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1 Introduction

This document is a set of notes to accompany the earth package [17]. It comes with the
earth package, or can be downloaded from www.milbo.org/doc/earth-notes.pdf.

Most users will find it unnecessary to read this entire document. Just read the parts
you need and skim the rest. Most of this text was originally written in response to
email from users.

The R earth package builds regression models using the techniques in Friedman’s pa-
pers “Multivariate Adaptive Regression Splines” [7] and “Fast MARS” [8]. The term
“MARS” is copyrighted and thus not used in the name of the package. The package can
be downloaded from cran.r-project.org/web/packages/earth/index.html.

2 Overview

Earth has numerous arguments, but many users will find that the following are all they
need:

formula, data Familiar from lm.

x, y Alternative to the formula interface.

degree The maximum degree of interaction. Default is 1, use 2 for first-
order interactions of the hinge functions.

nk The maximum number of MARS terms. The default is determined
semi-automatically from the number of predictors in x, but some-
times needs adjusting.

trace Trace operation. Use trace=1 to see why the forward pass termi-
nated, and if necessary increase nk.

2.1 References

The Wikipedia article [21] is recommended for an elementary introduction to MARS
http://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines.

The primary references are the Friedman MARS papers [7, 8]. Readers may find the
MARS section in Hastie, Tibshirani, and Friedman [12] a more accessible introduction.

Faraway [5] takes a hands-on approach, using the ozone data to compare mda::mars

with other techniques. (If you use Faraway’s examples with earth instead of mars, use
$bx instead of $x, and check out the book’s errata.)

Friedman and Silverman [9] is recommended background reading for the MARS paper.

Earth’s pruning pass uses the leaps [16] package which is based on techniques in
Miller [18].
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2.2 Other implementations

Given the same data, earth models are similar to but not identical to models built by
other MARS implementations. The differences stem from the forward pass where small
implementation differences (or perturbations of the input data) can cause somewhat
different selection of terms and knots (although similar GRSq’s). The backward passes
give identical or near identical results, given the same forward pass results.

The source code of earth is derived from the function mars in the mda package written
by Trevor Hastie and Robert Tibshirani [13]. See also the function mars.to.earth (in
the earth package).

The term “MARS” is trademarked and licensed exclusively to Salford Systems www.

salfordsystems.com. Their implementation uses an engine written by Friedman. It
has a graphical user interface and includes some features not in earth. Salford Systems
has a reputation for excellent customer support.

StatSoft also have an implementation which they call “MARSplines” www.statsoft.

com/textbook/stmars.html.

2.3 Limitations

The following aspects of MARS are mentioned in Friedman’s papers but not imple-
mented in earth:

(i) Piecewise cubic models (to smooth out sharpness at the hinges).

(ii) Model slicing (the plotmo function goes part way).

(iii) Handling missing values.

(iv) Automatic grouping of categorical predictors into subsets.

(v) The h parameter of Fast MARS.

2.4 The forward pass

Understanding the details of the forward and pruning passes will help you understand
earth’s return value and the admittedly large number of arguments. Figure 1 is an
overview.

The result of the forward pass is the MARS basis matrix bx and the set of terms defined
by dirs and cuts (these are all fields in earth’s return value, but the bx returned by
the forward pass includes all terms before trimming back to selected.terms).

The bx matrix has a row for every observation (i.e. for every row in x). It has a column
for each basis function (also referred to as a MARS term). An example bx:

(Intercept) h(x1-58) h(x2-89) h(89-x2) h(56-x3)*h(x1-58) ...

[1,] 1 3.2 0 56 0 ...

[2,] 1 8.1 0 55 0 ...

[3,] 1 3.7 0 54 0 ...

....
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Figure 1: Overview of earth’s internals

2.4.1 Termination conditions for the forward pass

The forward pass adds terms in pairs until the first of the following conditions is met:

(i) Reached the maximum number of terms nk

(ii) Adding a term changes RSq by less than 0.001

(iii) Reached a RSq of 0.999 or more

(iv) GRSq is less than -10 (a pathologically bad GRSq, FAQs 12.10 and 12.11)

(v) Reached numerical accuracy limits (no new term increases RSq).

Set trace >= 1 to see the stopping condition and trace >= 2 to trace the forward
pass.

