (split variable). The split variable and point have to be chosen in such
a way that some misclassification measure is minimized. The resulting two regions are then
partitioned again and again, until each region contains only objects from one class. The tree
can be called complete or full then.

Step by step, as the regions become smaller also the misclassification error decreases until
for the full tree the error measure for the training data is zero. Due to overfitting, the
misclassification error for new cases can be expected to be far too high though, so we have
to find the optimal tree size (number of regions) that minimizes not only the training error
but also the test error and prune the complete tree down to it. This search is done by cross
validation.

Given n objects xi = (x1, . . . , xm) with known class membership yi ∈ {1, . . . , p}, the optimal
partition of the object space can be found by minimizing the sum of misclassification errors for
each region, weighted by the number of objects in the respective region, and penalized with
a term depending on the tree size which is weighted itself by a given complexity parameter -
see Equation (19).

We define regions R1, . . . , R|T | where the number of regions, |T |, constitutes the tree size, and
nl, the number of objects in region l which obviously sum up to the total number of objects,
n. Then, with the index function I(yi = j) that is 1 if object xi belongs to group j and 0
otherwise,

plj =
1
nl
·
∑

xi∈Rl

I(yi = j)

is the relative frequency of group j objects that are located in region l.

A measure for misclassification that is more sensitive to changes in the relative frequencies
than the misclassification rate we used before is the Gini index for the region l of a tree T :

Ql(T ) =
∑

j=1,...,p

plj(1− plj)

The Gini index is used to grow the full tree; for the optimization of the tree complexity we
use the misclassification rate again.

Then we can define the objective function

min
T

 ∑
l=1,...,|T |

nlQl(T ) + α|T |

 (19)
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The complexity parameter α ≥ 0 controls the tree size; α = 0 yields the full tree. The higher
α, the more the tree is pruned. With the help of cross validation with different values for the
tree complexity, we reach our goal to find the smallest tree (i.e. the highest α) that still yields
a sufficiently low misclassification rate.

When the optimal tree is found, new objects that fall into region l are assigned to the group
j(l) with the largest relative frequency in region l:

j(l) = arg max
j
{plj}

Classification trees in R

The full tree can be grown and plotted using the function rpart:

> tree <- rpart(grp~., data=wine, method="class")
> plot(tree, main="Full Tree")
> text(tree)

Figure 27 (left) shows that the first split is done where variable 14 has value 0.02574, the two
subsequent regions are split along the variables 8 and 13, respectively. In the end the tree has
five regions (terminal nodes of the diagram) and we have to find the optimal tree complexity
α (alias cp) by (10-fold) cross validation. Note that the selected values for the tree complexity
we input to treeEval are in descending order. This is reasonable because we want to use
again the one-standard-error-rule to search for the smallest possible tree which corresponds to
a high value of α.

> treeeval <- treeEval(X, grp, train, cp=seq(0.45,0.05,by=-0.05))

We used the scaled data here although it is not necessary. As mentioned before, the result is
the same as for the unscaled data except for changes in the splitting values. The split variables
and the tree size stay the same. The results of a single execution of this function are presented
in Figure 27 (right) and the following

optimal tree complexity: cp = 0.05
test error at optimum: 0.2034
CV error threshold: 0.1371

Again, in order to compensate instable results due to changes in the training set and the CV,
we execute treeEval 100 times. The resulting errors are shown below and Figure 28 (left)
gives us the frequencies of the optimal parameters.
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Figure 27: Left: Full classification tree for wine data showing the split variables and points that lead
to 5 regions. Right: Output of function treeEval. The one-standard-error-rule can be
applied.
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Figure 28: Left: Frequencies of optimal parameter values as they occur throughout the repetition of
the evaluation. Right: Classification tree pruned to 3 regions after optimization of tree
complexity.
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median sd
training error 0.0763 0.0325
test error 0.15 0.045
CV error mean 0.1432 0.04
(computing time for 100 repetitions: 7 min 31 sec)

We see that α = 0.3 occurs most frequently, so we take it as the optimal complexity parameter.
Pruning the full tree with this parameter, we obtain the optimal tree with 3 regions (see Figure
28, right). We use one more function from the package rpart to do this:

> opttree <- prune(tree, cp=0.3)
> plot(opttree, main="Optimal Tree")
> text(opttree)

4.3 Artificial Neural Networks

In the style of neurons in the human brain, artificial neurons are modelled as devices with many
inputs and one output. Artificial neural networks (ANNs - see Schalkoff 1997) are algorithms
that ”learn”by example - like humans or animals. Otto (2007) contains an overview over ANNs
for chemometricians. More detailed information can be found in Cheng and Titterington
(1994) or Jansson (1991).

