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1 Preamble

The R package dlnm offers some facilities to run distributed lag non-linear models (DLNM’s), a mod-
elling framework to describe simultaneously non-linear and delayed effects between predictors and an
outcome in time-series data. This document complements the description of the package provided in
Gasparrini (2011) (freely available at http://www.jstatsoft.org/v43/i08/), which represents the
main reference to the package. The DLNM’s methodology has been previously described in Gaspar-
rini et al. (2010), together with a detailed algebraical development. This framework was originally
conceived and proposed to investigate the health effect of temperature by Armstrong (2006).

The aim of this contribution is to provide an extended overview of the capabilities of the package,
together with additional examples of application with real data. Some information on installation
procedures and on the data included in the package are given in Section 2. The theory underlying
the DLNM methodology is briefly illustrated in Section 3, while the functions included in the package
are described in Section 4. Some examples of applications are provided in Section 5: users mainly
interested in the application can skip the previous sections and and start with these examples. Finally,
Section 6 offers some conclusions.

Type citation("dlnm") in R to cite the dlnm package after installation (see Section 2). A list of
changes included in the current and previous versions can be found typing:

> file.show(system.file("ChangeLog", package="dlnm"))

General information on the development and applications of the DLNM modelling framework, together
with an updated version of the R scripts for running the examples in published papers, can be found
at www.ag-myresearch.com.

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Installation and data

2.1 Installing the package dlnm

The dlnm package is installed in the standard way for CRAN packages from R version 2.9.0 onwards,
for example typing install.packages("dlnm") or directly through the R menu in Windows, clicking
on Packages and then on Install package(s).... The package can be alternatively installed using the
.zip file containing the binaries, via Packages and then Install package(s) from local zip files....

The functionalities of dlnm depend on other packages whose commands are called to specify the dlnm
functions. This hierarchy is ruled by the field Imports of the file description included in the package.
The functions are imported from the packages splines (functions ns() and bs()) and tsModel (function
Lag()). The former must be independently installed if a .zip file is used.

2.2 Data

Until the version 0.4.1, the package dlnm did not contain any data, and used the datasets stored in
the package NMMAPSlite. In this version the package contains its own dataset chicagoNMMAPS, with
daily mortality (all causes, CVD, respiratory), weather (temperature, dew point temperature, relative
humidity) and pollution data (PM10 and ozone) for Chicago in the period 1987-2000. The data were
assembled from publicly available data sources as part of the National Morbidity, Mortality, and Air
Pollution Study (NMMAPS) sponsored by the Health Effects Institute (Samet et al., 2000a,b). They
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are downloadable from the Internet-based Health and Air Pollution Surveillance System (iHAPSS)
website (http://www.ihapss.jhsph.edu) or through the packages NMMAPSdata or NMMAPSlite.
See ?chicagoNMMAPS for additional information on the variables included.

3 Distributed lag non-linear models (DLNM’s)

The aim of this Section is to provide a methodological summary of the DLNM framework. A de-
tailed description of this methodology and the algebraical development have been published elsewhere
(Armstrong, 2006; Gasparrini, 2011; Gasparrini et al., 2010).

3.1 The issue

The main purpose of a statistical regression model is to define the relationship between a predictor and
an outcome, and then to estimate the related effect. A further complexity arises when the dependency
shows some delayed effects: in this case, a specific occurrence of the predictor (let us call it an exposure
event) affects the outcome for a certain period in the future. This step requires the definition of more
complex models to characterize the association, specifying the temporal structure of the dependency.
The main feature of DLNM’s is their bi-dimensional structure: the model describes simultaneously the
potentially non-linear relationship in the space of the predictor and along the new temporal dimension.

3.2 The concept of basis

Several different methods have been adopted to specify non-linear exposure-responses in a regression
models. A simple solution is to generate strata variables, applying specific cut-off points along the
range of the predictor in order to define specific intervals, and then specifying new variables through
a dummy parameterization.

Other types of manipulations of the original variable are applied when there are specific assumptions
on the shape of the relationship, for example when the effect is likely to exist and be linear only above
or below a specific threshold (hockey-stick model). An extension of this model assumes two distinct
linear dependencies below a first threshold and above a second threshold, with a null effect in between
them.

An alternative to the strata or threshold approaches is to include in the model some terms allowing a
true non-linear relationship, describing a smooth curve between the predictor and the outcome. The
traditional methods include a quadratic term or higher degree polynomials. Recently, spline functions
have been favoured, especially through a natural cubic parameterization.

A generalization may be provided assuming that all the approaches above imply the choice of a basis,
defined as a space of functions used to define the relationship (Wood, 2006). The choice of the
basis defines the related basis functions, completely known transformations of the original predictor
generating a new set of transformed variables, defined basis variables. Independently from the chosen
basis, the final result will be a matrix of transformed variables which can be included in the design
matrix of a regression model in order to estimate the related parameters. The choice of different bases
leads to the specification of different matrices, but the mechanism is common.

3.3 Delayed effect: DLM’s

In the specific context of time series analysis, given the ordered series of the predictor values, a delayed
(or lagged) effect occurs when the outcome in a specific time is determined by the level of the predictor
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in previous times, up to a maximum lag. Therefore, the presence of delayed effects requires to take
into account the time dimension of the relationship, specifying the additional virtual dimension of the
lags.

A very simple model to deal with delayed effects considers the moving average of the predictor up to
a certain lag, specifying a transformed predictor which is the average of the values in that specific lag
period. Although simple, this model is limited if the purpose is to assess the temporal structure of the
effects.

These limitations have been addressed using a more elegant approach based on distributed lag models
(DLM’s). The main advantage of this method is the possibility to depict a detailed description of the
time-course of the relationship. Originally developed in econometrics (Almon, 1965), this method has
recently been used to quantify the health effect in studies on environmental factors (Braga et al., 2001;
Schwartz, 2001; Welty and Zeger, 2005; Zanobetti et al., 2000).

