
ar
X

iv
:1

20
9.

54
29

v1
 [

cs
.N

E
]

 2
4

Se
p

20
12

copulaedas: An R Package for Estimation of

Distribution Algorithms Based on Copulas

Yasser González-Fernández

Institute of Cybernetics,
Mathematics and Physics

Marta Soto

Institute of Cybernetics,
Mathematics and Physics

Abstract

The use of probabilistic models based on copulas in EDAs (Estimation of Distribution
Algorithms) is currently an active area of research. In this context, the copulaedas R

package intends to provide a platform where EDAs based on copulas can be implemented
and studied. The package offers complete implementations of various EDAs based on
copulas and vines, a group of well-known benchmark problems, utility functions to study
the behavior of EDAs and the possibility of implementing new algorithms that can be in-
tegrated into the package. EDAs are implemented using S4 classes with generic functions
for its main parts: seeding, selection, learning, sampling, replacement, local optimization,
termination, and reporting. This paper provides an overview of EDAs based on copulas,
describes the implementation of copulaedas and illustrates its use with examples. The
examples include running the EDAs implemented in the package, implementing new algo-
rithms and performing an empirical study to compare the behavior of a group of EDAs.

Keywords: optimization, estimation of distribution algorithms, copula, vine, R.

1. Introduction

EDAs (Estimation of Distribution Algorithms) (Mühlenbein and Paaß 1996; Baluja 1994;
Larrañaga and Lozano 2002; Pelikan et al. 2002) are evolutionary optimization methods char-
acterized by the explicit use of probabilistic models. These algorithms explore the search
space by iteratively estimating and sampling a probability distribution built from promising
solutions.

Due to its tractable properties, the normal distribution has been commonly used to model
the search distributions of EDAs for real-valued optimization problems (Bosman and Thierens
2006; Kern et al. 2003). Nevertheless, its use is often inconsistent with the empirical evidence
and leads to the construction of incorrect models. Copula functions (Joe 1997; Nelsen 2006)
offer an alternative to tackle these problems. By means of Sklar’s Theorem (Sklar 1959), any
multivariate distribution can be decomposed into marginal distributions and a copula that
determines the dependence structure between the variables. EDAs based on copulas inherit
these properties and consequently can build more realistic search distributions.

Although several EDAs based on copulas have been proposed in the literature, there are no
publicly available implementations of such algorithms. Aiming to fill this gap, the copulaedas
package (González-Fernández and Soto 2011a) for the R language and environment for statis-

http://arxiv.org/abs/1209.5429v1

2 copulaedas: An R Package for EDAs Based on Copulas

i← 1
repeat

if i == 1 then

Generate an initial population P1 using a seeding method.
Evaluate the solutions in the population P1.
If required, apply a local optimization method to the population P1.

else

Select a population PSelected
i from Pi−1 according to a selection method.

Learn a probabilistic model Mi from PSelected
i using a learning method.

Sample a new population PSampled
i from Mi using a sampling method.

Evaluate the solutions in the population PSampled
i .

If required, apply a local optimization method to the population PSampled
i .

Create the population Pi from Pi−1 and PSampled
i using a replacement method.

end if

If required, report progress information using a reporting method.
i← i+ 1

until A criterion of the termination method is met.

Algorithm 1: General procedure of an EDA.

tical computing (R Development Core Team 2011) has been published on the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=copulaedas.

The copulaedas package intends to provide a platform where EDAs based on copulas can be
implemented and studied. It contains implementations of various EDAs based on copulas, a
group of well-known benchmark problems and utility functions to study EDAs.

The rest of this paper is organized as follows. Section 2 presents the necessary background on
EDAs based on copulas. Section 3 describes the details of the implementation of copulaedas
while Section 4 illustrates its use with examples. Finally, concluding remarks are given in
Section 5.

2. Estimation of distribution algorithms based on copulas

This section begins by describing the general procedure of an EDA, according to the imple-
mentation included in copulaedas. Then, a general overview of the EDAs based on copulas
presented in the literature with emphasis on the algorithms implemented in the package is
given.

2.1. General procedure of an EDA

The general procedure of an EDA is outlined in Algorithm 1. Each iteration of this procedure
is referred to as one generation of the EDA. The main steps of the algorithm are highlighted
in italics.

The first step of an EDA is the generation of an initial population of solutions. The initial
population is usually generated randomly but it can be generated using a particular heuristic

http://CRAN.R-project.org/package=copulaedas

Yasser González-Fernández, Marta Soto 3

when a priori information about the characteristics of the optimal solutions is available. In
both cases, we call the method used to generate the initial population a seeding method.

The results of global optimization algorithms such as EDAs can often be improved if combined
with local optimization methods that look for better solutions in the neighborhood of each
solution. Local optimization methods can also be used to implement repairing methods for
constrained problems where the simulated solutions may be unfeasible and some strategy to
repair these solutions is available.

A selection method is used to determine the solutions to be modeled by the search distri-
bution. These solutions are usually the most promising solutions of the population. An
example selection method is truncation selection, which creates the selected population with
a percentage of the best solutions of the current population.

The estimation and simulation of the search distribution are essential steps of an EDA. These
steps are implemented by learning and sampling methods, respectively. Both methods are
closely related. Learning methods estimate structure and parameters of the probabilistic
model used by the algorithm from the selected population, while sampling methods are used
to generate a new population of solutions from the learned probabilistic model.

A replacement method is used to incorporate a new population of solutions into the current
population. An example replacement strategy is to replace completely the current population
with the new population. Other replacement strategies retain the best solutions found so far
or are used to maintain the diversity of solutions.

Reporting methods provide progress information during the execution of the EDA. Relevant
progress information can be the number of evaluations of the objective function and the best
solution found so far.

Finally, a termination method determines when the algorithm stops according to certain
criteria; for example, a fixed number of function evaluations are realized or a certain value of
the objective function is reached.

We are particularly interested in EDAs whose learning and sampling steps involve probabilistic
models based on copulas. The next section provides an overview of such algorithms.

2.2. Overview of EDAs based on copulas

To the best of our knowledge, the technical report (Soto et al. 2007) and the theses (Ardeŕı
2007; Barba-Moreno 2007) were the first attempts to incorporate copulas into EDAs. Since
then, a considerable number of EDAs based on copula theory have been proposed in the litera-
ture (e.g., Wang et al. 2009b,a; Salinas-Gutiérrez et al. 2009; Gao 2009; Soto and González-Fernández
2010; Salinas-Gutiérrez et al. 2010; Cuesta-Infante et al. 2010; Ye et al. 2010; González-Fernández
2011). As evidence of its increasing popularity, the use of copulas in EDAs has been identified
as an emerging approach for the solution of real-valued optimization problems (Hauschild and Pelikan
2011).

In general, the learning step of copula-based EDAs consist of two parts: the estimation of the
marginal distributions and the estimation of the probabilistic dependence structure. Usually,
a particular distribution (e.g., normal or beta) is assumed for each margin and its parame-
ters are estimated by maximum likelihood (Soto et al. 2007; Ardeŕı 2007; Wang et al. 2009b,a;
Salinas-Gutiérrez et al. 2009; Soto and González-Fernández 2010; Salinas-Gutiérrez et al. 2010;
Ye et al. 2010; González-Fernández 2011; Salinas-Gutiérrez et al. 2011). In other cases, ker-

4 copulaedas: An R Package for EDAs Based on Copulas

nel density estimation (Soto et al. 2007; Ardeŕı 2007; Gao 2009; Salinas-Gutiérrez et al. 2011)
or empirical marginal distributions (Cuesta-Infante et al. 2010) have been used. Once the
marginal distributions are estimated, the selected population is transformed into uniform
variables in (0, 1) by the evaluation of each marginal cumulative distribution function. This
transformed population is then used to estimate a copula-based model of the dependence
structure among variables.

The simulation step usually starts with the generation of a population of uniform variables
in (0, 1) with the dependence structure described by the copula-based model estimated in the
learning step. Finally, this uniform population is transformed to the domain of the variables
through the evaluation of the inverse of each marginal cumulative distribution function.

According to the copula model used, EDAs based on copulas can be classified as EDAs based
on either multivariate or factorized copulas. In the rest of this section we describe algorithms
belonging to each group.

EDAs based on multivariate copulas

The research on EDAs based on multivariate copulas has focused on the use of the normal cop-
ula (Soto et al. 2007; Ardeŕı 2007; Barba-Moreno 2007; Wang et al. 2009b) and Archimedean
copulas (Wang et al. 2009a; Gao 2009).

The algorithms described in (Soto et al. 2007; Ardeŕı 2007; Barba-Moreno 2007) are theoret-
ically similar but they present differences in the estimation of the marginal distributions and
the use of techniques such as variance scaling. Wang et al. (2009b) present the bivariate case
and, since only normal marginal distributions are used, the proposed algorithm is equivalent
to EMNA (Estimation of Multivariate Normal Algorithm) (Larrañaga et al. 2001).

The algorithms presented in (Wang et al. 2009a; Gao 2009) use exchangeable Archimedean
copulas. Wang et al. (2009a) propose two algorithms that use Clayton and Ali-Mikhail-Haq
copulas, respectively. In this work, the parameters of the copulas are not estimated from the
selected population. Gao (2009) does not state which members of the family of Archimedean
copulas are used in the algorithm.