Practically, an ANN comes down to a regression method where the response y is a binary
variable in the case of two groups: its value is 0 for an object that belongs to the first group
and 1 for the second group. For the general case of p groups we have to use p binary variables
yj being 1 if an object belongs to group j and 0 otherwise.

Neural networks do not model the n× p matrix Y directly by the n×m predictor matrix X
but by a so-called hidden layer of variables between them. A nonlinear function (often the
sigmoid function) of a linear combination of the x-variables builds r hidden layer variables zk:

zk = σ(vk) =
1

1− exp(−vk)
,

where vk = a0k + a1kx1 + . . .+ amkxm
and k = 1, . . . , r.

Those hidden units can be used to form an additional hidden layer or to model Y directly by
linear or nonlinear regression. The use of more than one hidden layer or nonlinear regression
harbours a big risk of overfitting. That is why we limit ourselves here to one hidden layer that
models the y-variables linearly:

yj = b0j + b1jz1 + . . .+ brjzr with j = 1, . . . , p.
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The objective function of a neural network is the minimization not of the RSS but of the cross
entropy (also called deviance):

min

−
n∑
i=1

p∑
j=1

ŷij log ŷij


To avoid the danger of overfitting we introduce a regularization term into the objective. The
idea is known from Ridge or Lasso regression: we add a penalty term called weight decay and
obtain

min

−
n∑
i=1

p∑
j=1

ŷij log ŷij + λ
∑

(parameters)2

 (20)

with λ ≥ 0 and where ”parameters” means the values of all parameters used in the neural
network. The optimal values for the parameters r and λ are obtained by cross validation.
Unfortunately, we have to try out different combinations of weights and numbers of units.
This is a rather time consuming and complicated procedure.

The resulting estimate Ŷ contains values ŷij ∈ [0, 1] which describe the probability for the
assignment of the object xi to group j. The class with the highest probability is assumed for
the respective object.

ANNs in R

In this case the function that we use for parameter tuning is nnetEval which requires a data
matrix, a group vector and a selection of indices for training data. In contrast to the functions
described before there are two parameters to be optimized. The structure of the function is
the same though and so there are two versions of nnetEval: one with varying regularization
parameters and one with selected numbers of hidden units.

> weightsel <- c(0,0.01,0.1,0.15,0.2,0.3,0.5,1)
> nneteval <- nnetEval(X, grp, train, decay=weightsel, size=5)
> nneteval <- nnetEval(X, grp, train, decay=0.2, size=seq(5,30,by=5))

In order to find the optimal combination (r, λ) we have to try out several possibilities. Again,
the result depends on the choice of the training set and the cross validation, so we will have
to repeat the procedure again.

Since after some examination it turns out that the number of hidden units does not matter
much in the sense of misclassification error, we will simply use r = 5 for the size parameter.
This has the advantage of saving computing time which gets very high for large numbers of
hidden units. 100 repetitions yield the following errors and the frequencies of optimal weight
decay shown in Figure 29.
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median sd
training error 0 0.0013
test error 0.0169 0.0167
CV error mean 0.0167 0.0091
(computing time for 100 repetitions: 10 min 15 sec)

If we use 5 hidden units and a weight decay of 0.01 (see Figure 29), the plots produced by the
function nnetEval (Figure 30) show slightly different errors for this parameter combination.
This difference results from the cross validation.

> par(mfrow=c(1,2))
> nneteval <- nnetEval(wine, grp, train, size=5, legpos="topright",

decay = c(0,0.01,0.1,0.15,0.2,0.3,0.5,1))
> nneteval <- nnetEval(wine, grp, train, decay=0.01, legpos="topright",

size = c(5,10,15,20,25,30,40))

A concrete classification rule can be determined by nnet (package class) combined with pre-
dict which are also used by nnetEval internally.

> rule <- nnet(X[train,], class.ind(grp[train]), size=5, entropy=TRUE,
decay=0.01)

> pred <- predict(rule, X[-train,]) # predicted probabilities for test set
> pred <- apply(pred,1,which.max) # predicted groups for test set
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Figure 29: Frequencies of optimal weight decay values as they occur throughout the repetition.
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Figure 30: Output of function nnetEval. The left plot shows the variation of weight decay for 5
hidden unis, on the right side we see the errors for variation of hidden units at a weight
decay of 0.01.