In the basic formulation, a DLM is fitted by the inclusion of a parameter for each lagged predictor
occurrence. An estimate of the overall net association is given by cumulating the single lag contributions
upon the whole lag period, usually a-priori defined (Hajat et al., 2005; Schwartz, 2000).

This unconstrained version of DLM does not require any assumption on the shape of the association
along lags, and consequently on the relationship between parameters. However, in order to define a
more parsimonious model, it is possible to specify some assumptions on the shape of the distributed
effects, applying some constraint. The simplest solution is to group the lags in different strata (Pat-
tenden et al., 2003; Welty and Zeger, 2005), while a more complex option is to force the curve along
lags to follow a specific smooth function, for example polynomials (Baccini et al., 2008; Schwartz et al.,
2004; Zanobetti and Schwartz, 2008) or splines (Zanobetti et al., 2000).

Following the general approach used in Section 3.2, it may be shown that all the different DLM’s above
can be described by the same equation, where different models are specified through different basis
functions to be applied to the vector of lags, building a new basis matrix (see Gasparrini et al., 2010,
Eq. 4). Again, the choice of different bases generates different matrices, but the mechanism is general.

3.4 The extension to DLNM’s

A general approach to specify non-linear but un-lagged effects has been introduced in Section 3.2, while
the methods to define distributed lag functions for simple linear dependencies have been presented in
Section 3.3. An obvious extensions is to combine these approaches to define distributed lag non-linear
models (DLNM’s), a family of models which can deal at the same time with non-linear and delayed
effects.

The different issues of non-linearity and delayed effects share a common feature: in both cases the
solution is to choose a basis to describe the shape of the relationship in the related dimension. This
step leads to the concept of cross-basis: following the idea of basis in 3.2, a cross-basis can be imagined
as a bi-dimensional space of functions describing on the same time the shape of the relationship and
the distributed lag effects. The algebraic notation to define the cross-basis and then the DLNM can
be quite complex, involving tensor products of 3-dimensional arrays, and has been presented elsewhere
(Gasparrini et al., 2010, Section 4.2). Nonetheless, the basic concept is straightforward: choosing
a cross-basis amounts to specifying two independent sets of basis functions, which will be combined
to generate cross-basis functions. The DLM’s described in 3.3 can be considered as special cases of
DLNM’s with a simple linear function in the dimension of the predictor.

The result of a DLNM can be interpreted by building a grid of predictions for each lag and for suitable
values of the predictor, using three dimensional plots to provide an overall picture of the association
varying along the two dimensions. In addition, it is possible to summarize the relationship at single
predictor or lag values, by cutting a ”slice” of the grid along specific values. These summaries express
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a lag-specific association, defined along the predictor space at a given lag value, or a predictor-specific
association, defined along the lag space at a given predictor values, respectively. Finally, an estimate
of the overall cumulative association can be computed by summing all the contributions at different
lags for each predictor value. The associations are usually reported versus a reference value of the
predictor, centering the basis functions for this space to their corresponding transformed values (Cao
et al., 2006).

Although prediction aids interpretation of a complex bi-dimensional DLNM, its fit is still expressed
in terms of the estimated parameters of cross-basis functions obtained through the tensor product of
two bases. It turns out that it is possible to reduce the expression of summaries of the association to
modified parameters of one-dimensional basis functions (Gasparrini and Armstrong, 2013). In practice,
the overall cumulative or lag-specific associations, defined in the predictor space, may be re-expressed
only in terms of the one-dimensional basis functions originally chosen for that dimension. Similarly,
associations along lags at specific predictor values may be reduced to parameters of the original basis
functions chosen for the lag space. The reduction of the parameters is obtained through appropriate
dimension-reducing matrices.

The choice of the two sets of basis functions for each space is perfectly independent, and should be
based on a-priori assumptions or on a compromise between complexity and generalizability. Linear,
threshold, strata, polynomial or splines functions can be used to define the relationship along the space
of predictor, while unconstrained, strata, polynomial or splines functions can be applied to specify the
shape along lags.

4 The functions in the package dlnm

This section describes the main functions included in the package dlnm. Here we provide a description
of all the stages involved in the definition, estimation and interpretation of DLNMs, summarizing the
conceptual and analytical steps. In addition, we illustrate the structure of the functions and discuss
specific issues about their usage. Examples of applications to real time series data are described in
Section 5. Additional information is provided in Gasparrini (2011).

4.1 The function onebasis()

This function generates the basis matrix for a predictor vector, choosing among a set of possible
basis functions. Its usage is general, and not limited to DLNMs. Within the package, it is called by
crossbasis() to build the one-dimensional basis matrices for both predictor and lag spaces, which are
then combined in a cross-basis matrix. It has replaced the old functions mkbasis() and mklagbasis()

since version 1.5.1. Differently from these old internal functions, onebasis() is also available to the
user to specify one-dimensional (un-lagged) relationships in regression models. Prediction and plotting
functions included in dlnm, described in Section 4.3–4.5, are also available for these simpler models.

Its first argument is x, representing the original predictor vector. Different types of basis may be chosen
through the argument type: the possible options are natural cubic or simple B-splines (type="ns" or
"bs"), strata through dummy variables ("strata"), polynomials ("poly"), threshold-type functions
such as low, high or double threshold or piecewise parameterization ("lthr"-"hthr"-"dthr"), strata
variables for each integer values ("integer", used in unconstrained DLMs) and simply linear ("lin").