The numbers 0.001 and 0.999 above can be changed by changing earth’s thresh ar-
gument. You can disable termination conditions ii, iii, and iv by setting thresh=0

(FAQ 12.13). These conditions are not theoretically necessary, but they save time by
terminating the forward pass when it is pointless to continue, and also usually terminate
the search before numerical issues become thorny.

Note that GCVs (via GRSq) are used during the forward pass only as one of the (more
unusual) stopping conditions and in trace prints. Changing the penalty argument
does not change the knot positions.

The various stopping conditions mean that the actual number of terms created by the
forward pass may be less than nk. There are other reasons why the actual number of
terms may be less than nk: (i) the forward pass discards one side of a term pair if it
adds nothing to the model — but the forward pass counts terms as if they were actually
created in pairs, and, (ii) as a final step, the forward pass deletes linearly dependent
terms, if any, so all terms in dirs and cuts are independent. And remember that the
pruning pass will further discard terms.
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2.5 The pruning pass

The pruning pass (also called the backward pass) is handed the set of terms bx created
by the forward pass. Its job is to find the subset of those terms that gives the low-
est GCV. The following description of the pruning pass explains how various fields in
earth’s returned value are generated.

The pruning pass works like this: it determines the subset of terms in bx (using pmethod)
with the lowest RSS (residual sum-of-squares) for each model size in 1:nprune. It saves
the RSS and term numbers for each such subset in rss.per.subset and prune.terms.
It then calculates the GCV with penalty for each entry of rss.per.subset to yield
gcv.per.subset. Finally it chooses the model with the lowest value in gcv.per.subset,
puts its term numbers into selected.terms, and updates bx by keeping only the se-

lected.terms.

After the pruning pass, earth runs lm.fit to determine the fitted.values, resid-
uals, and coefficients, by regressing the response y on bx. This is an ordinary
least-squares regression of the response y on the basis matrix bx (see Figure 1 and ex-

ample (model.matrix.earth) for an example). If y has multiple columns then lm.fit

is called for each column.

If a glm argument is passed to earth (Chapter 3), earth runs glm on (each column of)
y in addition to the above call to lm.fit.

Set trace >= 3 to trace the pruning pass.

2.6 Execution time

For a given set of input data, the following can increase the speed of the forward pass:

(i) decreasing degree (because there are fewer combinations of terms to consider),

(ii) decreasing nk (because there are fewer forward pass terms),

(iii) decreasing fast.k (because there are fewer potential parents to consider at each
forward step),

(iv) increasing thresh (faster if there are fewer forward pass terms),

(v) increasing min.span (because fewer knots need to be considered).

The backward pass is normally much faster than the forward pass, unless pmethod =

"exhaustive". Reducing nprune reduces exhaustive search time. One strategy is to
first build a large model and then adjust pruning parameters such as nprune using
update.earth.

The following very rough rules of thumb apply for large models. Using minspan=1

instead of the default 0 will increase times by 20 to 50%. Using fast.k=5 instead of
the default 20 can give substantial speed gains but will sometimes give a much smaller
GRSq.
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2.7 Memory use

Earth does not impose specific limits on the model size. Model size is limited only by
the amount of memory on your system, the maximum memory addressable by R, and
your patience.

To reduce total memory usage, it sometimes helps to remove variables (use R’s remove
function) and to call gc before invoking earth. Note that increasing the degree does
not change the memory requirements (but increases the running time).

Memory use will be minimized if ALL the following requirements are met (because
earth does not have to make its own copy of the x matrix):

(i) use earth.default, not earth.formula (i.e. invoke earth with x,y not with a
formula),

(ii) x must be a matrix of double’s (not a data.frame),

(iii) x must have column names,

(iv) arguments like subset must be at their default value of NULL,

(v) trace must be less than 2.

The special value trace=1.5 will make earth’s C routines print memory allocations.

Memory requirements will be reduced if Use.beta.cache=FALSE (use trace=1.5 to see
by how much).

