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Coalescent models describe the distribution of ancestry in a population under
some assumptions on the variation in the parameter Θ = 4Neν, with Ne the
effective size of the population and ν the mutation rate. The present document
gives the likelihood function, and some computational details, for several models
with Θ varying through time. These models are available in coalescentMCMC
as R functions (see below).

The general mathematical framework has been given by Griffiths & Tavaré
[1]. If Θ is constant, the probability of observing the coalescent times t1, . . . , tn
is:
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where t1 = 0 is the present time and tn = TMRCA. The general formula for Θ(t)
varying through time is:
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Four specific temporal models are considered below. The time to the most
recent ancestor, denoted as TMRCA, is assumed to be known—this assumption
could be relaxed though this is not considered here.

1 Models

The exponential growth model assumes Θ(t) = Θ0e
ρt, with Θ0 is the value of Θ

at present and ρ is the population growth rate [2]. Because of the exponential
function, Θ may reach very high (or low) values. To avoid this, the linear model
formulated as Θ(t) = Θ0 + t(ΘTMRCA

−Θ0)/TMRCA. This model, like the previous
one, has two free parameters: Θ0 and ΘTMRCA

.
The third model (step model) assumes two constant values of Θ before and

after a point in time denoted as τ :

Θ(t) =

{
Θ0 t ≤ τ
Θ1 t > τ

The last model (exponential double growth model) assumes that the popula-
tion experienced two different phases of exponential growth:
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Θ(t) =

{
Θ0e

ρ1t t ≤ τ
Θ(τ)eρ2(t−τ) = Θ0e

ρ2t+(ρ1−ρ2)τ t ≥ τ

which reduces to the first model if ρ1 = ρ2. These two last models have three
free parameters.

1.1 Constant-Θ Model

The log-likelihood is:
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Its partial derivative with respect to Θ is:
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which, after setting ∂ lnL/∂Θ = 0 can be solved to find the maximum likelihood
estimator (MLE):
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Under the normal approximation of the likelihood function, the variance of
Θ̂ is calculated through the second derivative of lnL:
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This estimator is implemented in pegas with the function theta.tree.

1.2 Exponential Growth Model

The integral in equation˜(1) is:∫ ti
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leading to the log-likelihood:
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with its first partial derivatives being:
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These cannot be solved analytically to find the MLEs Θ̂0 and ρ̂ but they may
be used to speed-up an optimization procedure with analytical gradients.

1.3 Linear Growth Model

Let κ = (ΘTMRCA
− Θ0)/TMRCA, so Θ(t) = Θ0 + κt. The integral in equation˜(1)

is:
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The log-likelihood is thus:
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The partial derivatives can be calculated analytically.

1.4 Step Model

It is easier to calculate the integral in equation˜1 with the difference:∫ ti
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1
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du =
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The integral from the origin is:

∫ t

0

1
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du =


t

Θ0
t ≤ τ

τ
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+
t− τ

Θ1
t > τ.

This is then plugged into equation˜1 with a simple Dirac delta function.

1.5 Exponential Double Growth Model

In this model the inverse of Θ(t) is:

1

Θ(t)
=


e−ρ1t

Θ0
t ≤ τ

e−ρ2t−(ρ1−ρ2)τ

Θ0
t ≥ τ
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Again, it is easier to calculate the integral in equation˜(1) with equation˜(2).
The integral from the origin is:

∫ t

0
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Θ(u)
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(e−ρ1t − 1) t ≤ τ
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This is then plugged into equation˜(1) with a simple Dirac delta function.

2 Simulation of Coalescent Times

It is generally possible to simulate coalescent times from a time-dependent model
by rescaling a set of coalescent times simulated with constant Θ, denoted as t,
with:

t′ =

∫ t

0

Θ(u)du

Θ(0)
.

This gives for the exponential growth model [2]:

t′ =
eρt − 1

ρ
,

for the linear growth model:

t′ = t+ t2(ΘTMRCA
/Θ0 − 1)/TMRCA,

for the step model:

t′ = τ + (t− τ)Θ1/Θ0 if t > τ,

and for the exponential double growth model:

t′ =


eρ1t − 1

ρ1
t ≤ τ

eρ1τ − 1

ρ1
+
eρ2t+(ρ1−ρ2)τ − eρ1τ

ρ2
t ≥ τ

3 Implementation in coalescentMCMC

Five functions are available in coalescentMCMC which compute the likelihood
of the constant-Θ model as well as the four above ones:

dcoal(phy, theta, log = FALSE)

dcoal.time(phy, theta0, rho, log = FALSE)

dcoal.linear(phy, theta0, thetaT, TMRCA, log = FALSE)

dcoal.step(phy, theta0, theta1, tau, log = FALSE)

dcoal.time2(phy, theta0, rho1, rho2, tau, log = FALSE)

The two arguments common to all functions are:
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phy: a tree as an object of class "phylo";

log: a logical value, if TRUE the values are returned log-transformed which is
recommended for computing log-likelihoods.

The other arguments are the parameters of the models.
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