The argument "df" defines the dimension of the basis (the number of its columns, basically the
number of transformed variables), which, in completely parametric models, corresponds to the number
of degrees of freedom spent to define the relationship in the regression model including the basis. This
value may depend on the argument knots (which overcomes df), specifying the position of the internal
knots for "ns" and "bs" (with boundary knots specified in bound), the cut-off points for "strata"
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(defining right-open intervals) and the thresholds/cut-off points for "lthr", "hthr" and "dthr". The
argument degree select the degree of polynomial for "bs" and "poly".

The arguments cen (numeric or logical) states if the basis must be centered, or the centering value
to be used. The basis variables are centered by default for continuous functions (types "ns", "bs",
"poly" and "lin"). The default centering point is the predictor mean, if not set with cen. The choice
of the reference value does not affect the fit of the model, and should be based on interpretational
issues. The reference in non-continuous functions is automatically set to the first interval in strata

and integer, or to the flat region in lthr-hthr-dthr.

The presence of an intercept in the basis matrix is determined by the argument int. Actually, the
concept of intercept is different between bases: types "ns" and "bs" apply a complex parameterization
where the intercept is embedded in the basis variables (see the related help pages typing ?ns and ?bs);
in type "strata" the intercept corresponds to the dummy variable for the baseline stratum (the first
one by default), which is excluded if int=FALSE; the intercept is the usual vector of 1’s in the other
types.

The function returs a matrix object of class ”onebasis”, with attributes corresponding to the arguments
above, which uniquely define the basis transformation. The results can be checked with the related
summary() method function.

4.2 The function crossbasis()

This is the main function in the package dlnm. It calls onebasis() to generate the basis matrices for
predictor and lags, and combines them through a tensor product in order to create the cross-basis,
which specifies the dependency simultaneously in the two dimensions. See Gasparrini et al. (2010,
Sections 4.1–4.2) for details.

The usage of the function has changed since version 1.5.1. Its first argument is x, assumed to represent
an equally-spaced, complete and ordered series of observations, in order for the function to be coherently
applied. The second argument is lag, a positive integer vector of length 1 or 2, defining the maximum
lag (with minimum set to 0 by default) or the lag range, respectively. The vector of lag values
lag[1]:lag[2] is then generated to build the basis matrix for the lag space. The two arguments
argvar and arglag contain a list of objects type-df-knots-bound-degree-int-cen, each of them to
be passed to onebasis() to build the matrices for the 2 spaces, respectively (see Section 4.1). The
additional argument group defines groups of observations to be considered as individual unrelated
series, and may be useful for example in seasonal analyses (see Section 5.3). In this case, each series
must be consecutive, complete and ordered.

The function returns a matrix object of class ”crossbasis”, together with attributes defining the choices
for the two basis functions. The arguments are set to some default values, and can be automatically
changed for nonsensical combinations, or set to null if not required. Meaningless combinations of
arguments (for example knots defined outside the predictor range) could lead to collinear variables,
with identifiability problems in the model. The function applies some coherence checks and fix some
specific problem, but other issues may arise. The user is advised to test the result with the method
function summary(), which provides a summary of the choices made for the two bases and the final
cross-basis.

The values in x are expected to be equally-spaced (with the interval defining the lag unit) and ordered
in time. The series must be complete. Each value in the series of transformed variables is computed
also using previous observations included in the lag period considered: therefore, the first observations
in the transformed variables up to the maximum lag are set to NA. Missing values in x are allowed, but,
for the same reason, the same and the next transformed values up to the maximum lag will be set to
NA. Although correct, this could generate computational problems for DLNMs with long lag periods
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in the presence of scattered missing observations.

The basis variables for the space of the predictor are centered by default for specific types (see Sec-
tion 4.1). It is strongly recommended to avoid the inclusion of an intercept in the basis for the predictor,
otherwise a rank-deficient cross-basis matrix will be specified, causing some of the cross-variables to
be excluded in the regression model. Different default values are chosen for the arguments related to
the basis for lags, if compared to those set by onebasis(). Specifically, the basis is never centered
(cen=FALSE), an intercept is included by default (int=TRUE), and the knots are placed at equally-spaced
values in the log scale of lags.

4.3 The function crosspred()

The cross-basis matrix produced by crossbasis(), or simply a basis matrix obtained by onebasis(),
need to be included in a regression model formula in order to fit the model. The interpretation
of the estimated related parameters, is usually complex for non-trivial basis transformations, and
virtually impossible in bi-dimensional DLNMs. The association is summarized through the function
crosspred(), which predicts the association for a grid given by the combination of predictor and
lag values, chosen by default or directly by the user. The function creates the same basis or cross-
basis functions for the chosen predictor and lag vectors, based on the attributes of the original basis
or cross-basis matrix, and generates predictions (with associated standard errors) by extracting the
related parameters estimated in the model (see Gasparrini et al. (2010, Section 4.3) for algebraic
details).

The first two arguments of the function are basis (the matrix object of class ”onebasis” or ”crossbasis”)
and model (the regression model object which includes basis). The function extracts the information
about the basis or cross-basis from the attributes of the former, and links each basis or cross-basis
variables with the estimated parameters in the latter through their names. Multiple basis or cross-
basis matrices associated with different predictors may be included in model: in this case, the user
must specify different names for the basis objects.

One of the main advantages of the dlnm package is that the user can perform DLNMs with stan-
dard regression functions, simply including the cross-basis matrix in the model formula. The current
implementation only works with time series data, basically expecting an equally-spaced and ordered
predictor series, and its use is straightforward with the functions lm(), glm() or gam() (package mgcv).
However, the user can apply different regression functions, compatibly with the time series structure
of the data. Alternative use beyond time series analysis, such as in case-control or cohort designs, is
in development. The function crosspred() exploits coef() and vcov() methods to extract the co-
efficients and related (co)variance matrix from model, respectively: for classes of regression functions
without these methods, the user needs to manually extract the parameters and include them in the
arguments coef and vcov. In this case, their dimensions and order must match the variables included
in basis.