2.8 Standard model functions

Standard model functions such as case.names are provided for earth objects and are
not explicitly documented. Many of these give warnings when the results are not what
you may expect. Pass warn=FALSE to these functions to turn of just these warnings.
The full list of earth methods is:

anova.earth,
case.names.earth,
deviance.earth,
effects.earth,
extractAIC.earth,
family.earth,
model.matrix.earth,
plot.earth,
print.earth,
print.summary.earth,
resid.earth,
residuals.earth,
summary.earth,
update.earth,
variable.names.earth.
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2.9 Multiple response models

If the response y has k columns then earth builds k simultaneous models. (Note: this
will be the case if a factor in y is expanded by earth; Chapter 4 “Factors”.) Each model
has the same set of basis functions (the same bx, selected.terms, dirs and cuts) but
different coefficients (the returned coefficients will have k columns). The models are
built and pruned as usual but with the GCVs and RSSs summed across all k responses.
Earth minimizes the overall GCV (the sum of the GCVs).

Once you have built your model, you can use plotmo and its nresponse argument to
see how each response varies with the predictors.

Here are a couple of examples to show some of the ways multiple responses can be
specified. Note that data.frames can’t be used on the left side of a formula, so cbind

is used in the first example. The first example uses the standard technique of specifying
a tag ly2= to name a column.

earth(cbind(y1, ly2=log(y2)) ~ ., data = my.data)

attach(my.data)

earth(data.frame(y1, y2), data.frame(x1, x2, log.x3=log(x3))))

Since earth attempts to optimize for all models simultaneously, the results will not be
as “good” as building the models independently, i.e., the GRSq of the combined model
will usually not be as good as the GRSq’s for independently built models. However,
the combined model may be a better model in other senses, depending on what you are
trying to achieve. For example, it could be useful for earth to select the set of MARS
terms that is best across all responses. This would typically be the case in a multiple
response logistic model if some responses have a very small number of successes.

Note that automatic scaling of y (via the scale.y argument) does not take place if
y has multiple columns. You may want to scale your y columns before calling earth

so each y column gets the appropriate weight during model building (a y column with
a big variance will influence the model more than a column with a small variance).
You could do this by calling scale before invoking earth, or by setting the scale.y

argument, or by using the wp argument.

Don’t use a plus sign on the left side of the tilde. You might think that specifies a
multiple response, but instead it arithmetically adds the columns.

For more details on using residual errors averaged over multiple responses see for ex-
ample Section 4.1 of the FDA paper (Hastie, Tibshirani, and Buja [11]).

2.10 Migrating from mda::mars

Changing code from mda::mars to earth is usually just a matter of changing the call
from mars to earth. But there are a few argument differences and earth will issue a
warning if you give it a mars-only argument.

The resulting model will be similar but not identical because of small implementation
differences. See also the documentation of the function mars.to.earth (in the earth

package).
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If you are further processing the output of earth you will need to consider differences
in the returned value. The header of the source file mars.to.earth.R describes these.
Perhaps the most important is that mars returns the MARS basis matrix in a field called
”x” whereas earth returns ”bx”. Also, earth returns ”dirs” rather than ”factors”.

A note on wp argument. Earth’s internal normalization of wp is different from mars.
Earth uses wp <- sqrt(wp/mean(wp)) and mars uses wp <- sqrt(wp/sum(wp)). Thus
in earth, a wp with all elements equal is equivalent to no wp. For models built with wp,
multiply the GCV calculated by mars by length(wp) to compare it to earth’s GCV.
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3 Generalized linear models

Earth builds a GLM model if the glm argument is specified. Earth builds the model as
usual and then invokes glm on the MARS basis matrix bx.

In more detail, the model is built as follows. Earth first builds a standard MARS model,
including the internal call to lm.fit on bx after the pruning pass. (See Figure 1 and
Section 2.5 “The pruning pass”.) Thus knot positions and terms are determined as
usual and all the standard fields in earth’s return value will be present. Earth then
invokes glm for the response on bx with the parameters specified in the glm argument
to earth. For multiple response models (when y has multiple columns), the call to glm

is repeated independently for each response. The results go into three extra fields in
earth’s return value: glm.list, glm.coefficients, and glm.bpairs.

Earth’s internal call to glm is made with the glm arguments x, y, and model set TRUE
(see the documentation for glm for more information about those arguments).