4.4 Support Vector Machines

Another method of supervised learning are support vector machines (Christianini and Shawe-
Taylor 2000). For applications of SVM in chemistry see Ivanciuc (2007). The idea here is
to transform the data into a space with higher dimension. This way the classes can become
linearly separable, i.e. a single hyperplane dividing the new space separates the groups. The
backtransformed hyperplane generally gives a nonlinear class separation. It can happen that
the groups do not become perfectly separable by transforming the data into a higher dimen-
sional space. However, there are ways to deal with that.

We aim to find the best linear division of the new space. We define it as the one that yields
the biggest margin between the groups. In the case of non-separable groups we allow for
objects lying on the wrong side of the hyperplane and constrain the sum of their distances
from the class. If, for instance, the transformed space has two dimensions, one margin line
is ”supported” by two objects of one group and the other one is a parallel line through one
point of the other group. The best straight line to separate the groups is halfway between the
margin lines. This motivates the name support vector machine. In the case of more dimensions
of the transformed space we have to use accordingly more points to support the hyperplane.

The transformation of the original data space is made by basis expansion: each m-dimensional
object xi is transformed into the new space by r basis functions (r > m):

h(xi) = (h1(xi), . . . , hr(xi)) for i = 1, . . . , n.

Thanks to the kernel trick (Boser et al. 1992) we do not have to specify the basis functions
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explicitly but we can replace products h(xi)Th(xj) by a kernel function

K(xi,xj) = h(xi)Th(xj)

The objective function of our optimization problem (21) below can be expressed in a way
that it contains xi and xj only as the product xT

i xj , or rather h(xi)Th(xj) if we consider
the transformed data, and this fact allows us to apply this kernel trick. Common choices for
kernel functions are:

K(xi,xj) =


(1 + xT

i xj)d dth degree polynomial
exp(−c‖xi − xj‖2) radial basis function (RBF) with c > 0
tanh(c1xT

i xj + c2) neural network with c1 > 0 and c2 < 0

If after this transformation the classes are linearly separable and if we assume two classes of
objects and a response vector y that is -1 for the first group and +1 for the second, we can
find a hyperplane

b0 + bTx = 0 with bTb = 1

that assigns an object xi to the first group if b0 +bTxi < 0 and to the second group otherwise.
Perfect group separation is possible if

yi(b0 + bTxi) > 0 for i = 1, . . . , n.

The left hand side of Figure 31 (compare Varmuza and Filzmoser 2009) shows two groups of
objects that are linearly separable in the two-dimensional space. The dashed lines with distance
M illustrate the largest margin between the classes, one of them supported by two points of
one group and the other one by a point of the other group. The separating hyperplane, a
straight line (solid) in this case, lies exactly in the middle of the margin, at a distance M/2

between the dashed lines.

For the maximization of the margin M between the classes we search a scalar b0 and a unit
vector b such that all objects are more than M/2 away from the hyperplane.

maxM with respect to b0 and b (where bTb = 1) (21)

s.t. yi(b0 + bTxi) ≥ M/2 for i = 1, . . . , n (22)

For the linearly non-separable case which we can see in Figure 31 (right), we have to modify
the condition (22) by introducing slack variables ξi that are 0 for objects on the correct side
of the margin and a positive distance otherwise. We restrict the sum of those distances with
a constant and the optimization problem is the following:
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Figure 31: Left: Decision boundaries for separable groups supported by three points. Right: Margin
for non-separable groups. The distances of objects that are on the wrong side are marked.

maxM with respect to b0 and b (where bTb = 1)

s.t. yi(b0 + bTxi) ≥ M/2(1− ξi),

ξi ≥ 0,
∑
i

ξi ≤ const. for i = 1, . . . , n

This quadratic programming problem (quadratic objective function with linear inequality
conditions) can be solved if the constant in the restriction for the slack variables is specified.
To constrain the sum of the ξi we introduce a parameter γ that forces the sum to be small and
thus allows only few objects on the wrong side of the margin. This may cause very complex
boundaries in the original space and work well for the training data but can easily lead to
problems with new data. A larger value of γ, on the other hand, avoids overfitting and yields
smoother boundaries. The parameter can be optimized via CV.