The predictor values used for prediction are selected with the argument at, or alternatively with
from-to-by. If specified by at, the values are automatically ordered and made unique. If at and by

are not provided, approximately 50 equally-spaced rounded values are returned using pretty(). The
arguments lag and bylag determine instead the range and increment of the sequence of lag values
used for prediction, by default the series of integers used for estimation.

The function returns an object of class ”crosspred”, simply a list of objects including the vector of
prediction values, coefficients and associated (co)variance matrix, matrices of predictions and asso-
ciated standard errors for combinations of each prediction value and lag, plus vectors of the overall
cumulative predicted association and standard errors. Matrices of incremental cumulative associations
and standard errors are included for cumul=TRUE (default to FALSE), which represent the sum of the
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lag-specific contributions at each lag integer. Exponentiated predictions are added if the link of the
regression model is equal to log or logit, together with confidence intervals computed using a normal
approximation and a confidence level selected by ci.level. The model link is automatically selected
from model for classes ”lm”, ”glm”, ”gam” (package mgcv) and ”clogit” and ”coxph” (package survival),
but needs to be provided through model.link for different classes or if arguments coef-vcov are used
to input the parameters.

4.4 The function crossreduce()

As described in Section 3.4, the fit of a DLNM may be reduced to a single dimension of predictor or
lags, expressing overall cumulative, lag-specific or predictor-specific associations only in terms of the
original basis functions chosen for the related space, and modified associated parameters (Gasparrini
and Armstrong, 2013). This computation is carried out through the function crossreduce(), which
provides the modified parameters and basis matrix, plus the predictions, similarly to crosspred(), as
described in Section 4.3.

The first two arguments basis and model, similarly to crosspred(), specify the cross-basis matrix
and the model object for which the computation need to be performed. The type of reduction is
defined by type, with options "overall"-"lag"-"var" for summarizing overall cumulative, lag-specific
or predictor-specific associations, respectively. The first two are expressed in the space of predictor,
the third in the space of lags. The single value of predictor or lags for which predictor-specific or
lag-specific summaries must be defined is chosen by the argument value. The other arguments (see
?crossreduce) have the same meaning and specification as in crosspred() (see Section 4.3).

The function returns a list object of class ”crossreduce”, including the modified parameters and as-
sociated (co)variance matrix, the vector of values used for prediction and associated one-dimensional
basis matrix, and the vectors of predictions and associated standard errors, optionally exponentiated,
similarly to crosspred().

4.5 Plotting functions

Interpretation of the one-dimensional or bi-dimensional association is aided by graphical represen-
tation. High and low-level plotting functions are provided through the method functions plot(),
lines() and points(). The method plot() calls high-level functions plot.default(), persp() and
filled.contour() to produce scatter plots, 3-D and contour plots of overall cumulative, lag-specific
or predictor-specific associations. These methods have replaced the old function crossplot() since
version 1.3.0, providing the user the chance to specify the whole range or arguments of the plotting
functions above, allowing complete flexibility in the choices of colours, axes, labels and other graphical
parameters. See the help pages of the original high-level functions for additional details and a complete
list of the arguments. Methods lines() and points() may be used as low-level plotting functions to
add lines or points to an existing plot.

Method functions are defined for classes ”crosspred” and ”crossreduce”. The first argument of the
functions is x, a list object of related class. For crosspred objects, the argument ptype specifies
the type of plot, choosing among "3d", "contour", "overall" and "slices", the latter selecting a
lag-specific association along the predictor space or a predictor-specific association along lags. The
values at which these specific summaries are derived are chosen through the additional arguments lag-
var, respectively. For un-lagged relationships defined by onebasis(), only the plotting of the overall
summary is meaningful and possible. Incremental cumulative associations along lags are reported if
cumul=TRUE: in this case, the same option must have been set to obtain the prediction saved in x (see
Section 4.3). For crossreduce objects, the specific type of plot is automatically defined by the type
of reduction.
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Confidence intervals are optionally plotted for "overall" and "slices". The type is chosen by the ar-
gument ci among "area", "bars" and "lines". Low-level plotting functions polygon(), segments()
and lines() are called, respectively, whose arguments are passed by a list specified with the argument
ci.arg. See the help of these low-level functions for additional details and a complete list of the
arguments.

All the predictions are reported versus a reference value. For continuous functions, this is specified by
the centering point defined in the onebasis or crossbasis object (see Section 4.1). Exponentiated
predictions are automatically returned if the component model.link of x is equal to log or logit, or
forced with the argument exp=TRUE.

5 Some examples

This Section provides some examples of the use of the functions included in the dlnm package, described
in Section 4. In spite of the specific application on the health effects of air pollution and temperature,
these examples are easily generalized to different topics. The results included in this Section are
not meant to represent scientific findings, but are reported with the only purpose to illustrate the
capabilities of the dlnm package.

First, some simple examples of the use of onebasis() to build basis matrices are showed in Section 5.1.
Then, 4 different examples of the application of DLNM’s are illustrated in the Sections 5.2–5.5, using
the NMMAPS dataset for the city of Chicago in the period 1987-2000 included in the package, which
has been described in Section 2.2. These different cases cover most of the functionalities of the package,
providing a detailed overview of its capabilities and a basis to perform analyses on this dataset or on
other data sources.