Use summary(my.model) as usual to see the model. Use summary(my.model, details=T)

to see more details, but note that the printed t-values for the GLM coefficients are
meaningless. This is because of the amount of preprocessing by earth — the mantra
is “variable selection overstates significance of the selected variables”. And anyway, we
already know that the MARS terms are significant — the forward and backward passes
just did a lot of work carefully choosing those terms.

Use plot(my.model$glm.list[[1]]) to plot the (first) glm model.

The approach used for GLMs in earth was motivated by work done by Jane Elith and
John Leathwick ([15] is a representative paper).

3.1 GLM examples

The examples below show how to specify earth-glm models. The examples are only
to illustrate the syntax and not necessarily useful models. In some of the examples,
pmethod="none", otherwise with these artificial models earth tends to prune away
everything except the intercept term. You wouldn’t normally use pmethod="none".
Also, trace=1, so if you run these examples you can see how earth expands the input
matrices (as explained in Chapter 4 “Factors” and Section 3.2 “Binomial pairs”).

(i) Two-level factor or logical response. The response is converted to a single
column of 1s and 0s.

a1 <- earth(survived ~ ., data=etitanic,

degree=2, trace=1, glm=list(family=binomial))

# equivalent but using earth.default

a1a <- earth(etitanic[,-2], etitanic[,2],

degree=2, trace=1, glm=list(family=binomial))

(ii) Factor response. This example is for a factor with more than two levels. (For
factors with just two levels, see the previous example.) The factor pclass is expanded
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to three indicator columns (whereas in a direct call to glm, pclass would be treated
as logical: the first level versus all other levels). Because of the masking problem,
we mention you might consider FDA for factor responses with more than two levels
(Chapter 7).

a2 <- earth(pclass ~ ., data=etitanic, trace=1,

glm=list(family=binomial))

(iii) Binomial model specified with a column pair. This is a single response model
but specified with a pair of columns (Section 3.2 “Binomial pairs”). For variety, this
example uses a probit link and (unnecessarily) increases maxit.

ldose <- rep(0:5, 2) - 2 # V&R 4th ed. p. 191

sex <- factor(rep(c("male", "female"), times=c(6,6)))

numdead <- c(1,4,9,13,18,20,0,2,6,10,12,16)

pair <- cbind(numdead, numalive=20 - numdead)

a3 <- earth(pair ~ sex + ldose, trace=1, pmethod="none",

glm=list(family=binomial(link=probit), maxit=100))

(iv) Double binomial response (i.e., a multiple response model) specified with two
column pairs.

numdead2 <- c(2,8,11,12,20,23,0,4,6,16,12,14) # bogus data

doublepair <- cbind(numdead, numalive=20-numdead,

numdead2=numdead2, numalive2=30-numdead2)

a4 <- earth(doublepair ~ sex + ldose, trace=1, pmethod="none",

glm=list(family="binomial"))

(v) Poisson model.

counts <- c(18,17,15,20,10,20,25,13,12) # Dobson 1990 p. 93

outcome <- gl(3,1,9)

treatment <- gl(3,3)

a5 <- earth(counts ~ outcome + treatment, trace=1, pmethod="none",

glm=list(family=poisson))

(vi) Standard earth model, the long way.

a6 <- earth(numdead ~ sex + ldose, trace=1, pmethod="none",

glm=list(family=gaussian(link=identity)))

print(a6$coefficients == a6$glm.coefficients) # all TRUE

3.2 Binomial pairs

This section is only relevant if you use earth’s glm argument with a binomial or qua-
sibinomial family.

Users of the glm function will be familiar with the technique of specifying a binomial
response as a two-column matrix, with a column for the number of successes and a col-
umn for the failures. When given the argument glm=list(family=binomial), earth
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automatically detects when such columns are present in y (by looking for adjacent
columns which both have entries greater than 1). The first column only is used to build
the standard earth model. Both columns are then passed to earth’s internal call to
glm. As always, use trace=1 to see how the columns of x and y are expanded.

You can override this automatic detection by including a bpairs parameter. This is
usually (always?) unnecessary. For example

glm=list(family=binomial, bpairs=c(TRUE, FALSE))

specifies that there are two columns in the response with the second paired with the
first. These examples

glm=list(family=binomial, bpairs=c(TRUE, FALSE, TRUE, FALSE))

glm=list(family=binomial, bpairs=c(1,3)) # equivalent

specify that the 1st and 2nd columns are a binomial pair and the 3rd and 4th columns
another binomial pair.
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4 Factors

This chapter explains how factors in the x and y matrices get “expanded” before the
matrices get passed to the MARS engine.