SVM in R

For selected values of γ, we execute svmEval with RBFs and obtain Figure 32 (left).

> gamsel <- c(0.001,0.01,0.02,0.05,0.1,0.15,0.2,0.5,1)
> svmeval <- svmEval(X, grp, train, gamvec=gamsel, kernel="radial",

legpos="top")

If we repeat the procedure for 100 different training sets the most frequent optimal γ turns out
to be 0.01, as shown in Figure 32 (right). The medians of the resulting errors are as follows:
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Figure 32: Left hand side: Output of function svmEval. Right hand side: The frequencies how often
a parameter value turned out to be optimal throughout the repetition of svmEval.

median sd
training error 0.0085 0.0061
test error 0.0167 0.0145
CV error mean 0.0167 0.0081
(computing time for 100 repetitions: 7 min 16 sec)

For the optimal parameter γ = 0.01 we can establish the classification rule using the training
set by svm from package e1071 and obtain predictions for the test set by predict:

> rule <- svm(X[train,],grp[train], kernel="radial", gamma=0.01)
> pred <- predict(svmres, X[-train,])

4.5 Comparison of Classification Methods

Putting the results of the four methods we used in this section to classify our wine data
together we can compare the test errors. We chose this error measure because it is the most
realistic one for new data. Since we repeated each evaluation scheme 100 times we have test
errors available that belong to the respective optimal parameter choice of each repetition.
Figure 33 illustrates the distribution of those test errors for each method by a boxplot.
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Figure 33: Comparison of test errors resulting from 100 times repeated evaluation schemes of the
methods k nearest neighbors, classification tree, artificial neural networks and support
vector machines.

Method Median test error Computing time

kNN 0.05 4 min
Tree 0.15 8 min
ANN 0.017 10 min
SVM 0.017 7 min

We can see how much classification trees depend on the choice of the training set. They
are relatively instable and lead to a high test error compared to the other methods. Neural
networks and support vector machines yield extremely good results for this data set, yet
SVM seems to be the faster and more practical choice. Remember that the computation of
ANNs becomes extremely slow for a higher number of hidden units than we use here, and
the simultaneous optimization of the two parameters is a quite complex task. kNN gives us a
slightly higher test error which is still in an acceptable range though. This method is a good
alternative if we want to save computation time.
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A Cross Validation

For model generation and model testing it is important to obtain realistic performance esti-
mates for new cases. To optimize the performance of a model only for the data that was used
for its creation may lead to overfitting, that means the model fits the sample data perfectly
but does not predict new data well. Therefore, the data at hand is usually split into three
subsets: training, validation and test set. The first two are then used for model selection and
the latter for testing the model on new data.

If the original data set contains a large number of objects this is enough, however, very often
in chemometrics only a relatively small number of objects is available. Useful tools in this case
are resampling strategies like cross validation. In calibration, for instance, it is desireable to
work with a reasonable high number of predictions when optimizing the model complexity on
the one hand and estimating the prediction performance for new objects on the other hand.
Analogously, this holds for classification.

Cross Validation (CV)

For the optimization of the model complexity, like the number of PLS components or PCs,
or the number of nearest neighbors, the data is split into s segments, s− 1 of which are used
as training set and the remaining one as validation set. Cross validation with four segments
for example is called 4-fold CV; CV with n segments (and hence all subsets of size n − 1 as
training sets) is known as leave-one-out CV (LOO-CV).

With the training set we estimate models with different complexities a = 1, . . . , A and with
each of these models we calculate the predicted values for the validation set objects. This
is repeated s − 1 times, each time with a different segment as validation set, resulting in an
n×A matrix of predicted values for all n objects and each of the A models. From this matrix,
we calculate the prediction error for each model and choose, for instance, the model with the
lowest prediction error as the optimal one.

Repeated Cross Validation (RCV)

Not only in order to obtain a larger number of predictions but also to avoid the dependence of
the predictions on the data split, it is recommended to repeat the above described procedure k
times. That means we split the data k times into training and validation set and, accordingly,
obtain k (n × A) prediction matrices and k prediction errors for each model. Their mean
and standard deviation make a more careful choice of the optimal model complexity possible.
Hastie et al. (2001) describe a useful one-standard-error-rule that consists in finding the lowest
model complexity whose prediction error mean is below the minimal prediction error mean
plus one standard error (see evaluation figures of chapter 4).
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Double Cross Validation (DCV)

The issue of obtaining reliable estimates of the prediction performance for new cases can be
handled by splitting the data into calibration set and test set first, then applying CV to
the calibration set to optimize the model complexity and finally using the test set for the
estimation of realistic prediction errors.