The package is assumed to be present in the R library (see Section 2.1) and loaded in the session,
typing:

> library(dlnm)

5.1 Examples for onebasis()

As a first step, we provide an example of the use of the function onebasis(). We build different basis
matrices applying the selected basis functions to a vector of integers. In the first example we leave
many of the arguments at their default values, apart from the selection of the knots:

> basis.var <- onebasis(1:5, knots=3)

> basis.var

b1 b2

[1,] -0.56626284 0.21084190

[2,] -0.20921622 -0.00635585

[3,] 0.00000000 0.00000000

[4,] -0.03716777 0.37894518

[5,] -0.22216593 0.98144395

attr(,"range")

[1] 1 5

attr(,"type")

[1] "ns"

attr(,"df")
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[1] 2

attr(,"degree")

[1] 3

attr(,"knots")

[1] 3

attr(,"bound")

[1] 1 5

attr(,"int")

[1] FALSE

attr(,"cen")

[1] 3

attr(,"class")

[1] "onebasis" "matrix"

The result is matrix object with attributes returning the chosen arguments. Here the basis is a natural
cubic B-splines (default type="ns") with 1 knot and df=2 (df is equal to length(knots)+1+int for
type="ns"). Apart from the fact that the basis variables are centered at 3 (the mean of the predictor
values, the default for this argument), the same results could be obtained by the command ns(1:5,

knots=3) .

Alternative choices may be specified through the following code (results not shown, the user can try
to run the commands):

> onebasis(1:5, type="bs", df=4, degree=2)

> onebasis(1:5, type="lin", cen=4)

In the first case the result is a quadratic spline where the number and location of knots are chosen
automatically, and fixed to 2 (df is length(knots)+degree+int for this type) at equally spaced
quantiles. The second line returns a simple linear function, where the only transformation is the
centering at the value of 4.

Other examples (results not shown):

> onebasis(1:5, type="poly", degree=3, int=TRUE)

> onebasis(1:5, type="integer")

> onebasis(1:5, type="dthr", knots=c(2,3))

The argument degree=3 specifies a 3rd degree polynomial. This matrix contains an intercept (obtained
through int=TRUE), in this case a vector of 1’s (see Section 4.1). Here df is equal to degree+1 when an
intercept is included. In this case, for a polynomial bases, the argument knots is not included. In the
second example, the function applies a specific transformation used to define unconstrained distributed
lag effects (see Section 3.3), simply returning an identity matrix. The third choice returns a double
threshold basis which can be applied to describe linear relationships below 2 and above 3, with a null
effect in between them.

A basis matrix of type="strata" with and without intercept is created by (results not shown):

> onebasis(1:10, type="strata", knots=c(4,7), int=TRUE)

> onebasis(1:10, type="strata", knots=c(4,7))

In this case, the intercept is represented by the dummy variable for the first stratum (see Section 4.1).
The values in knots specify the cut-off point for the strata, and represent the lower boundaries for the
right-open intervals.
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The effect of centering is illustrated below (results not shown):

> onebasis(0:10, type="poly", degree=3)

> onebasis(0:10, type="poly", degree=3, cen=FALSE)

Each basis function is centered on the relative transformation of cen (if numeric), or placed at the
mean of the predictor values by default (if cen=TRUE).

5.2 Example 1: a simple DLM

In this first example, we specify a simple DLM, assessing the effect of PM10 on mortality, while
adjusting for the effect of temperature. In order to do so, we first build two cross-basis matrices for the
two predictors, and then include them in a model formula of a regression function. The effect of PM10

is assumed linear in the dimension of the predictor, so, from this point of view, we can define this as
a simple DLM even if it estimates also the distributed lag function for temperature, which is included
as a non-linear term. As highlighted above, the data are assumed to be composed by equally-spaced,
complete and ordered series.

First, we run crossbasis() to build the two cross-basis matrices, saving them in two objects. The
names of the two objects must be different in order to predict the associations separately for each of
them (see Section 4.3). This is the code:

> cb1.pm <- crossbasis(chicagoNMMAPS$pm10, lag=15, argvar=list(type="lin",cen=0),

arglag=list(type="poly",degree=4))

> cb1.temp <- crossbasis(chicagoNMMAPS$temp, lag=3, argvar=list(df=5,cen=21),

arglag=list(type="strata",knots=1))

The function calls onebasis() and passes the arguments in argvar and arglag to build the basis for
predictor and lags, respectively. In this case, we assume that the effect of PM10 is linear (type="lin"),
while we model the relationship with temperature through a natural cubic spline with 5 degrees of
freedom (type="ns", chosen by default). In this space, the internal knots (if not provided) are placed
by default at equally spaced quantiles, while the boundary knots are located at the range of the
observed values, so we need to specify only df. We center PM10 and temperature to 0 µgr/m3 and
21◦C, respectively, in order to compute the predicted effects versus these reference values.

Regarding the bases for the space of the lags, we specify the lagged effect of PM10 up to 15 days of lag
(minimum lag equal to 0 by default), with a 4th degree polynomial function (setting degree=4). The
delayed effect of temperature are defined by two lag strata (0 and 1-3), assuming the effects as constant
within each stratum. The argument knots=1 defines the lower boundary of the second interval.

An overview of the specifications for the cross-basis (and the related bases in the two dimensions) is
provided by the method function summary() for this class:

> summary(cb1.pm)

CROSSBASIS FUNCTIONS

observations: 5114

range: -3.049835 , 356.1768

total df: 5

lag range: 0 15

BASIS FOR VAR:

11



type: lin

df: 1

centered at 0

without intercept

BASIS FOR LAG:

type: poly with degree 4

df: 5

with intercept

Now the two crossbasis objects can be included in a model formula in order to fit the DLM. The
packages splines is loaded, as it is needed in the examples. In this case we model the effect assuming
an overdispersed Poisson distribution, including a smooth function of time with 7 df/year (in order to
correct for seasonality and long time trend) and day of the week as factor:

> library(splines)

> model1 <- glm(death ~ cb1.pm + cb1.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

The estimated association with specific levels of PM10 on mortality, predicted by the model above, can
be computed by the function crosspred() and saved in an object with the same class:

> pred1.pm <- crosspred(cb1.pm, model1, at=0:20, bylag=0.2, cumul=TRUE)