Use trace=1 or higher to see the column names of the x and y matrices after factor
expansion. Use trace=4 to see the first few rows of x and y after factor expansion.

4.1 Factors in x

Earth treats factors in x in the same way as standard R models such as lm. Thus factors
are expanded using the current setting of contrasts.

4.2 Factors in y

Earth treats factors in the response in a non-standard way that makes use of earth’s
ability to handle multiple responses.

A two level factor (or logical) is converted to a single indicator column of 1s and 0s.

A factor with three or more levels is converted into k indicator columns of 1s and 0s,
where k is the number of levels (the contrasts matrix is an identity matrix, see the help
page for contr.earth.response). This happens regardless of the options("contrasts")
setting and regardless of whether the factors are ordered or unordered. For example, if
a column in y is a factor with levels A, B, and C, the column will be expanded to three
columns like this (the actual data will vary but each row will have a single 1):

A B C # one column for each factor level

0 1 0 # each row has a single 1

1 0 0

0 0 1

0 0 1

0 1 0

...

In distinction, a standard treatment contrast on the right hand size of a model with an
intercept would have no first “A” column (to prevent linear dependencies on the right
side of the model formula). See the help page for contrasts for details.

This expansion to multiple columns (which only happens for factors with more than two
levels) means that earth will build a multiple response model as described in Section 2.9
“Multiple responses”.

Paired binomial response columns in y are treated specially (Section 3.2 “Binomial
pairs”).
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4.3 Factor example

Here is an example which uses the etitanic data to predict the passenger class (not
necessarily a sensible thing to do):

> data(etitanic)

> head(etitanic) # pclass and sex are unordered factors

pclass survived sex age sibsp parch

1 1st 1 female 29.000 0 0

2 1st 1 male 0.917 1 2

3 1st 0 female 2.000 1 2

> earth(pclass ~ ., data=etitanic, trace=1) # note col names in x and y below

x is a 1046 by 5 matrix: 1=survived, 2=sexmale, 3=age, 4=sibsp, 5=parch

y is a 1046 by 3 matrix: 1=1st, 2=2nd, 3=3rd

rest not shown here...
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5 The linpreds argument

With linpreds we can specify which predictors should enter linearly, instead of in hinge
functions. The linpreds argument does not stipulate that a predictor must enter the
model, only that if it enters it should enter linearly. Starting with

fit1 <- earth(Volume ~ ., data = trees)

plotmo(fit1)

we see in the plotmo graphs (Figure 2, top row) or by running evimp that Height

isn’t as important as Girth. For collaborative evidence that Girth is a more reliable
indicator of Volume we can use pairs:

pairs(trees, panel = panel.smooth)

Since we want the simplest model that describes the data, we may decide that Height
should enter linearly, not in a hinge function (Figure 2, bottom row):

fit2 <- earth(Volume ~ ., data = trees, linpreds = 2) # 2 is Height column

summary(fit2)
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Figure 2: The linpreds argument.
Top row: Standard earth model of the trees data.
Bottom row: Same, but with Height entering linearly ( linpreds=2).
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which yields

coefficients

(Intercept) 2.981

Height 0.348

h(Girth-14) 6.302

h(14-Girth) -3.128

In this example, the second simpler model has almost the same RSS as the first model.
We can make both Girth and Height enter linearly with

a3 <- earth(Volume ~ ., data = trees, linpreds = c(1,2))

or with (the single TRUE is recycled to the length of linpreds)

a4 <- earth(Volume ~ ., data = trees, linpreds = TRUE)

But specifying that all predictors should enter linearly is not really a useful thing to
do. In our simple example, the all-linear MARS model is the same as a standard linear
model

a5 <- lm(Volume ~ ., data = trees)

(compare the summary for each) but in general that will not be true. Earth will not
include a linear predictor if that predictor does not improve the model (in the GCV
sense).