Two EDAs based on multivariate copulas are implemented in copulaedas, one is based on the
product or independence copula and the other on the normal copula.

The first algorithm is UMDA (Univariate Marginal Distribution Algorithm) for continuous
variables (Larrañaga et al. 1999, 2000). UMDA can be integrated into the framework of EDAs
based on copulas, although originally it was not defined in terms of copulas. A consequence
of Sklar’s Theorem is that random variables are independent if and only if the underlying
copula is the product copula. Thus, UMDA can be described as an EDA based on copulas
that models the dependence structure between the variables using a multivariate product
copula.

The second EDA based on a multivariate copula implemented in copulaedas is GCEDA (Gaus-
sian Copula Estimation of Distribution Algorithm) (Soto et al. 2007; Ardeŕı 2007). This algo-
rithm is based on the multivariate normal copula, which allows the construction of multivariate
distributions with normal dependence structure and non-normal margins. The dependence
structure of the multivariate normal copula is determined by a positive-definite correlation
matrix. If the marginal distributions are not normal, the correlation matrix is estimated by
the inversion of the non-parametric estimator of Kendall’s tau for each pair of variables (see
e.g., Nelsen 2006). If the resulting matrix is not positive-definite, the correction proposed by

Yasser González-Fernández, Marta Soto 5

Rousseeuw and Molenberghs (1993) can be applied. GCEDA is equivalent to EMNA when
all marginal distributions are normal.

The implementation of UMDA and GCEDA provided by copulaedas has been used for the
solution of a real-world problem known as the molecular docking problem (Soto et al. 2012).

EDAs based on copula factorizations

The use of multivariate copulas to model the dependence structure between variables offers
several advantages over the use of a multivariate normal distribution; nevertheless, it presents
limitations. The number of tractable copulas when more than two variables are involved
is limited. In fact, most of the available parametric copulas are bivariate. Moreover, the
multivariate copulas are not appropriate when all pairs of variables do not have the same
dependence structure. Another limitation is that multivariate extensions, such as exchange-
able Archimedean copulas or the multivariate t copula, have only one parameter to describe
certain aspects of the overall dependence. This can be a serious issue when there are pairs of
variables with different patterns of dependence.

One alternative is to use copula factorizations that build high-dimensional probabilistic models
by using lower-dimensional copulas as building blocks. Several EDAs based on copula factor-
izations have been proposed in the literature (Salinas-Gutiérrez et al. 2009; Soto and González-Fernández
2010; Salinas-Gutiérrez et al. 2010; Cuesta-Infante et al. 2010; Ye et al. 2010; González-Fernández
2011), although the authors are not always aware of the limitations of the multivariate copula
approach and present the algorithms without comments about these issues.

The EDA introduced in (Salinas-Gutiérrez et al. 2009) is an extension of MIMIC (Mutual In-
formation Maximization for Input Clustering) for continuous domains (Larrañaga et al. 1999,
2000) that uses bivariate copulas in a chain structure instead of bivariate normal distribu-
tions. Two instances of this algorithm were presented, one uses normal copulas and the other
Frank copulas. This algorithm is described in more detail in Section 4.2, where we illustrate
the implementation of a copula-based EDA by using copulaedas.

The exchangeable Archimedean copulas employed in (Wang et al. 2009a; Gao 2009) repre-
sent highly specialized dependence structures (Berg and Aas 2007; McNeil 2008). Nested
Archimedean copulas provide a more flexible way to build multivariate Archimedean copulas.
Among the different nesting structures that have been proposed in the literature (see e.g.,
Berg and Aas 2007 for a review), hierarchically nested Archimedean copulas present one of
the most flexible structures. Ye et al. (2010) propose an EDA that uses a representation of
hierarchically nested Archimedean copulas based on Lévy subordinators (Hering et al. 2010).

Cuesta-Infante et al. (2010) investigate the use of bivariate empirical copulas and a multivari-
ate extension of Archimedean copulas. The EDA based on bivariate empirical copulas is com-
pletely nonparametric: it employs empirical marginal distributions and a construction based
on bivariate empirical copulas to represent the dependence among variables. The marginal
distributions and the bivariate empirical copulas are defined through the linear interpolation
of the sample in the selected population. The EDA based on Archimedean copulas uses a
construction similar to a fully nested Archimedean copula. This algorithm uses copulas from
one of the families Frank, Clayton or HRT (i.e., heavy right tail copula or Clayton survival
copula). The parameters of the copulas are not estimated from the selected population but
fixed to a constant value. The marginal distributions are modeled as in the EDA based on
bivariate empirical copulas.

6 copulaedas: An R Package for EDAs Based on Copulas

The class of VEDAs (Vine EDAs) was introduced in (Soto and González-Fernández 2010;
González-Fernández 2011). Algorithms of this class model the search distributions using
vines (Joe 1996; Bedford and Cooke 2001; Aas et al. 2009), which are graphical models that
represent high-dimensional distributions by decomposing the multivariate density into bivari-
ate copulas and one-dimensional densities. A vine on n variables is a set of nested trees
T1, . . . , Tn−1, where the edges of tree Tj are the nodes of the tree Tj+1 with j = 1, . . . , n− 2.
The edges of the trees represent the bivariate copulas in the decomposition. Since all bivariate
copulas do not have to belong to the same family, vines model a rich variety of dependences
by combining bivariate copulas from different families.

C-vines (canonical vines) and D-vines (drawable vines) are two types of vines, each of which
determine a specific decomposition of the multivariate density. In a C-vine, each tree Tj has
a unique root node that is connected to n−j edges. In a D-vine, no node is connected to more
than two edges. Two EDAs based on these models were presented in (Soto and González-Fernández
2010; González-Fernández 2011): CVEDA (C-Vine EDA) and DVEDA (D-Vine EDA) based
on C-vines and D-vines, respectively. Since both algorithms are implemented in copulaedas,
we describe them in more detail in the rest of this section.

The general idea of inference and simulation methods for C-vines and D-vines was developed
by Aas et al. (2009). The inference algorithm should consider two main aspects: the selection
of the structure of the vines and the choice of the bivariate copulas in the factorization. The
simulation algorithm is based on the conditional distribution method (see e.g., Devroye 1986).

At each generation of CVEDA and DVEDA, the selection of the structure of the vine involves
selecting the bivariate dependences that will be explicitly modeled in the first tree. This is
accomplished by using greedy heuristics based on the empirical Kendall’s tau between each
pair of variables in the selected population assigned to the edges of the tree. In a C-vine, the
node that maximizes the sum of the weights of its edges to the other nodes is chosen as the
root node of the first tree. In a D-vine, the problem of constructing the first tree consists
of finding the maximum weighted sequence of the variables. Brechmann (2010) transforms
this problem into a TSP (Traveling Salesman Problem) instance. For efficiency reasons,
in copulaedas we find an approximate solution of the TSP by using the cheapest insertion
heuristic (Rosenkrantz et al. 1977).

The selection of each bivariate copula in both decompositions starts with an independence
test (Genest and Rémillard 2004; Genest et al. 2007). The product copula is selected if there
is not enough evidence against the null hypothesis of independence at a given significance
level. In the other case, the parameters of a group of candidate copulas are estimated and the
copula that minimizes a Cramér-von Mises statistic based on the empirical copula is selected
(Genest and Rémillard 2008).

The cost of the construction of C-vines and D-vines increases with the number of variables.
To simplify the construction we apply the truncation strategy presented in (Brechmann 2010).
If a vine is truncated at a given tree, all the copulas in the subsequent trees are assumed to
be product copulas. A model selection procedure based on either AIC (Akaike Information
Criterion) (Akaike 1974) or BIC (Bayesian Information Criterion) (Schwarz 1978) is applied
to detect the required number of trees. This procedure expands the tree Tj+1 if the value of
the information criterion calculated up to the tree Tj+1 is smaller than the value obtained up
to the previous tree; otherwise, the vine is truncated at the tree Tj .

At this point, it is important to note that the algorithm presented in (Salinas-Gutiérrez et al.

Yasser González-Fernández, Marta Soto 7

2010) also uses a D-vine. In this algorithm only normal copulas are used in the first two trees
and conditional independence is assumed for the rest of the trees, i.e., the D-vine is always
truncated at the second tree.

The implementation of CVEDA and DVEDA included in copulaedas uses the truncation
procedure based on AIC and the candidate copulas normal, t, Clayton, Frank and Gumbel.
The parameters of all copulas but the t copula are estimated using the inversion of Kendall’s
tau. For the t copula, the correlation coefficient is computed as in the normal copula and
the degrees of freedom are estimated by maximum likelihood with the correlation parameter
fixed (Demarta and McNeil 2005).

González-Fernández (2011) presents a study about intrinsic characteristics of CVEDA and
DVEDA, such as the impact of the truncation procedure and the effect of the selection of
the structure of C-vines and D-vines. The implementation of these algorithms provided
by copulaedas also has been used in the solution of the molecular docking problem with
satisfactory results (Soto et al. 2012).