The functions include the basis1.pm and model1 objects used to estimate the parameters as the first
two arguments, while at=0:20 states that the prediction must be computed for each integer value
from 0 to 20 µgr/m3. By setting bylag=0.2, the prediction is computed along the lag space with an
increment of 0.2. This finer grid is meant to produce a smoother curve when the results are plotted.
The argument cumul (default to FALSE) indicates that also incremental cumulative associations along
lags must be included. Now that the predictions have been stored in pred1.pm, they can be plot by
the methods functions described in Section 4.5. For example:

> plot(pred1.pm, "slices", var=10, col=3, ylab="RR", ci.arg=list(density=15,lwd=2),

main="Association with a 10-unit increase in PM10")

> plot(pred1.pm, "slices", var=10, cumul=TRUE, ylab="Cumulative RR",

main="Cumulative association with a 10-unit increase in PM10")

The function includes the pred1.pm object with the stored results, and the argument "slices" defines
that we want to graph the relationship at specific values of the two dimensions (predictor and lag).
With var=10 we specify this relationship along lags for a specific value of PM10, i.e. 10 µgr/m3. This
association is defined using the reference value of 0 µgr/m3, thus providing the lag-specific association
for a 10-unit increase. We also chose a different colour for the first plot. The argument cumul indicates
if incremental cumulative associations, previously saved in pred1.pm, must be plotted. The results are
shown in Figures 1a–1b. Confidence intervals are set to the default value "area" for the argument
ci. In the left panel, additional arguments are passed to the low-level plotting function polygon()

through ci.arg, to draw instead shading lines as confidence intervals.

The interpretation is twofold: the curve represents the increase in risk in each future day following an
increase of 10 µgr/m3 in PM10 in a specific day (forward interpretation), or otherwise the contributions
of each past day with the same PM10 increase to the risk in a specific day (backward interpretation).
The plots in Figures 1a–1b suggest that the initial increase in risk of PM10 is reversed at longer lags.

12



Figure 1
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The overall cumulative association with a 10-unit increase in PM10 over 15 days of lag (i.e. summing all
the contributions up to the maximum lag), together with its 95% confidence intervals can be extracted
by the objects allRRfit, allRRhigh and allRRlow included in pred1.pm, typing:

> pred1.pm$allRRfit["10"]

10

0.9997563

> cbind(pred1.pm$allRRlow, pred1.pm$allRRhigh)["10",]

[1] 0.9916871 1.0078911

5.3 Example 2: seasonal analysis

The purpose of the second example is to illustrate an analysis where the data are restricted to a
specific season. The peculiar feature of this analysis is that the data are assumed to be composed by
multiple equally-spaced and ordered series of the same season for each year, and do not represent a
single continuous series. In this case, we assess the effect of ozone and temperature on mortality up to
5 and 10 days of lag, respectively, using the same steps already seen in Section 5.2.

First, we create the new data restricting to the summer period (June-September) the dataframe
chicagoNMMAPS:

> chicagoNMMAPSseas <- subset(chicagoNMMAPS, month %in% 6:9)

Again, we first create the cross-basis matrices:
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> cb2.o3 <- crossbasis(chicagoNMMAPSseas$o3, lag=5, argvar=list(type="hthr",

knots=40.3), arglag=list(type="integer"), group=chicagoNMMAPSseas$year)

> cb2.temp <- crossbasis(chicagoNMMAPSseas$temp, lag=10,

argvar=list(type="dthr",knots=c(15,25)), arglag=list(type="strata",

knots=c(2,6)), group=chicagoNMMAPSseas$year)

The argument group indicates the variable which defines multiple series: the function then breaks the
series at the end of each group and replaces the first rows up to the maximum lag of the cross-basis
matrix in the following series with NA. Each series must be consecutive, complete and ordered. Here we
make the assumption that the effect of O3 is null up to 40.3 µgr/m3 and then linear, applying an high
threshold parameterization. For temperature, we use a double threshold with the assumption that the
effect is linear below 10◦C and above 25◦C, and null in between. Regarding the lag dimension, we
specify an unconstrained function for O3, applying one parameter for each lag (type="integer") up
to a 5 days (with minimum lag equal to 0 by default). For temperature, we define 3 strata intervals
at lag 0-1, 2-5, 6-10. A summary of the choices made for the cross-bases can be shown by the method
summary().

The regression model includes natural splines for day of the year and year, in order to describe the
seasonal effect within each year, and the long-time trend, respectively. Apart from that, the estimates
and predictions are carried out in the same way as in Section 5.2. The code is:

> model2 <- glm(death ~ cb2.o3 + cb2.temp + ns(doy, 4) + ns(year,3) + dow,

family=quasipoisson(), chicagoNMMAPSseas)

> pred2.o3 <- crosspred(cb2.o3, model2, at=c(0:65,40.3,50.3))

The values for which the prediction must be computed are specified in at: here we define the integers
from 0 to 65 µgr/m3 (approximately the range of ozone distribution), plus the threshold and the value
50.3 µgr/m3 corresponding to a 10-unit increase above the threshold, which is automatically set as the
reference point for type="hthr" (see Section 4.1). The vector is automatically ordered. We plot the
lag-specific association, similarly to Section 5.2 but with 80% confidence intervals, and also the overall
cumulative association with a 10-unit increase in O3. The related code is (results in Figures 2a–2b):

> plot(pred2.o3, "slices", var=50.3, ci="bars", type="p", pch=19, ci.level=0.80,

main="Association with a 10-unit increase above threshold (80%CI)")

> plot(pred2.o3,"overall",xlab="Ozone", ci="lines", ylim=c(0.9,1.3), lwd=2,

ci.arg=list(col=1,lty=3), main="Overall cumulative association for 5 lags")

In the first statement, the argument ci="bars" dictates that, differently from the default "area"

seen in Figures 1a–1b, the confidence intervals are represented by bars. In addition, the argument
ci.level=0.80 states that 80% confidence intervals must be plotted. Finally, we chose points, instead
of the default line, with specific symbol, by the arguments type and pch. In the second statement,
the argument type="overall" indicates that the overall cumulative association must be plotted, with
confidence intervals as lines, ylim defining the range of the y-axis, lwd the thickness of the line.
Similarly to the previous example, the display of confidence intervals are refined through the list of
arguments specified by ci.arg, passed in this case to the low-level function lines().