Note: In the current implementation, the GCV penalty for predictors that enter linearly
is the same as that for predictors with knots. That is not quite correct; linear terms
should be penalized less.
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6 The allowed argument

You can specify how variables are allowed to enter MARS terms with the allowed

argument. Within each step of the forward pass, earth calls the allowed function after
discovering the best knot for a variable. The potential term is considered for inclusion
only if the allowed function returns TRUE. The default function always returns TRUE.

Your allowed function should have the following prototype

function(degree, pred, parents, namesx, first)

where

degree is the interaction degree of the candidate term. Will be 1 for additive terms.

pred is the index of the candidate predictor. A predictor’s index in pred is the column
number in the input matrix x after factors have been expanded. Use trace=1 to
see the column names after expansion.

parents is the candidate parent term’s row in dirs.

namesx is optional and if present is the column names of x after factors have been
expanded.

first is optional and if present is TRUE the first time your allowed function is invoked
for the current model, and thereafter FALSE, i.e. it is TRUE once per invocation
of earth.

6.1 Examples

The interface is flexible but requires a bit of programming. We start with a simple
example, which completely excludes one predictor from the model:

example1 <- function(degree, pred, parents) # returns TRUE if allowed

{

pred != 2 # disallow predictor 2, which is "Height"

}

a1 <- earth(Volume ~ ., data = trees, allowed = example1)

print(summary(a1))

But that’s not much use, because it’s simpler to exclude the predictor from the input
matrix when invoking earth:

a2 <- earth(Volume ~ . - Height, data = trees)

The example below is more useful. It prevents the specified predictor from being used
in interaction terms. (The example is artificial because it’s unlikely we would want to
single out humidity from interactions in the ozone data.)

The parents argument is the candidate parent’s row in the dirs matrix (dirs is de-
scribed in the Value section of the earth help page). Each entry of parents is 0, 1, -1,
or 2, and we index parents on the predictor index. Thus parents[pred] is non-zero
if pred is in the parent term.
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example2 <- function(degree, pred, parents)

{

# disallow humidity in terms of degree > 1

# 3 is the "humidity" column in the input matrix

if (degree > 1 && (pred == 3 || parents[3]))

return(FALSE)

TRUE

}

a3 <- earth(O3 ~ ., data = ozone1, degree = 2, allowed = example2)

print(summary(a3))

The following example allows only the specified predictors in interaction terms. Inter-
actions are allowed only for predictors in allowed.set, which you can change to suit
your needs.

example3 <- function(degree, pred, parents)

{

# allow only humidity and temp in terms of degree > 1

# 3 and 4 are the "humidity" and "temp" columns

allowed.set = c(3,4)

if (degree > 1 &&

(all(allowed.set != pred) || any(parents[-allowed.set])))

return(FALSE)

TRUE

}

a4 <- earth(O3 ~ ., data = ozone1, degree = 2, allowed = example3)

print(summary(a4))

6.2 Further notes on the allowed argument

The basic MARS model building strategy is always applied even when there is an
allowed function. For example, earth considers a term for addition only if all factors
of that term except the new one are already in a model term. This means that an
allowed function that inhibits, say, all degree 2 terms will also effectively inhibit higher
degrees too, because there will be no degree 2 terms for earth to extend to degree 3.

You can expect model building to be about 10% slower with an allowed function
because of the time taken to invoke the allowed function. On the other hand, execution
time can be faster if using allowed requires us to evaluate fewer potential MARS terms.

6.3 Using predictor names instead of indices in the allowed

function.

You can use predictor names instead of indices using the optional namesx argument. If
present, namesx is the column names of x after factors have been expanded. The first
example above (the one that disallows Height) can be rewritten as

example1a <- function(degree, pred, parents, namesx)
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{

namesx[pred] != "Height"

}

Comparing strings is inefficient [no longer true in modern versions of R] and the above
example can be rewritten a little more efficiently using the optional first argument.
If present, this is TRUE the first time your allowed function is called for the current
model and thereafter FALSE.

iheight <- 0 # column index of "Height"

example1b <- function(degree, pred, parents, namesx, first)

{

if (first) {

# first time this function is invoked, so

# stash column index of "Height" in iheight

iheight <<- which(namesx == "Height") # note use of <<- not <-

if (length(iheight) != 1) # sanity check

stop("no Height in ", paste(namesx, collapse=" "))

}

pred != iheight

}
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7 Using earth with fda and mda

Earth can be used with fda and mda in the mda package. Earth will generate a mul-
tiple response model when called by these functions. You can pass arguments such
as degree=2 to earth by including them in the call to fda. Use the earth ar-
gument keepxy=TRUE if you want to call plotmo later. Use the fda/mda argument
keep.fitted=TRUE if you want to call plot.earth later (actually only necessary for
large data sets, see the description of keep.fitted in fda’s help page).