3. Implementation in R

The implementation of copulaedas follows an object-oriented design inspired by the Mateda-

2.0 (Santana et al. 2010) toolbox for MATLAB. Each EDA implemented in the package is
represented by an S4 class (Chambers 2008) with generic functions for its main steps.

The main class of the package is EDA. This class is the base class of all classes implementing
EDAs in the package. The EDA class has two slots: name and parameters. The name slot
stores the name of the EDA and it is used by the show generic function to print the name
of the algorithm when invoked with an EDA instance as argument. The parameters slot has
greater importance, since it keeps all the parameters of the EDA in a list.

Each step of the general procedure of an EDA outlined in Algorithm 1 is represented in R

by a generic function that expects an EDA instance as its first argument. Table 1 shows a
description of these functions and its default methods. The help page of each generic function
in the documentation of copulaedas contains information about its arguments, the return
value, and the methods for each generic function already implemented in the package.

Generic functions that implement the steps of an EDA look at the parameters slot of the EDA
instance received as first argument for the values of the parameters that affect its behavior.
Only named members of the list should be used and reasonable default values should be
assumed when a certain component is missing. For example, the edaSeedUniformmethod for
the edaSeed generic function consults the popSize member of the list to know the number of
solutions to be generated for the initial population. If the popSize component is not defined,
an initial population of 100 solutions is generated. The help page of each generic function
describes the members of the list in the parameters slot interpreted by each function and its
default values.

The edaRun function implements the Algorithm 1 by linking together the generic functions for
each step. This function expects four arguments: the EDA instance, the objective function and
two vectors specifying the lower and upper bounds of the variables of the objective function.
The length of the vectors with the lower and upper bounds should be the same, since it
determines the number of variables of the objective function. When edaRun is called, it runs
the main loop of the EDA until the call to the edaTerminate generic function returns TRUE.

8 copulaedas: An R Package for EDAs Based on Copulas

Generic function Description

edaSeed Seeding method. The default method edaSeedUniform generates
the values of each variable in the initial population from a con-
tinuous uniform distribution.

edaOptimize Local optimization method. The use of a local optimization
method is disabled by default.

edaSelect Selection method. The default method edaSelectTruncation

implements truncation selection.
edaLearn Learning method. No default method.
edaSample Sampling method. No default method.
edaReplace Replacement method. The default method edaReplaceComplete

completely replaces the current population with the new popu-
lation.

edaReport Reporting method. Reporting progress information is disabled by
default.

edaTerminate Termination method. The default method edaTerminateMaxGen

ends the execution of the algorithm after a maximum number of
generations.

Table 1: Description of the generic functions that implement the steps of the general procedure
of an EDA outlined in Algorithm 1 and its default methods.

Then, the function returns an instance of the EDAResult class that encapsulates the results
of the algorithm. A description of the slots of this class is shown in Table 2.

Two subclasses of EDA are defined in the package: CEDA, that represents EDAs based on
multivariate copulas; and VEDA, that represents EDAs based on vines. The implementation of
UMDA, GCEDA, CVEDA and DVEDA strongly relies on the copula (Kojadinovic and Yan
2010) and vines (González-Fernández and Soto 2011b) R packages. These packages implement
the algorithms for the estimation and simulation of the probabilistic models used by these
EDAs.

Slot Description

eda EDA instance.
f Objective function.
lower Lower bounds of the variables of the objective function.
upper Upper bounds of the variables of the objective function.
numGens Total number of generations.
fEvals Total number of evaluations of the objective function.
bestSol Best solution.
bestEval Evaluation of the best solution.
cpuTime Run time of the algorithm in seconds.

Table 2: Description of the slots of the EDAResult class.

Yasser González-Fernández, Marta Soto 9

4. Using copulaedas

In this section, we illustrate how to use copulaedas. The first group of examples show how to
run the EDAs implemented in the package. Next, we explain how to implement a new EDA
based on copulas by using the functionalities provided by the package. Finally, we show how
to perform an empirical study to compare a group of EDAs.

Six well-known test functions are used in the examples. The objective functions are Sphere,
Griewank, Ackley, Summation Cancellation, Rastrigin and Rosenbrock. The corresponding
R functions are fSphere, fGriewank, fAckley, fSummationCancellation, fRastrigin and
fRosenbrock. The definition of each function for a vector x = (x1, . . . , xn) is given below.

fSphere(x) =
n
∑

i=1

x2i

fGriewank(x) = 1 +
n
∑

i=1

x2i
4000

−
n
∏

i=1

cos

(

xi√
i

)

fAckley(x) = −20 exp

−0.2
√

√

√

√

1

n

n
∑

i=1

x2

− exp

(

1

n

n
∑

i=1

cos (2πxi)

)

+ 20 + exp (1)

fSummationCancellation(x) =
1

10−5 +
∑n

i=1 |yi|
, y1 = x1, yi = yi−1 + xi

fRastrigin(x) =
n
∑

i=1

(

x2i − 10 cos (2πxi) + 10
)

fRosenbrock(x) =
n−1
∑

i=1

(

100
(

xi+1 − x2i

)2
+ (1− xi)

2

)

Sphere, Griewank, Ackley, Rastrigin and Rosenbrock are minimization problems. Summa-
tion Cancellation is originally a maximization problem but it is implemented in the pack-
age as a minimization problem. Sphere, Griewank, Ackley and Rastrigin have their global
optimum at x = (0, . . . , 0) with evaluation zero, Summation Cancellation has its global op-
timum at x = (0, . . . , 0) with evaluation −105 and Rosenbrock has its global optimum at
x = (1, . . . , 1) with evaluation zero. For a description of the characteristics of these functions
see (Bengoetxea et al. 2002; Bosman and Thierens 2006; Chen and Lim 2008).

The results presented in this section were obtained using R version 2.13.0 with copulaedas

version 1.1.0, copula version 0.9-7 and vines version 1.0.3. Computations were performed on
an Intel(R) Pentium(R) D CPU 3.00 GHz processor.

In the rest of this section, we assume copulaedas and the packages it depends on have been
loaded. This can be attained by running the following command:

R> library("copulaedas")

4.1. Running the EDAs implemented in the package

We begin by illustrating how to run the EDAs based on copulas implemented in copulaedas.
As an example, we execute GCEDA to optimize Sphere in five dimensions.

10 copulaedas: An R Package for EDAs Based on Copulas

GCEDA is represented in the package by the CEDA class for EDAs based on multivariate
copulas. Before creating a new instance of the class, we set up the generic functions for the
steps of the EDA according to the expected behavior of the algorithm.

The termination criterion is either to find the optimum of the objective function or to reach
a maximum number of generations. That is why we set the method for the edaTerminate

generic function to a combination of the functions edaTerminateEval and edaTerminateMaxGen
through the auxiliary function edaTerminateCombined.

R> setMethod("edaTerminate", "EDA",

+ edaTerminateCombined(edaTerminateEval, edaTerminateMaxGen))

The method for the edaReport generic function is set to edaReportSimple to make the
algorithm print progress information at each generation. This function prints one line at each
generation of the EDA with the minimum, mean and standard deviation of the evaluation of
the solutions in the current population.

R> setMethod("edaReport", "EDA", edaReportSimple)

Note that these methods were set for the base class EDA and therefore they will be inherited by
all subclasses. Generally, we find convenient to define methods of the generic functions that
implement the steps of the EDA for the base class, except when different subclasses should
use different methods.

The auxiliary function CEDA can be used to create instances of the class with the same name.
Arguments of this function are interpreted as parameters of the EDA to be added as members
of the list in the parameters slot of the new instance. An instance of CEDA corresponding to
GCEDA using empirical marginal distributions smoothed with normal kernels can be created
as follows:

R> gceda <- CEDA(copula = "normal", margin = "kernel",

+ popSize = 200, fEval = 0, fEvalTol = 1e-6, maxGen = 50)

R> gceda@name <- "Gaussian Copula Estimation of Distribution Algorithm"

The methods that implement the generic functions edaLearn and edaSample for CEDA in-
stances expect three parameters. The copula parameter specifies the multivariate copula, it
should be set to "normal" for GCEDA. The marginal distributions are determined by the
value of margin. All EDAs implemented in the package use this parameter for the same
purpose. As margin is set to "kernel", the algorithm will look for three functions named
fkernel, pkernel and qkernel already defined in the package to fit the parameters of the
margins and to evaluate the distribution and quantile functions, respectively. The fkernel

function computes the bandwidth parameter of the normal kernel according to the rule-of-
thumb of Silverman (1986) and pkernel implements the empirical cumulative distribution
function. The quantile function is evaluated following the procedure described in (Azzalini
1981). The popSize parameter determines the population size while the rest of the arguments
of CEDA are parameters of the functions that implement the termination criterion.

Now, we can run GCEDA by calling edaRun. The lower and upper bounds of the variables
are set so that the values of the variables in the optimum of the function are located at 25%

Yasser González-Fernández, Marta Soto 11

of the interval. It was shown in (Ardeŕı 2007) that the use of empirical marginal distributions
smoothed with normal kernels improves the behavior of GCEDA when the initial population
is generated asymmetrically with respect to the optimum of the function.

R> result <- edaRun(gceda, fSphere, rep(-300, 5), rep(900, 5))

Generation Minimum Mean Std. Dev.