Similarly to the previous example, we can extract from pred2.o3 the estimated overall cumulative
association for a 10-unit increase in ozone above the threshold (50.3− 40.3 µgr/m3), together with its
95% confidence intervals:

> pred2.o3$allRRfit["50.3"]
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Figure 2
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50.3

1.045927

> cbind(pred2.o3$allRRlow, pred2.o3$allRRhigh)["50.3",]

[1] 1.003495 1.090152

The same plots and computation can be applied to the cold and heat effects of temperatures. For
example, we can describe the increase in risk for 1◦C beyond the low or high thresholds. The user can
perform this analysis repeating the steps above.

5.4 Example 3: a bi-dimensional DLNM

In the previous examples, the effects of air pollution (PM10 and O3, respectively) were assumed com-
pletely linear or linear above a threshold. This assumption facilitates both the interpretation and the
representation of the relationship: the dimension of the predictor is never considered, and the lag-
specific or overall cumulative associations with a 10-unit increase are easily plotted. In contrast, when
allowing for a non-linear dependency with temperature, we need to adopt a bi-dimensional perspective
in order to represent associations which vary non-linearly along the space of the predictor and lags.

In this example we specify a more complex DLNM, where the dependency is estimated using smooth
non-linear functions for both dimensions. Despite the higher complexity of the relationship, we will see
how the steps required to specify and fit the model and predict the results are exactly the same as for
the simpler models see before in Sections 5.2–5.3, only requiring different plotting choices. The user
can apply the same steps to investigate the effects of temperature in previous examples, and extend
the plots for PM10 and O3. In this case we run a DLNM to investigate the effects of temperature and
PM10 on mortality up to lag 30 and 1, respectively.
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These are the cross-basis matrices:

> cb3.pm <- crossbasis(chicagoNMMAPS$pm10, lag=1, argvar=list(type="lin",cen=0),

arglag=list(type="strata"))

> cb3.temp <- crossbasis(chicagoNMMAPS$temp, lag=30, argvar=list(type="bs",

df=5,degree=2,cen=21), arglag=list(df=5))

The chosen basis functions for the space of the predictor are a linear function for the effect of PM10

and a quadratic B-spline (type="bs") with 5 degrees of freedom for temperature (with knots placed
by default at equally spaced quantiles in the space of the predictor). The basis for temperature is
centered at 21◦C, which will represent the reference point for the predicted associations. Regarding
the space of lags, we assume a simple lag 0-1 parameterization for PM10 (i.e. a single strata up to lag
1, with minimum lag equal to 0 by default, keeping the default values of df=1), while we define another
cubic spline, this time with the natural constraint (type="ns" by default) for the lag dimension of
temperature. For this space, knots are located by default at equally spaced values in the log scale of
lags, while the boundary knots are set to 0 and lag=30. The estimation, prediction and plotting of
the association between temperature and mortality are performed by:

> model3 <- glm(death ~ cb3.pm + cb3.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

> pred3.temp <- crosspred(cb3.temp, model3, by=1)

> plot(pred3.temp, xlab="Temperature", zlab="RR", theta=200, phi=40, lphi=30,

main="3D graph of temperature effect")

> plot(pred3.temp, "contour", xlab="Temperature", key.title=title("RR"),

plot.title=title("Contour plot",xlab="Temperature",ylab="Lag"))

Note that prediction values are chosen only with the argument by=1 in crosspred(), defining all the
integer values within the predictor range. The first plotting expression produces a 3-D plot illustrated
in Figure 3a, with non-default choices for perspective and lightning obtained through the arguments
theta-phi-lphi. The second plotting expression specifies the contour plot in Figure 3b with titles and
axis labels chosen by arguments plot.title and key.title. The user can find additional information
and a complete list of arguments in the help pages of the original high-level plotting functions (typing
?persp and ?filled.contour).

Plots in Figures 3a–3b offer a comprehensive summary of the bi-dimensional relationship, but are
limited in their ability to inform on associations at specific values of predictor or lags. In addition,
they are also limited for inferential purposes, as the uncertainty of the estimated association is not
reported in 3-D and contour plots. A more detailed analysis is provided by plotting ”slices” of the
effect surface for specific predictor and lag values. The code is:

> plot(pred3.temp, "slices", var=-20, ci="n", col=1, ylim=c(0.95,1.15), lwd=1.5,

main="Lag-specific associations at different temperature, ref. 21C")

> for(i in 1:3) lines(pred3.temp, "slices", var=c(0,27,33)[i], col=i+1, lwd=1.5)

> legend("topright",paste("Temperature =",c(-20,0,27,33)), col=1:4, lwd=1.5)

> plot(pred3.temp, "slices", var=c(-20,33), lag=c(0,5), col=4,

ci.arg=list(density=40,col=grey(0.7)))

The results are reported in Figures 4a–4b. Figure 4a illustrates lag-specific associations at mild and
extreme cold and hot temperatures of -20◦C, 0◦C, 27◦C, and 33◦C (with reference at 21◦C). Figures 4b
depicts both associations along the predictor range at lag 0 and 5 (left column), and associations along
lags at temperatures -20◦C and 33◦C (right column). The arguments var and lag define the ”slices”
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Figure 3
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to be cut in the effect surface in Figure 3a–3b. The argument ci="n" in the first expression states
that confidence intervals must not be plotted. In the multi-panel Figure 4b, the list argument ci.arg
is used to plot confidence intervals as shading lines with increased grey contrast, more visible here.

