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Coalescent analyses have emerged in the recent years as a powerful approach to
investigate the demography of populations using genetic data. The coalescent
is a random process describing the coalescent times of a genealogy with respect
to population size and mutation rate. In the majority of cases, the genealogy of
individuals within a population is unknown. So a coalescent analysis typically
consider integrating over the “likely” genealogies to make inference on the dy-
namics of the population. This uses computer-intensive methods such as Monte
Carlo simulations of Markov chains. Besides, if priors are defined on the dis-
tributions of the parameters, Bayesian inference can be done. Several methods
have been proposed for such integrations, although currently there is no con-
sensus on which method is the best or which ones are the most appropriate in
some circumstances [1].

coalescentMCMC aims to provide a general framework to run coalescent anal-
yses. In its current (and early) version, the package provides only a simple
MCMC algorithm based on Hastings’s ratio.

coalescentMCMC has three main groups of functions that have different roles:

� the function coalescentMCMC itself which runs the chain;

� some functions doing operations on tree which are called by the previous
one to move from one tree to another;

� some functions to infer demography from genealogies under various coa-
lescent models which are typically used to analyse the output of a chain
run.

The motivating idea behind coalescentMCMC is that the user can have full
control over the analysis. The options of the main function are:

coalescentMCMC(x, ntrees = 10000, burnin = ntrees,

ini.tree = NULL, quiet = FALSE)

where ntrees are the number of (accepted) trees to output, burnin is the num-
ber of trees discarded before output starts, and ini.tree is the initial tree (if
not provided, a UPGMA tree from a JC69-based distance matrix is used). The
proposed trees are not output, though this may be easily modified. The code of
the function is relatively simple:

> library(coalescentMCMC)

> body(coalescentMCMC)
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{

if (is.null(tree0)) {

d <- dist.dna(x, "JC69")

X <- phangorn::phyDat(x)

tree0 <- as.phylo(hclust(d, "average"))

}

n <- Ntip(tree0)

nodeMax <- 2 * n - 1

TREES <- vector("list", ntrees)

LL <- numeric(ntrees)

lnL0 <- phangorn::pml(tree0, X)$logLik

i <- j <- 0L

if (!quiet) {

cat("Running the Markov chain:\n")

cat("Nb of proposed trees Nb of accepted trees\n")

}

while (i <= ntrees) {

if (!quiet)

cat("\r ", j, " ", i, " ")

j <- j + 1L

tr.b <- NeighborhoodRearrangement(tree0, n, nodeMax)

lnL.b <- phangorn::pml(tr.b, X)$logLik

ACCEPT <- if (is.na(lnL.b))

FALSE

else {

if (lnL.b >= lnL0)

TRUE

else rbinom(1, 1, exp(lnL.b - lnL0))

}

if (ACCEPT) {

lnL0 <- lnL.b

tree0 <- tr.b

if (j > burnin) {

i <- i + 1L

LL[i] <- lnL0

TREES[[i]] <- tree0

}

}

}

class(TREES) <- "multiPhylo"

if (!quiet)

cat("\nDone.\n")

list(trees = TREES, logLik = LL)

}

The accepted trees are stored in the list TREES; it appears that all proposed
trees tr.b can also be stored and output with minor modifications of the code.
The coding of the Hastings’s ratio is clear (ACCEPT) and this part can also be
tailored at will.

The above implementation uses only neighborhood rearrangement as pro-

2



posed in [2] calling the function NeighborhoodRearrangement at each cycle of
the chain. This can modified by using other functions described in ?treeOper-

ators.
Let us now consider a very simple analysis with the woodmouse data avail-

able in ape. After loading the data, we run an MCMC with the default settings,
thus outputing 10,000 trees after a burn-in period of 10,000 steps:

> data(woodmouse)

> out <- coalescentMCMC(woodmouse)

Running the Markov chain:

Nb of proposed trees Nb of accepted trees

67207 10000

Done.

A total of 67,207 trees have been proposed, so among them 57,207 have not been
accepted (including the 10,000 that were initially accepted but were discarded
because of the burn-in period). We can examine how the log-likelihood of the
accepted trees evolved along the chain:

> plot(out$logLik, type = "l")
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The log-likelihood was relatively stable between −1872 and −1871. For the
sake of simplicity, we consider only the last 1000 trees from the chain for further
analysis. Extracting them is easy with standard R operators:

> s <- 9001:1e4

> o <- list(trees = out$trees[s], logLik = out$logLik[s])
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The list o is now a subset of the full output out. On each of those extracted
trees, we wish to estimate Θ. This can be done with the function theta.tree

in pegas. The help page of this function tells us that it returns a list with named
elements:

> library(pegas)

> theta.tree(o$trees[[1]], .01)

$theta

[1] 0.02127424

$se

[1] 0.00568578

$logLik

[1] 83.29005

So we build a function “on-the-fly” to return only the value we want. Again,
we use a standard R function, here sapply, to perform the operation in simple
way:

> Theta <- sapply(o$trees, function(x) theta.tree(x, .01)$theta)

> head(Theta)

[1] 0.02127424 0.02102289 0.02103378 0.02103378 0.02134836 0.02129919

We can plot the estimated values against the log-likelihood of each tree:

> plot(o$logLik, Theta)
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Finally, we do a global estimation of Θ with the mean weighted by the tree
log-likelihoods:

> weighted.mean(Theta, o$logLik)

[1] 0.02046285

The above analysis is rather simplistic: a full coalescent analysis would be
much more complicated. However, it aims to show here the potential of using
R for such analyses.
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