1 9.482661e+04 1.007874e+06 5.271801e+05

2 2.505026e+04 4.479002e+05 2.681643e+05

3 2.937460e+04 2.091392e+05 1.264960e+05

4 5.581990e+03 1.017533e+05 5.642366e+04

5 3.718832e+03 4.862920e+04 2.923179e+04

6 7.132640e+02 2.283238e+04 1.306885e+04

7 1.381820e+03 1.046310e+04 5.386455e+03

8 3.068758e+02 4.943787e+03 2.744929e+03

9 1.910194e+02 2.188175e+03 1.324063e+03

10 5.062607e+01 9.492492e+02 5.924008e+02

11 1.812797e+01 3.922013e+02 2.294571e+02

12 8.197173e+00 1.755258e+02 1.023085e+02

13 6.354410e+00 8.173253e+01 4.020714e+01

14 3.244178e+00 4.448070e+01 2.528163e+01

15 8.257841e-01 1.949224e+01 1.085053e+01

16 7.161607e-01 9.814025e+00 5.889123e+00

17 4.792109e-01 4.450473e+00 2.243748e+00

18 2.711282e-01 2.365315e+00 1.299843e+00

19 1.060200e-01 1.121201e+00 6.513729e-01

20 3.438796e-02 5.884943e-01 3.215504e-01

21 3.353496e-02 2.756226e-01 1.773181e-01

22 1.524750e-03 1.117457e-01 5.788006e-02

23 6.755015e-03 6.367963e-02 3.382219e-02

24 2.900885e-03 3.517951e-02 1.744429e-02

25 2.286571e-04 1.906427e-02 1.041386e-02

26 8.635889e-04 9.387225e-03 4.927262e-03

27 5.090779e-04 4.185834e-03 2.275273e-03

28 7.411229e-05 1.810591e-03 1.063558e-03

29 6.164902e-05 8.022974e-04 4.755964e-04

30 2.663512e-05 3.368331e-04 1.955830e-04

31 2.466309e-05 1.657867e-04 9.601912e-05

32 4.888452e-06 7.180790e-05 3.945560e-05

33 3.626218e-06 3.662413e-05 2.063811e-05

34 1.424262e-06 1.737351e-05 9.561411e-06

35 8.645225e-07 8.936281e-06 5.409103e-06

The result variable contains an instance of the EDAResult class. A method for the show

generic function prints the results of the execution of the algorithm.

R> show(result)

12 copulaedas: An R Package for EDAs Based on Copulas

Results for Gaussian Copula Estimation of Distribution Algorithm

Best function evaluation 8.645225e-07

No. of generations 35

No. of function evaluations 7000

CPU time 10.55 seconds

Due to the stochastic nature of EDAs, it is often useful to analyze a sequence of indepen-
dent runs of these algorithms to ensure reliable results. The edaIndepRuns function sup-
ports executing independent runs of an EDA. To avoid generating lot of unnecessary output,
we first disable reporting progress information on each generation by setting edaReport to
edaReportDisabled.

R> setMethod("edaReport", "EDA", edaReportDisabled)

Now we can invoke the edaIndepRuns function to perform 30 independent runs of GCEDA.

R> results <- edaIndepRuns(gceda, fSphere, rep(-300, 5), rep(900, 5), 30)

The return value of the edaIndepRuns function is an instance of the EDAResults class. This
class is simply a wrapper for a list with instances of EDAResult as members. Each member
stores the results of an execution of the EDA. A show method for EDAResults instances prints
a table with the results of the runs of the EDA.

R> show(results)

Generations Evaluations Best Evaluation CPU Time

Run 1 37 7400 7.829213e-07 11.02

Run 2 37 7400 1.927911e-07 10.99

Run 3 38 7600 4.835526e-07 11.35

Run 4 35 7000 8.577429e-07 10.43

Run 5 35 7000 9.451111e-07 10.40

Run 6 35 7000 9.302367e-07 10.40

Run 7 36 7200 9.909941e-07 10.74

Run 8 37 7400 4.724555e-07 11.02

Run 9 35 7000 5.222054e-07 10.32

Run 10 36 7200 4.951474e-07 10.69

Run 11 37 7400 8.988045e-07 11.03

Run 12 34 6800 9.875791e-07 10.07

Run 13 36 7200 9.133316e-07 10.69

Run 14 38 7600 5.486231e-07 11.34

Run 15 34 6800 2.389598e-07 10.18

Run 16 35 7000 9.484775e-07 10.35

Run 17 31 6200 6.356923e-07 9.22

Run 18 36 7200 7.726292e-07 10.80

Run 19 35 7000 8.990815e-07 10.31

Run 20 34 6800 7.237225e-07 10.13

Yasser González-Fernández, Marta Soto 13

Run 21 36 7200 6.837205e-07 10.74

Run 22 35 7000 6.937608e-07 10.38

Run 23 34 6800 8.049177e-07 10.13

Run 24 34 6800 9.615774e-07 10.14

Run 25 39 7800 2.666713e-07 11.56

Run 26 35 7000 6.968256e-07 10.43

Run 27 36 7200 5.148476e-07 10.74

Run 28 36 7200 6.639083e-07 10.69

Run 29 35 7000 7.000933e-07 10.39

Run 30 37 7400 1.578787e-07 11.04

Also, the summary function can be used to generate a table with a statistical summary of the
results of the 30 runs of the algorithm.

R> summary(results)

Generations Evaluations Best Evaluation CPU Time

Minimum 31.000000 6200.0000 1.578787e-07 9.22000

Median 35.500000 7100.0000 6.984595e-07 10.56000

Maximum 39.000000 7800.0000 9.909941e-07 11.56000

Mean 35.600000 7120.0000 6.794754e-07 10.59067

Std. Dev. 1.566899 313.3798 2.462059e-07 0.47365

4.2. Implementation of a new EDA based on copulas

Now, we illustrate how to implement a new EDA based on copulas by using copulaedas. Since
the algorithm in question matches the general procedure of an EDA presented in Algorithm 1,
only the functions corresponding to the learning and simulation steps have to be implemented.
The main loop and the rest of the steps of the EDA are already implemented in the package.

As an example, we implement the extension of MIMIC for continuous domains proposed in
(Salinas-Gutiérrez et al. 2009). Similar to MIMIC, this extension learns a chain dependence
structure but it uses bivariate copulas instead of bivariate normal distributions to model
dependences.

Two instances of the extension of MIMIC based on copulas were presented in (Salinas-Gutiérrez et al.
2009), one uses bivariate normal copulas while the other uses bivariate Frank copulas. In this
article, the algorithm will be denoted as Copula MIMIC.

The first step in the implementation of a new EDA using copulaedas is to define an S4 class
to represent the algorithm. The new class should inherit from EDA. For convenience, we also
define an auxiliary function CopulaMIMIC that can be used to create new instances of the
class with the same name.

R> setClass("CopulaMIMIC", contains = "EDA",

+ prototype = prototype(name = "Copula MIMIC"))

R> CopulaMIMIC <- function (...) {

+ new("CopulaMIMIC", parameters = list(...))

+ }

14 copulaedas: An R Package for EDAs Based on Copulas

Copula MIMIC models the marginal distributions with the beta distribution. A linear trans-
formation is used to map the sample of the variables in the selected population into the
(0, 1) interval to match the domain of definition of the beta distribution. Note that this
transformation does not affect the dependence between the variables because the copula is
scale-invariant.

To be consistent with the marginal distributions already implemented in copulaedas, we define
three functions with the common suffix betamargin and the prefixes f, p and q to fit the
parameters of the margins and for the evaluation of the distribution and quantile functions,
respectively. By following this convention, the algorithms already implemented in the package
can use beta marginal distributions by setting the margin parameter to "betamargin". The
betamargin suffix was selected to avoid the redefinition of the pbeta and qbeta functions of
the stats package.

R> fbetamargin <- function (x, lower, upper) {

+ x <- (x - lower) / (upper - lower)

+ loglik <- function (s) sum(dbeta(x, s[1], s[2], log = TRUE))

+ s <- optim(c(1, 1), loglik, control = list(fnscale = -1))$par

+ list(lower = lower, upper = upper, a = s[1], b = s[2])

+ }

R> pbetamargin <- function (q, lower, upper, a, b) {

+ q <- (q - lower) / (upper - lower)

+ pbeta(q, a, b)

+ }

R> qbetamargin <- function (p, lower, upper, a, b) {

+ q <- qbeta(p, a, b)

+ lower + q * (upper - lower)

+ }

The CopulaMIMIC class inherits methods for the generic functions that implement all the steps
of the EDA except learning and sampling. To complete the implementation of the algorithm,
we implement the estimation and simulation of the probabilistic model as methods for the
generic functions edaLearn and edaSample, respectively.

The method for edaLearn starts with the estimation of the parameters of the marginal dis-
tributions and the transformation of the selected population to uniform variables in (0, 1) by
the evaluation of the marginal cumulative distribution functions. Then, the mutual informa-
tion between all pairs of variables is calculated through the copula entropy (Davy and Doucet
2003). To accomplish this, the parameters of each possible bivariate copula should be esti-
mated. The parameters of the copulas are estimated by the method of maximum likelihood.
The value of the parameter obtained by the inversion of Kendall’s tau is used as an initial
approximation.