In detail, this is done as follows: in an outer CV loop, split the data into s0 segments, s0 − 1
of which are used as calibration set and the remaining one as test set. CV on the calibration
set (s-fold, in an inner loop) yields a model of optimal complexity which is applied to the test
set. Repeating this procedure s0 − 1 times, until each segment was test set once, we obtain
s0 optimal models (one for each segment) and n × p × A test-set-predicted values (for each
segment and each model complexity calculated with the according model). The final model
complexity can be taken as the median of the s0 optimal values.

Repeated Double Cross Validation (RDCV)

In order to obtain a higher number of predictions and thus a more reliable estimation, it is
recommendable to repeat the above described procedure k times (Filzmoser et al. 2009). This
results in s0 × k optimal models and n × p × A × k test-set-predictions. The final model
complexity can be for instance chosen as the one that appears with the highest frequency.
More selection rules for this case are described in chapter 3 concerning the chemometrics
function mvr_dcv. Interesting insight can be achieved by analyzing the histogram or density
of the predictions.

Generalized Cross Validation (GCV)

The MSE of the computationally relatively expensive LOO-CV can be approximated by a
function depending on the RSS and the Hat-Matrix resulting from (OLS, Ridge, . . . ) regression
with all objects. This approximation is known as GCV and saves a lot of computation time.

In OLS regression, the estimation of y can be described by the Hat-Matrix H:

ŷ = Xb̂ = X(XTX)−1XTy = Hy (23)

H = X(XTX)−1XT

If hii, i = 1, . . . , n denotes the diagonal elements of the matrix H which results from OLS
regression with all n objects, the relation

MSELOO =
1
n

n∑
i=1

(
yi − ŷi
1− hii

)2

(24)

holds for the MSE of LOO-CV without actually executing LOO-CV. The diagonal elements
hii of the Hat-Matrix can be approximated by their average, hii ≈ tr H

n , where the trace of H
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is the sum of its diagonal elements. This leads to the approximation of (24):

MSELOO ≈
1(

1− tr H
n

)2 · RSSn
For Ridge regression where the Hat-Matrix is H = X(XTX + λR1l)−1XT or for any other
regression method where the estimation is done like in Equation (23) with a Hat-Matrix that
depends only on the x-variables, GCV can be used analogously (Golub et al. 1979).

B Logratio Transformation

Functions discussed in this section:

alr
clr
ilr

B.1 Compositional Data

In chemistry, we often deal with data drawn from a more restricted space than for instance
the set of real numbers. An example are concentrations of chemical compounds in a mixture.
Aitchison (1986) defined:

Definition B.1. ”In statistics, compositional data are quantitative descriptions of the parts
of some whole, conveying exclusively relative information.” That means we are working with
data (also called closed data) that can be represented as percentages, resulting in a constant
row sum.

The rows of a compositional data matrix X ∈ Rn×m, xi = (xi1, xi2, . . . , xim), i = 1, . . . , n,
satisfying xij > 0 and

∑m
j=1 xij = κ are called composition, each element xij of a composition

is a component. κ is a non-negative real constant specifying the row sum.

The restriction of a constant row sum constitutes the major difficulty we encounter when
dealing with compositional data.

As the total row sum is known, one component of a compositional data vector can be omitted.
That means the data matrix does not have full rank but its rows are located in an m − 1
dimensional subspace of Rm, which can be described by a so-called simplex as explained in
the following.

Since a composition contains only relative information, multiplication by a non-negative con-
stant leads to an equivalent vector. Each equivalence class in this spirit is represented by one
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of its elements. The set of all representatives finally spans the sample space of compositional
data:

Sm = {xi = (xi1, . . . , xim) ∈ Rm : xij > 0,
m∑
j=1

xij = κ}

Three phenomenons mainly represent the challenge of statistical inference carried out on such
data:

1. If we try to apply classic methods (e.g. calculation of confidence ellipsoids) within the
simplex without considering the special structure of the data we risk to leave the re-
stricted area and reach, for example, negative values which is of course a rather mean-
ingless result.

2. Spurious correlations between the components are a result of the fact that all variable
values have to change as soon as one variable’s value is modified, if we want the row sum
to stay constant.