Example (this gives the right side of Figure 3):

library(mda)

(fda <- fda(Species~., data=iris, keep.fitted=TRUE, method=earth, keepxy=TRUE))

summary(fda$fit) # examine earth model embedded in fda model

plot(fda) # right side of Figure 3
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Figure 3: Left: FDA of the iris data, built on a linear model.
Right: FDA built with an earth model using the code in the text. Note the better
grouping of classes.

The graphs show the training observations transformed into the discriminant
space. This transformation is done by the regression function plugged into fda and by
optimal scoring (Section 7.1). There are three classes in this example so we have two
discriminant variables. A new observation is classified by predict.fda as the class of
the nearest centroid in discriminant space (the centroids are at the ringed numbers 1,
2, and 3).
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Using plotmo we can plot the per-predictor dependence of the fda variates like this:

plotmo(fda, type="variates", nresponse=1, clip=F) # 1st disc var (Figure 5)

plotmo(fda, type="variates", nresponse=2, clip=F) # 2nd disc var (not shown)

We can also look at the earth model embedded in the FDA model:

plotmo(fda$fit, nresponse=1, clip=F) # earth in FDA, 1st disc var (Figure 6)

plotmo(fda$fit, nresponse=2, clip=F) # earth in FDA, 2nd disc var (not shown)
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Figure 4: plotmo graphs of the FDA model with a linear submodel (the left of Figure 3).
The graphs show the contribution of each predictor to the first discriminant variable.
The second discriminant variable is not shown. (The code to generate this plot is not
in the text.)

4.5 5.5 6.5 7.5

−
15

−
5

0
5

1  Sepal.Length

2.0 2.5 3.0 3.5 4.0

−
15

−
5

0
5

2  Sepal.Width

1 2 3 4 5 6 7

−
15

−
5

0
5

3  Petal.Length

0.5 1.0 1.5 2.0 2.5

−
15

−
5

0
5

4  Petal.Width

Figure 5: plotmo graphs of the FDA model with an earth submodel (the right of Fig-
ure 3). The graphs show the contribution of each predictor to the first discriminant
variable.

4.5 5.5 6.5 7.5

−
1.

5
−

0.
5

0.
5

1.
5

1  Sepal.Length

1 2 3 4 5 6 7

−
1.

5
−

0.
5

0.
5

1.
5

2  Petal.Length

0.5 1.0 1.5 2.0 2.5

−
1.

5
−

0.
5

0.
5

1.
5

3  Petal.Width

Figure 6: plotmo graphs of the earth model embedded in the FDA model (first discrim-
inant variable before scoring). Earth did not include Sepal.Width in the model.
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7.1 A short introduction to Flexible Discriminant Analysis

Flexible Discriminant Analysis (FDA) is Linear Discriminant Analysis (LDA) on steroids.
LDA uses a hyperplane to separate the classes. FDA replaces this hyperplane with a
curved or bent surface to better separate the classes. The trick FDA uses to achieve
this is to convert the classification problem into a regression problem. This allows us
to plug in “any” regression function to generate the discriminant surface. If we plug in
a linear regression function, FDA will generate a hyperplane, just like LDA. If we plug
in earth, FDA will generate a surface defined by MARS hinge functions.

FDA converts a classification problem into a regression problem via optimal scoring
(Figure 7). Essentially, this creates a new response variable by assigning new num-
bers (scores) to the factor levels in the original response. So for example setosa=1,
versicolor=2, and virginica=3 may become setosa=1.2, versicolor=-1.2, and
virginica=0.