To determine the chain dependence structure learned by the algorithm, a permutation of
the variables that maximizes the pairwise mutual information is selected. Because this is
a computationally intensive task, a greedy algorithm is used to compute an approximate
solution (De Bonet et al. 1997; Larrañaga et al. 1999).

Finally, the method for edaLearn returns a list with three components that represents the
probabilistic model learned in the generation: the parameters of the marginal distributions,

Yasser González-Fernández, Marta Soto 15

the permutation of the variables and the copulas in the chain dependence structure.

R> edaLearnCopulaMIMIC <- function (eda, gen, previousModel,

+ selectedPop, selectedEval, lower, upper) {

+ margin <- eda@parameters$margin

+ copula <- eda@parameters$copula

+

+ if (is.null(margin)) margin <- "betamargin"

+ if (is.null(copula)) copula <- "normal"

+

+ fmargin <- get(paste("f", margin, sep = ""))

+ pmargin <- get(paste("p", margin, sep = ""))

+ copula <- switch(copula,

+ normal = normalCopula(0), frank = frankCopula(0))

+

+ n <- ncol(selectedPop)

+

+ # Estimate the parameters of the marginal distributions.

+ margins <- lapply(seq(length = n),

+ function (i) fmargin(selectedPop[, i], lower[i], upper[i]))

+ uniformPop <- sapply(seq(length = n),

+ function (i) do.call(pmargin,

+ c(list(selectedPop[, i]), margins[[i]])))

+

+ # Calculate pairwise mutual information by using copula entropy.

+ C <- matrix(list(NULL), nrow = n, ncol = n)

+ I <- matrix(0, nrow = n, ncol = n)

+ for (i in seq(from = 2, to = n)) {

+ for (j in seq(from = 1, to = i - 1)) {

+ # Estimate the parameters of the copula.

+ data <- cbind(uniformPop[, i], uniformPop[, j])

+ startCopula <- fitCopula(copula, data, method = "itau",

+ estimate.variance = FALSE)@copula

+ C[[i, j]] <- tryCatch(

+ fitCopula(startCopula, data, method = "ml",

+ start = startCopula@parameters,

+ estimate.variance = FALSE)@copula,

+ error = function (error) startCopula)

+ # Calculate mutual information.

+ if (is(C[[i, j]], "normalCopula")) {

+ I[i, j] <- -0.5 * log(1 - C[[i, j]]@parameters^2)

+ } else {

+ u <- rcopula(C[[i, j]], 100)

+ I[i, j] <- sum(log(dcopula(C[[i, j]], u))) / 100

+ }

+ C[[j, i]] <- C[[i, j]]; I[j, i] <- I[i, j]

+ }

16 copulaedas: An R Package for EDAs Based on Copulas

+ }

+

+ # Pick a permutation of the variables.

+ perm <- as.vector(arrayInd(which.max(I), dim(I)))

+ copulas <- C[perm[1], perm[2]]

+ I[perm,] <- -Inf

+ for (k in seq(length = n - 2)) {

+ ik <- which.max(I[, perm[1]])

+ perm <- c(ik, perm)

+ copulas <- c(C[perm[1], perm[2]], copulas)

+ I[ik,] <- -Inf

+ }

+

+ list(margins = margins, perm = perm, copulas = copulas)

+ }

R> setMethod("edaLearn", "CopulaMIMIC", edaLearnCopulaMIMIC)

The method for the edaSample generic function receives the representation of the probabilistic
model returned by edaLearn as the model argument. The generation of a new solution with
n variables starts with the simulation of an n-dimensional vector U having uniform marginal
distributions in (0, 1) and the dependence described by the copulas in the chain dependence
structure.

The first step is to simulate an independent uniform variable Uπn
in (0, 1), where πn denotes

the variable in the position n of the permutation π selected by the edaLearn method. The
rest of the uniform variables are simulated conditionally on the previously simulated variable
by using the conditional copula C(Uπk

|Uπk+1
), with k = n− 1, n − 2, . . . , 1.

Finally, the new solution is determined through the evaluation of the beta quantile functions
and the application of the inverse of the linear transformation. This procedure is repeated
for each solution to be generated.

R> edaSampleCopulaMIMIC <- function (eda, gen, model, lower, upper) {

+ popSize <- eda@parameters$popSize

+ margin <- eda@parameters$margin

+

+ if (is.null(popSize)) popSize <- 100

+ if (is.null(margin)) margin <- "betamargin"

+

+ qmargin <- get(paste("q", margin, sep = ""))

+

+ n <- length(model$margins)

+ perm <- model$perm

+ copulas <- model$copulas

+

+ # Simulate the chain structure with the copulas.

+ uniformPop <- matrix(0, nrow = popSize, ncol = n)

+ uniformPop[, perm[n]] <- runif(popSize)

Yasser González-Fernández, Marta Soto 17

+ for (k in seq(from = n - 1, to = 1)) {

+ u <- runif(popSize)

+ v <- uniformPop[, perm[k + 1]]

+ uniformPop[, perm[k]] <- hinverse(copulas[[k]], u, v)

+ }

+

+ # Evaluate the inverse of the marginal distributions.

+ pop <- sapply(seq(length = n),

+ function (i) do.call(qmargin,

+ c(list(uniformPop[, i]), model$margins[[i]])))

+

+ pop

+ }

R> setMethod("edaSample", "CopulaMIMIC", edaSampleCopulaMIMIC)

The implementation of Copula MIMIC is now complete. As it was illustrated with GCEDA in
the previous section, the algorithm can be executed by creating an instance of the CopulaMIMIC
class and calling the edaRun function.

4.3. Performing an empirical study

Finally, we show how to use copulaedas to perform an empirical study of the behavior of a
group of EDAs based on copulas on benchmark problems. The algorithms to be compared
are UMDA, GCEDA, CVEDA, DVEDA and Copula MIMIC. The first three algorithms are
included in copulaedas and the fourth algorithm was implemented in Section 4.2. All func-
tions described at the beginning of Section 4 are considered as benchmark problems in 10
dimensions.

The aim of this empirical study is to assess the behavior of these algorithms when only linear
and independence relationships are considered. Thus, only normal and product copulas are
used in these EDAs. UMDA and GCEDA use multivariate product and normal copulas,
respectively. CVEDA and DVEDA are configured to combine bivariate product and normal
copulas in the vines. Copula MIMIC learns a chain dependence structure with normal copulas.
All algorithms use normal marginal distributions. Note that in this case, GCEDA corresponds
to EMNA and Copula MIMIC is similar to MIMIC for continuous domains.

In the following code fragment, we create class instances corresponding to the algorithms
described in the previous paragraph.

R> umda <- CEDA(copula = "indep", margin = "norm")

R> umda@name <- "UMDA"

R> gceda <- CEDA(copula = "normal", margin = "norm")

R> gceda@name <- "GCEDA"

R> cveda <- VEDA(vine = "CVine", indepTestSigLevel = 0.01,

+ copulas = c("normal"), margin = "norm")

R> cveda@name <- "CVEDA"

R> dveda <- VEDA(vine = "DVine", indepTestSigLevel = 0.01,

+ copulas = c("normal"), margin = "norm")

R> dveda@name <- "DVEDA"

18 copulaedas: An R Package for EDAs Based on Copulas

R> copulamimic <- CopulaMIMIC(copula = "normal", margin = "norm")

R> copulamimic@name <- "CopulaMIMIC"

The initial population is generated using the default method of the edaSeed generic function,
therefore, it is sampled uniformly in the real interval of each variable. The lower and upper
bounds of the variables are set so that the values of the variables in the optimum of the
function are located in the middle of the interval. We use the intervals [−600, 600] in Sphere
and Griewank, [−30, 30] in Ackley, [−0.16, 0.16] in Summation Cancellation, [−5.12, 5.12] in
Rastrigin, and [−9, 11] in Rosenbrock.

All algorithms use the default truncation selection method with a truncation factor of 0.3.
Three termination criteria are combined using the edaTerminateCombined function: to find
the global optimum of the function with a precision greater than 10−6, to reach 300000
function evaluations or to loose diversity in the population, i.e., the standard deviation of the
evaluation of the solutions in the population is less than 10−8. These criteria are implemented
in the functions edaTerminateEval, edaTerminateMaxEvals and edaTerminateEvalStdDev,
respectively.

The population size of EDAs along with the truncation method determine the sample available
for the estimation of the search distribution. An arbitrary selection of the population size
could lead to misleading conclusions of the results of the experiments. When the population
size is too small, the search distributions might not be accurately estimated. On the other
hand, the use of an excessively large population size usually does not result in a better behavior
of the algorithms but certainly in a greater number of function evaluations.

We advocate the use of the critical population size when comparing the performance of EDAs.
The critical population size is the minimum population size required by the algorithm to find
the global optimum of the function with a high success rate. To find the optimum of the
function in 30 of 30 sequential independent runs can be generally considered a high success
rate.