3. The arithmetric mean of compositional data has no physical meaning. In the simplex
geometry, it is more recommendable to use the geometric mean instead.

B.2 Logratio Transformation

As a solution for the problems with compositional data, Aitchison (1986) suggested to trans-
form the data from the simplex Sm to the unrestricted set of real numbers using the logratio
transformation, to analyze the transformed data in the traditional way and, if needed, to
transform the results back to the simplex for interpretation.

Figure 34 shows an artificial dataset of trivariate compositional data in a ternary diagram.
The data has been alr-transformed to R2 using component number 2 as divisor (see below
for details on alr) and tolerance ellipsoids that cover in case of normal distribution a certain
percentage of the data points have been calculated. The back-transformed tolerance ellipses
are deformed in the simplex, and the closer the lines approach to the boundary, the larger is the
deformation. This gives an impression of the geometry of the simplex. Elliptically symmetric
distributions in the unrestricted space thus show a different distribution in the simplex, and
close to the boundary the difference gets more and more pronounced. A statistical analysis
directly of the compositional data in the simplex will thus in general be misleading.

For a given n × m data matrix X containing n compositions in Sm three types of logratio
transformations are implemented in chemometrics.
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Figure 34: Left: Compositional data in its original space with tolerance regions that result from
the ellipses on the right side. Right: alr-transformed data in R2 and tolerance ellipses
calculated with classic methods.

Additive Logratio Transformation

It seems obvious to transform data from the m − 1 dimensional restricted space Sm to the
open m−1 dimensional real space Rm−1. Using one priorily specified component, e.g. number
k, as common divisor for all the others, the additive logratio transformation for the ith row is
defined as:

xalr
ij = log

xij
xik

,

where j = 1, . . . ,m and j 6= k.

Since the resulting vector still contains the relation to m − 1 of the original components, it
can be interpreted easily. The choice of the divisor component is rather subjective, though,
and causes the transformation to be asymmetric in the components. However, the more
problematic defect of the alr transformation is the fact that it is not isometric. So, if your
analysis needs distances and lengths of vectors to be preserved in terms of the respective inner
product, alr is not suitable.

The corresponding R command, alr, requires (besides the data matrix) the variable that
should be used as a divisor:

> X_alr <- alr(X, divisorvar=2)
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Centered Logratio Transformation

To avoid the problems of the above described transformation, Aitchison also specifies the
centered logratio transformation. As it uses the geometric mean x̄G,i of each composition as a
divisor instead of a single component, it is symmetric, and the transformation is defined as

xclr
ij = log

xij
x̄G,i

for j = 1, . . . ,m.

Obviously, this transformation maps from the m−1 dimensional Sm to the m dimensional Rm

and thus is not injective, resulting in singular covariance matrices of the transformed data.
However, if this characteristic is not important for your analysis, clr is a good choice as it
is an isometric transformation. Furthermore, just as in the alr case, the interpretation of clr
transformed data is still simple because the relation to the original components is preserved.

> X_clr <- clr(X)

Isometric Logratio Transformation

Although, as an isometric transformation, clr is already a widely useable tool, it still does
not preserve the angles between compositions and, as mentioned, the covariance matrices do
not have full rank. So, to overcome these last problems, Egozcue et al. (2003) developed the
isometric logratio transformation. As the name says, it transformes data from the restricted
m − 1 dimensional simplex Sm isometrically to a m − 1 dimensional subspace of Rm. Thus,
covariance matrices of the resulting data have full rank.

The isometric logratio transformation is based on an orthogonal basis of the clr space. Since
of course the choice of this basis is not unique, indeed we are talking about a family of
transformations that preserves not only lengths and distances but also the angles between
compositions.

The ilr transformation for a composition xi ∈ Sm is defined as

xilr
i = VT · xclr

i .

V denotes the m × (m − 1) matrix containing in its columns the vectors of the orthogonal
basis.

The basis used for the chemometrics function ilr is orthonormal, and the ith basis vector
is specified by

vi = exp

√ 1
i(i+ 1)

·
(

1, . . . , 1︸ ︷︷ ︸
i times

,−1, 0, . . . , 0︸ ︷︷ ︸
m−(i+1) times

)T

 .
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> X_ilr <- ilr(X)

After applying ilr, one can analyze the data with the standard tools. However, in order to
interpret the result, it is recommended to transform the data back into the clr space because
in the ilr space the relation to the original components is not preserved and interpretation is
not that obvious.
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