The preliminary interpretation suggests that cold temperatures are associated with longer mortality
risk than heat, but not immediate, showing a ”protective” effect at lag 0. This analytical proficiency
would be hardly achieved with simpler models, probably losing important details of the association.

5.5 Example 4: reduce a DLNM

In this last example, we show how we can reduce the fit of a bi-dimensional DLNM to summaries
expressed by parameters of one-dimensional basis, using the function crossreduce(). First, we specify
a new cross-basis matrix, run the model and predict in the usual way:

> cb4 <- crossbasis(chicagoNMMAPS$temp, lag=30, argvar=list(type="dthr",

knots=c(10,25)), arglag=list(df=5))

> model4 <- glm(death ~ cb4 + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

> pred4 <- crosspred(cb4, model4, by=1)

The specified cross-basis for temperature is composed by double-threshold functions with cut-off points
at 10◦C and 25◦C for the dimension of the predictor, and a natural cubic splines with 5 df and knots
at default equall-spaced values in the log scale for lags, respectively. The reduction may be carried
out to 3 specific summaries, namely overall cumulative, lag-specific and predictor-specific associations.
This is the code:
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Figure 4
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Var = 33

> redall <- crossreduce(cb4, model4)

> redlag <- crossreduce(cb4, model4, type="lag", value=5)

> redvar <- crossreduce(cb4, model4, type="var", value=33)

The reduction for specific associations is computed at lag 5 and 33◦C in the two spaces, repectively.
The 3 objects of class ”crossreduce” contain the modified reduced parameters for the one-dimensional
basis in the related space, which can be compared with the original model:

> length(coef(pred4))

[1] 10

> length(coef(redall)) ; length(coef(redlag))

[1] 2

[1] 2

> length(coef(redvar))

[1] 5

As expected, the number of parameters has been reduced to 2 for the space of the predictor (consistently
with the double-threshold parameterization), and to 5 for the space of lags (consistently with the
dimension of the natural cubic spline basis). However, the prediction from the original and reduced fit
is identical, as illustrated in Figure 5a produced by:
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Figure 5
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> plot(pred4, "overall", xlab="Temperature", ylab="RR",

ylim=c(0.8,1.6), main="Overall cumulative association")

> lines(redall, ci="lines",col=4,lty=2)

> legend("top",c("Original","Reduced"),col=c(2,4),lty=1:2,ins=0.1)

The process may also be clarified by re-constructing the orginal one-dimensional basis and predicting
the association given the modified parameters. As an example, we reproduce the natural cubic spline
for the space of the lag using onebasis(), and predict the results, with:

> b4 <- onebasis(0:30,knots=attributes(cb4)$arglag$knots,int=TRUE,cen=FALSE)

> pred4b <- crosspred(b4,coef=coef(redvar),vcov=vcov(redvar),model.link="log",by=1)

The spline basis is computed on the integer values corresponding to lag 0:30, with knots at the
same values as the original cross-basis, and uncentered with intercept as the default for basis for
lags (see Section 4.2). Predictions are computed using the modified parameters reduced to predictor-
specific association for 33◦C. The identical fit of the original, reduced and re-constructed prediction is
illustrated in Figure 5b, produced by:

> plot(pred4, "slices", var=33, ylab="RR", ylim=c(0.9,1.2),

main="Predictor-specific association at 33C")

> lines(redvar, ci="lines", col=4, lty=2)

> points(pred4b, col=1, pch=19, cex=0.6)

> legend("top",c("Original","Reduced","Reconstructed"),col=c(2,4,1),lty=c(1:2,NA),

pch=c(NA,NA,19),pt.cex=0.6,ins=0.1)
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6 Conclusions

This document illustrates the functionalities of the dlnm package, providing a detailed overview of the
process to specify and run a DLNM and then to predict and plot its results. The main advantage
of this family of models is to unify many of the previous methods to deal with delayed effects in a
unique framework, also providing more flexible alternatives regarding the shape of the relationships.
Section 3 provides a brief summary of the theory underpinning DLNM’s: a more detailed overview has
been published elsewhere (Armstrong, 2006; Gasparrini, 2011; Gasparrini et al., 2010), together with
a complete specification of the algebra (Gasparrini and Armstrong, 2013; Gasparrini et al., 2010).

The flexibility is kept when this framework is implemented in the dlnm package: several different
models with an increasing level of complexity can be performed using a simple and general procedure,
as showed in the examples in Section 5. As already explained, this method is not limited to the
examples on the effect of air pollution and temperature on mortality, but can be applied to investigate
the relationship between any predictor and outcomes in time-series data.

The choice of keeping separated the two steps of cross-basis specification and parameters estimation
offers several advantages. First, as illustrated in the example, more than one variable showing delayed
effects can be transformed through cross-basis functions and included in the model. Second, standard
regression commands can be used for estimation, with the default set of diagnostic tools and related
functions. More importantly, this implementation provides an open platform where additional models
specified with different regression commands can be included as well, aiding the development of these
methodology in other contexts or study designs.

The DLNM’s framework introduced here is developed for time series design. The general expression
of the model in allows this methodology to be applied for any family distribution and link function
within generalized linear models (GLM), with extensions to GAM or models based on generalized
estimating equations (GEE). Anyway, the current implementation of of DLNM’s requires single series
of equally-spaced and ordered data. Preliminary tests on the application of the functions included in
the package dlnm in case-control, cohort and longitudinal data are promising. Further development
may lead to a general framework to describe delayed effects, which spans different study designs.
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