An approximate value of the critical population size can be determined empirically using a
bisection method (see e.g., Pelikan 2005 for a pseudocode of the algorithm). The bisection
method begins with an initial interval where the critical population size should be located
and discards one half of the interval at each step. This procedure is implemented in the
edaCriticalPopSize function. In the experimental study carried out in this section, the
initial interval is [50, 2000]. If the critical population size is not found at this interval, the
results of the algorithm with the population size determined by the upper bound are presented.

The complete empirical study consists of performing 30 independent runs of every algorithm
on every function using the critical population size. We proceed with the definition of a list
containing all algorithm-function pairs.

R> edas <- list(umda, gceda, cveda, dveda, copulamimic)

R> fNames <- c("Sphere", "Griewank", "Ackley", "SummationCancellation",

+ "Rastrigin", "Rosenbrock")

R> experiments <- list()

R> for (eda in edas) {

+ for (fName in fNames) {

+ experiment <- list(eda = eda, fName = fName)

+ experiments <- c(experiments, list(experiment))

Yasser González-Fernández, Marta Soto 19

+ }

+ }

Now we define a function to process the elements of the experiments list. This function
implements all the experimental setup described before. The output of edaCriticalPopSize
and edaIndepRuns is redirected to a different plain-text file for each algorithm-function pair.

R> runExperiment <- function (experiment) {

+ eda <- experiment$eda

+ fName <- experiment$fName

+

+ # Information of the objective function.

+ fInfo <- list(

+ Sphere = list(lower = -600, upper = 600, fEval = 0),

+ Griewank = list(lower = -600, upper = 600, fEval = 0),

+ Ackley = list(lower = -30, upper = 30, fEval = 0),

+ SummationCancellation = list(lower = -0.16, upper = 0.16,

+ fEval = -1e5),

+ Rastrigin = list(lower = -5.12, upper = 5.12, fEval = 0),

+ Rosenbrock = list(lower = -9, upper = 11, fEval = 0)

+)

+ lower <- rep(fInfo[[fName]]$lower, 10)

+ upper <- rep(fInfo[[fName]]$upper, 10)

+ f <- get(paste("f", fName, sep = ""))

+

+ # Configure termination criteria.

+ eda@parameters$fEval <- fInfo[[fName]]$fEval

+ eda@parameters$fEvalTol <- 1e-6

+ eda@parameters$fEvalStdDev <- 1e-8

+ eda@parameters$maxEvals <- 300000

+ setMethod("edaTerminate", "EDA",

+ edaTerminateCombined(edaTerminateEval, edaTerminateMaxEvals,

+ edaTerminateEvalStdDev))

+

+ sink(paste(eda@name, "_", fName, ".txt", sep = ""))

+ # Determine the critical population size.

+ results <- edaCriticalPopSize(eda, f, lower, upper,

+ eda@parameters$fEval, eda@parameters$fEvalTol, lowerPop = 50,

+ upperPop = 2000, totalRuns = 30, successRuns = 30,

+ stopPercent = 10, verbose = TRUE)

+ if (is.null(results)) {

+ # Run the experiment with the largest population size, if the

+ # critical population size was not determined.

+ eda@parameters$popSize <- 2000

+ edaIndepRuns(eda, f, lower, upper, runs = 30, verbose = TRUE)

+ }

20 copulaedas: An R Package for EDAs Based on Copulas

+ sink(NULL)

+ }

We can run all the experiments by calling runExperiment for each element of the list.

R> for (experiment in experiments) {

+ runExperiment(experiment)

+ }

Running the complete empirical study is a computationally demanding operation. If various
processing units are available, it can be speeded up significantly by running the experiments
in parallel. The snow package (Tierney et al. 2011) offers a great platform to achieve this
purpose, since it provides a high-level interface for using a cluster of workstations for parallel
computations in R. The functions clusterApply or clusterApplyLB can be used to call
runExperiment for each element of the experiments list in parallel, with minor modifications
to the code presented here.

A summary of the results of the algorithms in Sphere, Griewank, Ackley, Summation Can-
cellation, Rastrigin and Rosenbrock with the critical population size is shown in Tables 3, 4,
5, 6, 7 and 8, respectively. We conclude this section with an overview of the results, since a
detailed analysis of the behavior of each algorithm is out of the scope of this paper.

All algorithms are able to find the global optimum of Sphere, Griewank, Ackley and Rast-
rigin and in the 30 independent runs with similar function values. Only GCEDA, CVEDA
and DVEDA optimize Summation Cancellation and no algorithm is capable of optimizing
Rosenbrock.

UMDA exhibits the best behavior in terms of the number of function evaluations in Sphere
Griewank and Ackley. There are no strong dependences between the variables of these func-
tions and it seems that the marginal information is enough to find the global optimum ef-
ficiently. The other algorithms require the calculation of a greater number of parameters
to represent the relationships between the variables, hence larger populations are needed to
compute them reliably. The requirement of larger population sizes results in a greater number
of function evaluations. CVEDA and DVEDA do not assume a normal dependence structure
between the variables and for this reason are less affected by this issue. The estimation pro-
cedure used by the vine-based algorithms selects the product copula if there is no enough
evidence of dependence. This technique allows CVEDA and DVEDA to perform similarly to
UMDA in these problems.

Both UMDA and Copula MIMIC fail to optimize Summation Cancellation. A correct rep-
resentation of the strong linear interactions between the variables of this function appears
to be essential to find the global optimum. UMDA completely ignores this information by
assuming independence between the variables and it exhibits the worst behavior. Copula
MIMIC reaches better fitness values than UMDA but neither can find the optimum of the
function. The probabilistic model estimated by Copula MIMIC can not represent important
dependences for the success of the optimization.

GCEDA, CVEDA and DVEDA do find the global optimum of Summation Cancellation.
The correlation matrix estimated by GCEDA represents accurately the multivariate linear
interactions between the variables. Thus, GCEDA has the best behavior in Summation
Cancellation in terms of the number of function evaluations. The results of CVEDA closely

Yasser González-Fernández, Marta Soto 21

Algorithm Success Population Evaluations Best evaluation CPU time

UMDA 30/30 81 3823.2 6.9e− 07 0.4
±128.3 ±2.3e− 07 ±0.0

GCEDA 30/30 310 13082.0 6.5e− 07 0.9
±221.4 ±2.0e− 07 ±0.0

CVEDA 30/30 104 4777.0 6.7e− 07 8.3
±118.8 ±1.8e− 07 ±1.5

DVEDA 30/30 104 4787.4 6.7e− 07 8.2
±100.2 ±2.0e− 07 ±1.1

Copula MIMIC 30/30 150 6495.0 6.9e− 07 468.8
±209.0 ±1.7e− 07 ±62.9

Table 3: Results of 30 independent runs of UMDA, GCEDA, CVEDA, DVEDA and Copula
MIMIC in the 10-dimensional Sphere problem with the critical population size.

Algorithm Success Population Evaluations Best evaluation CPU time

UMDA 30/30 111 5224.4 6.6e− 07 0.5
±231.2 ±1.9e− 07 ±0.0

GCEDA 30/30 355 15099.3 6.9e− 07 1.2
±414.1 ±1.8e− 07 ±0.0

CVEDA 30/30 142 6579.3 7.0e− 07 9.3
±389.9 ±1.8e− 07 ±2.0

DVEDA 30/30 150 6785.0 6.5e− 07 9.5
±338.1 ±2.4e− 07 ±1.9

Copula MIMIC 30/30 188 8221.8 6.6e− 07 595.7
±220.4 ±1.8e− 07 ±91.6

Table 4: Results of 30 independent runs of UMDA, GCEDA, CVEDA, DVEDA and Copula
MIMIC in the 10-dimensional Griewank problem with the critical population size.

follow the ones of GCEDA and the latter has much better results than DVEDA. A C-vine
provides a more appropriate modeling of the dependence structure between the variables of
Summation Cancellation than a D-vine, since it is possible to find a variable that governs the
interactions in the sample (González-Fernández 2011).

Rastrigin is not considered a problem where the interactions between the variables play an
important role for the success of the optimization. It is often only used to assess the effect
of multimodality. In spite of this, Rastrigin provides interesting results about dependence
modeling in EDAs.

All the studied algorithms find the global optimum of Rastrigin, but not all require the
same number of function evaluations. Neither assuming independence between all pairs of
variables nor considering a multivariate linear dependence structure lead to the best results.
The approach of DVEDA, that lies in the middle, performs better. DVEDA constructs a
probabilistic model that uses bivariate normal copulas if the dependence is strong and product
copulas in the other case. In Rastrigin, the combination of normal and product copulas in
a single probabilistic model is better than assuming independence or a multivariate linear
dependence structure.

22 copulaedas: An R Package for EDAs Based on Copulas

Algorithm Success Population Evaluations Best evaluation CPU time

UMDA 30/30 81 4997.7 8.1e− 07 0.6
±88.0 ±1.1e− 07 ±0.0

GCEDA 30/30 279 15633.3 8.3e− 07 1.6
±258.8 ±1.1e− 07 ±0.0

CVEDA 30/30 104 6330.1 8.1e− 07 10.6
±163.2 ±1.0e− 07 ±1.8

DVEDA 30/30 111 6678.5 7.9e− 07 11.4
±133.8 ±1.4e− 07 ±1.6

Copula MIMIC 30/30 188 10784.9 8.0e− 07 800.1
±143.7 ±1.2e− 07 ±122.1

Table 5: Results of 30 independent runs of UMDA, GCEDA, CVEDA, DVEDA and Copula
MIMIC in the 10-dimensional Ackley problem with the critical population size.

Algorithm Success Population Evaluations Best evaluation CPU time

UMDA 0/30 2000 300000.0 −5.7e + 02 66.8
±0.0 ±3.4e + 02 ±0.7

GCEDA 30/30 355 42434.3 −1.0e + 05 9.3
±305.4 ±1.3e − 07 ±0.4

CVEDA 30/30 325 44622.5 −1.0e + 05 537.2
±858.3 ±1.3e − 07 ±6.6

DVEDA 30/30 965 117408.3 −1.0e + 05 2367.3
±959.4 ±9.3e − 08 ±20.0

Copula MIMIC 0/30 2000 300000.0 −2.3e + 04 10426.1
±0.0 ±2.7e + 04 ±1054.3

Table 6: Results of 30 independent runs of UMDA, GCEDA, CVEDA, DVEDA and Copula
MIMIC in the 10-dimensional Summation Cancellation problem with the critical population
size.

Algorithm Success Population Evaluations Best evaluation CPU time

UMDA 30/30 447 33614.4 6.7e− 07 1.7
±2452.2 ±2.3e− 07 ±0.1

GCEDA 30/30 721 46095.9 6.8e− 07 2.8
±2158.2 ±1.8e− 07 ±0.1

CVEDA 30/30 447 32914.1 6.6e− 07 44.8
±2011.0 ±1.7e− 07 ±13.3

DVEDA 30/30 325 24710.8 7.3e− 07 31.3
±1754.3 ±1.7e− 07 ±6.9

Copula MIMIC 30/30 386 27315.9 6.4e− 07 1431.7
±1673.9 ±2.1e− 07 ±218.6

Table 7: Results of 30 independent runs of UMDA, GCEDA, CVEDA, DVEDA and Copula
MIMIC in the 10-dimensional Rastrigin problem with the critical population size.

Yasser González-Fernández, Marta Soto 23

Algorithm Success Population Evaluations Best evaluation CPU time

UMDA 0/30 2000 300000.0 8.0e + 00 72.0
±0.0 ±2.6e− 02 ±0.1

GCEDA 0/30 2000 300000.0 7.5e + 00 74.3
±0.0 ±1.9e− 01 ±0.4

CVEDA 0/30 2000 193866.6 7.5e + 00 1278.9
±48243.4 ±1.1e− 01 ±532.0

DVEDA 0/30 2000 172200.0 7.5e + 00 961.4
±35183.6 ±1.5e− 01 ±386.9

Copula MIMIC 0/30 2000 139000.0 7.6e + 00 6173.5
±5139.4 ±1.3e− 01 ±820.5

Table 8: Results of 30 independent runs of UMDA, GCEDA, CVEDA, DVEDA and Copula
MIMIC in the 10-dimensional Rosenbrock problem with the critical population size.

The chain dependence structure learned by Copula MIMIC is similar to a D-vine that only
uses normal copulas in the first tree. This is why, Copula MIMIC also combines normal and
product copulas, and attains the second best results in Rastrigin according to the number of
function evaluations.

The results of CVEDA in Rastrigin are different than the ones of DVEDA. The model used by
DVEDA allows a freer selection of the bivariate dependences that will be explicitly modeled,
while the model used by CVEDA has a more restrictive structure. These characteristics
prevent CVEDA from discovering the bivariate dependences DVEDA finds and its results are
similar to the ones of UMDA.

Rosenbrock is generally recognized as a difficult problem for numerical optimization algo-
rithms. Its global optimum is located inside a parabolic shaped flat region. It seems to be
easy for algorithms to find the flat region, but convergence to the global optimum is difficult.
This function presents nonlinear and even nonmonotone dependences between the variables.
The normal copula can not account for this type of dependence and therefore the relationships
between the variables are not properly represented. However, the algorithms that consider
dependences find slightly better solutions than UMDA. A more appropriate representation
of the relationships between the variables of the function might improve the behavior of
copula-based EDAs in this problem.

The running time of Copula MIMIC is considerably greater than the running time of the
other algorithms in all functions. This situation is due to the use of a numerical optimization
algorithm for the estimation of the parameters of the copulas by maximum likelihood. In
the context of EDAs, where copulas are fitted at every generation, the computational effort
required to estimate the parameters of the copulas becomes an important issue. As was
illustrated with the behavior of CVEDA and DVEDA, using the inversion of Kendall’s tau is
a viable alternative to maximum likelihood that requires much less CPU time.

The empirical investigation confirms the robustness of CVEDA and DVEDA in both weakly
strongly and correlated problems. Nonetheless, the flexibility afforded by these algorithms
comes with an increased running time when compared to UMDA or GCEDA, since the inter-
actions between the variables have to be discovered during the learning step.

A general result of this empirical study is that copula-based EDAs should use copulas other

24 copulaedas: An R Package for EDAs Based on Copulas

than the product only when there is evidence of dependence in the sample of the selected
population. Otherwise, the EDA will require larger populations and hence a greater number
of function evaluations to accurately determine the values of the parameters of the copulas
that correspond to independence.

5. Concluding remarks

We have developed copulaedas aiming to provide in a single package not only publicly available
implementations of EDAs based on copulas but also utility functions to study these algorithms.
In this paper, we illustrate how to run the copula-based EDAs implemented in the package,
how to implement new algorithms and how to perform an empirical study to compare a group
of EDAs. We hope that these functionalities help the research community to improve EDAs
based on copulas by getting a better insight of their strengths and weaknesses and also help
practitioners to find new applications of these algorithms to real-world problems.

References

Aas K, Czado C, Frigessi A, Bakken H (2009). “Pair-Copula Constructions of Multiple De-
pendence.” Insurance: Mathematics and Economics, 44(2), 182–198.

Akaike H (1974). “A New Look at Statistical Model Identification.” IEEE Transactions on
Automatic Control, 19, 716–723.

Ardeŕı RJ (2007). Algoritmo con estimación de distribuciones con cópula gaussiana. Bachelor
thesis, University of Havana, Cuba.

Azzalini A (1981). “A Note on the Estimation of a Distribution Function and Quantiles by a
Kernel Method.” Biometrika, 68(1), 326–328.

Baluja S (1994). “Population-Based Incremental Learning: A Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning.” Technical Report CMU-
CS-94-163, Carnegie Mellon University, USA.

Barba-Moreno S (2007). Una propuesta para algoritmos de estimación de distribución no
paramétricos. Master’s thesis, Center for Research in Mathematics, Mexico.

Bedford T, Cooke RM (2001). “Probability Density Decomposition for Conditionally Depen-
dent Random Variables Modeled by Vines.” Annals of Mathematics and Artificial Intelli-
gence, 32(1), 245–268.

Bengoetxea E, Miquélez T, Lozano JA, Larrañaga P (2002). “Experimental Results in Func-
tion Optimization with EDAs in Continuous Domain.” In P Larrañaga, JA Lozano (eds.),
Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, pp.
181–194. Kluwer Academic Publisher.

Berg D, Aas K (2007). “Models for Construction of Multivariate Dependence.” Note
SAMBA/23/07, Norwegian Computing Center, NR, Norway.

Yasser González-Fernández, Marta Soto 25

Bosman PAN, Thierens D (2006). “Numerical Optimization with Real-Valued Estimation of
Distribution Algorithms.” In M Pelikan, K Sastry, E Cantú-Paz (eds.), Scalable Optimiza-
tion via Probabilistic Modeling. From Algorithms to Applications, pp. 91–120. Springer-
Verlag.

Brechmann EC (2010). Truncated and Simplified Regular Vines and Their Applications.
Diploma thesis, University of Technology, Munich, Germany.

Chambers J (2008). Software for Data Analysis: Programming with R. Springer-Verlag. ISBN
978-0-387-75935-7.

Chen Yp, Lim MH (eds.) (2008). Linkage in Evolutionary Computation. Springer-Verlag.
ISBN 978-3-540-85067-0.

Cuesta-Infante A, Santana R, Hidalgo JI, Bielza C, Larrañaga P (2010). “Bivariate Empirical
and n-variate Archimedean Copulas in Estimation of Distribution Algorithms.” In Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1355–1362.

Davy M, Doucet A (2003). “Copulas: A New Insight Into Positive Time-Frequency Distribu-
tions.” IEEE Signal Processing Letters, 10(7), 215–218.

De Bonet JS, Isbell CL, Viola P (1997). “MIMIC: Finding Optima by Estimating Probability
Densities.” In M Mozer, M Jordan, T Petsche (eds.), Advances in Neural Information
Processing Systems, volume 9, pp. 424–430. The MIT Press.

Demarta S, McNeil AJ (2005). “The t Copula and Related Copulas.” International Statistical
Review, 73(1), 111–129.

Devroye L (1986). Non-Uniform Random Variate Generation. Springer-Verlag. ISBN 0-387-
96305-7.

Gao Y (2009). “Multivariate Estimation of Distribution Algorithm with Laplace Transform
Archimedean Copula.” In W Hu, X Li (eds.), Proceedings of the International Conference
on Information Engineering and Computer Science (ICIECS 2009).

Genest C, Quessy JF, Rémillard B (2007). “Asymptotic Local Efficiency of Cramér-von Mises
Tests for Multivariate Independence.” The Annals of Statistics, 35, 166–191.

Genest C, Rémillard B (2004). “Tests of Independence or Randomness Based on the Empirical
Copula Process.” Test, 13(2), 335–369.

Genest C, Rémillard B (2008). “Validity of the Parametric Bootstrap for Goodness-of-Fit
Testing in Semiparametric Models.” Annales de l’Institut Henri Poincaré: Probabilités et
Statistiques, 44, 1096–1127.

González-Fernández Y (2011). Algoritmos con estimación de distribuciones basados en cópulas
y vines. Bachelor thesis, University of Havana, Cuba.

González-Fernández Y, Soto M (2011a). copulaedas: Estimation of Dis-
tribution Algorithms Based on Copulas. R package version 1.1.0, URL
http://CRAN.R-project.org/package=copulaedas.

http://CRAN.R-project.org/package=copulaedas

26 copulaedas: An R Package for EDAs Based on Copulas

González-Fernández Y, Soto M (2011b). vines: Multivariate Dependence Modeling with
Vines. R package version 1.0.3, URL http://CRAN.R-project.org/package=vines.

Hauschild M, Pelikan M (2011). “An Introduction and Survey of Estimation of Distribution
Algorithms.” Swarm and Evolutionary Computation, 1, 111–128.

Hering C, Hofert M, Mai JF, Scherer M (2010). “Constructing Hierarchical Archimedean
Copulas with Lévy Subordinators.” Journal of Multivariate Analysis, 101, 1428–1433.

Joe H (1996). “Families of m-variate Distributions with Given Margins and m(m − 1)/2
Bivariate Dependence Parameters.” In L Rüschendorf, B Schweizer, MD Taylor (eds.),
Distributions with fixed marginals and related topics, pp. 120–141.

Joe H (1997). Multivariate Models and Dependence Concepts. Chapman & Hall.

Kern S, Müller SD, Hansen N, Büche D, Ocenasek J, Koumoutsakos P (2003). “Learning
Probability Distributions in Continuous Evolutionary Algorithms – A Comparative Re-
view.” Natural Computing, 3, 77–112.

Kojadinovic I, Yan J (2010). “Modeling Multivariate Distributions with Continuous Mar-
gins Using the copula R Package.” Journal of Statistical Software, 34(9), 1–20. URL
http://www.jstatsoft.org/v34/i09/.

Larrañaga P, Etxeberria R, Lozano JA, Peña JM (1999). “Optimization by Learning and
Simulation of Bayesian and Gaussian Networks.” Technical Report EHU-KZAA-IK-4/99,
University of the Basque Country.

Larrañaga P, Etxeberria R, Lozano JA, Peña JM (2000). “Optimization in Continuous Do-
mains by Learning and Simulation of Gaussian Networks.” In Proceedings of the Workshop
in Optimization by Building and Using Probabilistic Models in the Genetic and Evolutionary
Computation Conference (GECCO 2000), pp. 201–204.

Larrañaga P, Lozano JA (eds.) (2002). Estimation of Distribution Algorithms. A New Tool
for Evolutionary Computation. Kluwer Academic Publisher.

Larrañaga P, Lozano JA, Bengoetxea E (2001). “Estimation of Distribution Algorithms Based
on Multivariate Normal and Gaussian Networks.” Technical Report EHU-KZAA-IK-1/01,
University of the Basque Country.

McNeil AJ (2008). “Sampling Nested Archimedean Copulas.” Journal of Statistical Compu-
tation and Simulation, 78(6), 567–581.

Mühlenbein H, Paaß G (1996). “From Recombination of Genes to the Estimation of Distri-
butions I. Binary Parameters.” In Parallel Problem Solving from Nature — PPSN IV, pp.
178–187. Springer-Verlag.

Nelsen RB (2006). An Introduction to Copulas. 2 edition. Springer-Verlag. ISBN 978-0387-
28659-4.

Pelikan M (2005). Hierarchical Bayesian Optimization Algorithm. Toward a New Generation
of Evolutionary Algorithms. Springer-Verlag.

http://CRAN.R-project.org/package=vines
http://www.jstatsoft.org/v34/i09/

Yasser González-Fernández, Marta Soto 27

Pelikan M, Goldberg DE, Lobo F (2002). “A Survey of Optimization by Building and Using
Probabilistic Models.” Computational Optimization and Applications, 21, 5–20.

R Development Core Team (2011). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

Rosenkrantz DJ, Stearns RE, Lewis II PM (1977). “An Analysis of Several Heuristics for the
Traveling Salesman Problem.” SIAM Journal on Computing, 6(3), 563–581.

Rousseeuw P, Molenberghs G (1993). “Transformation of Nonpositive Semidefinite Correlation
Matrices.” Communications in Statistics: Theory and Methods, 22, 965–984.

Salinas-Gutiérrez R, Hernández-Aguirre A, Villa-Diharce E (2009). “Using Copulas in Es-
timation of Distribution Algorithms.” In Proceedings of the Eight Mexican International
Conference on Artificial Intelligence (MICAI 2009), pp. 658–668.

Salinas-Gutiérrez R, Hernández-Aguirre A, Villa-Diharce E (2010). “D-vine EDA: A New
Estimation of Distribution Algorithm Based on Regular Vines.” In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 359–365.

Salinas-Gutiérrez R, Hernández-Aguirre A, Villa-Diharce E (2011). “Dependence Trees with
Copula Selection for Continuous Estimation of Distribution Algorithms.” In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 585–592.

Santana R, Bielza C, Larrañaga P, Lozano JA, Echegoyen C, Mendiburu A, Armañanzas R,
Shakya S (2010). “Mateda-2.0: A MATLAB Package For the Implementation and Analysis
of Estimation of Distribution Algorithms.” Journal of Statistical Software, 35(7), 1–30.
URL http://www.jstatsoft.org/v35/i07/.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6,
461–464.

Silverman BW (1986). Density Estimation for Statistics and Data Analysis. Chapman &
Hall.

Sklar A (1959). “Fonctions de répartition à n dimensions et leurs marges.” Publications de
l’Institut de Statistique de l’Université de Paris, 8, 229–231.

Soto M, González-Fernández Y (2010). “Vine Estimation of Distribution Algorithms.” Tech-
nical Report ICIMAF 2010-561, Institute of Cybernetics, Mathematics and Physics, Cuba.
ISSN 0138-8916.

Soto M, Ochoa A, Ardeŕı RJ (2007). “Gaussian Copula Estimation of Distribution Algorithm.”
Technical Report ICIMAF 2007-406, Institute of Cybernetics, Mathematics and Physics,
Cuba. ISSN 0138-8916.

Soto M, Ochoa A, González-Fernández Y, Milanés Y, Álvarez A, Carrera D, Moreno E (2012).
“Vine Estimation of Distribution Algorithms with Application to Molecular Docking.” In
S Shakya, R Santana (eds.), Markov Networks in Evolutionary Computation, volume 14 of
Adaptation, Learning, and Optimization, pp. 209–225. Springer-Verlag. ISBN 978-3-642-
28899-9.

http://www.R-project.org/
http://www.jstatsoft.org/v35/i07/

28 copulaedas: An R Package for EDAs Based on Copulas

Tierney L, Rossini AJ, Li N, Sevcikova H (2011). snow: Simple Network of Workstations. R
package version 0.3-6, URL http://CRAN.R-project.org/package=snow.

Wang L, Zeng J, Hong Y (2009a). “Estimation of Distribution Algorithm Based on
Archimedean copulas.” In Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation (GEC 2009), pp. 993–996.

Wang L, Zeng J, Hong Y (2009b). “Estimation of Distribution Algorithm Based on Copula
Theory.” In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009),
pp. 1057–1063.

Ye B, Gao H, Wang X, Zeng J (2010). “Estimation of Distribution Algorithm Based on
Nested Archimedean Copulas Constructed with Lévy Subordinators.” In Proceedings of
the Eleventh International Conference on Computer-Aided Industrial Design & Conceptual
Design (CAIDCD 2010), pp. 1586–1590.

Affiliation:

Yasser González-Fernández
Institute of Cybernetics, Mathematics and Physics
Calle 15 No. 551 e/ C y D, Vedado. La Habana, Cuba.
E-mail: ygonzalezfernandez@gmail.com

Marta Soto
Institute of Cybernetics, Mathematics and Physics
Calle 15 No. 551 e/ C y D, Vedado. La Habana, Cuba.
E-mail: mrosa@icimaf.cu

http://CRAN.R-project.org/package=snow
mailto:ygonzalezfernandez@gmail.com
mailto:mrosa@icimaf.cu

	Introduction
	EDAs based on copulas
	General procedure of an EDA
	Overview of EDAs based on copulas
	EDAs based on multivariate copulas
	EDAs based on copula factorizations

	Implementation in R
	Using copulaedas
	Running the EDAs implemented in the package
	Implementation of a new EDA based on copulas
	Performing an empirical study

	Concluding remarks