Actually, FDA creates several response variables like this, each with its own set of
scores. If there are K response classes, FDA creates K − 1 variables. So for the Iris
data set, which has three classes (or “levels” in R parlance), we have two discriminant
variables (Figure 3). For a binary response FDA creates one discriminant variable, and
the discriminant space is one dimensional. Note that the dimension of the discriminant
space depends on the number of classes, not on the number of predictors — a nice
example of dimensionality reduction. Sometimes the best prediction results on inde-
pendent data are obtained if we use only some of the discriminant variables, and thus
a further reduction in dimensionality is possible.

Further details may be found in Hastie et al. [12] Section 12.5 and the FDA pa-
per (Hastie, Tibshirani, and Buja [11]).

Using FDA is usually recommended for a response that is a factor with more than two
levels, rather than using a regression function like lm or earth directly on an indicator
matrix. This is because of the “masking problem” (e.g. Hastie et al. [12] Section 4.2
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Figure 7: Left: Some toy data with three response categories.
Right: Rescoring assigns a new number to each category so the data are in a better form
for linear separation.

23



“Linear Regression of an Indicator Matrix”). In practice the best advice is try it and
see if you get better results on your data.

Two advantages of FDA are (i) FDA will often perform better than LDA (or QDA)
because it generates a flexible surface to separate the classes, and (ii) for responses
which have more than two levels, FDA will often perform better than regression on an
indicator matrix because it does not suffer from the masking problem.

We mention that the acronym FDA for “Flexible Discriminant Analysis” is not to be
confused with the same acronym for “Functional Data Analysis” [20].

TODO When is FDA exactly equivalent to LDA?
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8 The plot.earth function

This chapter describes the graphs produced by plot.earth.

8.1 Short version of this chapter

For readers who do not wish to read this entire chapter, here is the least you need to
know.

The plot.earth function produces four graphs (Figure 8).

Use the Model Selection plot to see how the fit depends on the number of predictors,
how the final model was selected at the maximum GCV, and so on.

Use the Residuals vs Fitted graph to look for outliers and for any obviously strange
behavior of the fitted function.

You can usually ignore the other two graphs.

8.2 Interpreting the plot.earth graphs

The graphs plotted by plot.earth, apart from the Model Selection plot, are stan-
dard tools used in residual analysis and more information can be found in most linear
regression textbooks.

Heteroscedasity of the residuals isn’t as important with earth models as it is with linear
models, where homoscedasity of the (studentized) residuals is used a check that a linear
model is appropriate. Also, in linear models homoscedasity of the residuals is required
for the usual linear model inferences (such as calculation of p-values), which is not done
with earth models.

Remember that the residuals are measured on the training data rather than on new
data. In linear models that is usually not an issue, but for flexible models like MARS
the residuals measured on the training data give an optimistic view of the model’s
predictive ability.

8.2.1 Nomenclature

The residuals are the differences between the values predicted by the model and the
corresponding response values. The residual sum of squares (RSS) is the sum of the
squared values of the residuals.

R-Squared (RSq, also called the coefficient of determination) is a normalized form of
the RSS, and, depending on the model, varies from 0 (a model that always predicts the
same value i.e. the mean observed response value) to 1 (a model that perfectly predicts
the responses in the training data).1

1Not quite true, see FAQ 12.9 “Can R-Squared be negative?”
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O3: earth(formula=O3~.,data=ozone1,degree=2)

Figure 8: Graphs produced by example(plot.earth).

The Generalized Cross Validation (GCV) is a form of the RSS penalized by the effective
number of model parameters (and divided by the number of observations). More details
can be found in FAQs 12.7 and 12.8. The GRSq normalizes the GCV in the same way
that the RSq normalizes the RSS (see FAQ 12.10 and the definition of GRSq in the
Value section of earth’s help page).

The GCV and GRSq are measures of the generalization ability of the model, i.e., how
well the model would predict using data not in the training set. There is some arbi-
trariness in their values since the effective number of model parameters is a just an
estimate in MARS models.
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8.2.2 The Model Selection graph

For concreteness, the description of the graphs here is based on the plot produced by
example(plot.earth) (Figure 8).

In the example Model Selection graph (top left of Figure 8) the RSq and GRSq lines
run together at first, but diverge as the number of terms increases. This is typical
behavior, and what we are seeing is an increased penalty being applied to the GCV as
the number of model parameters increases.

The vertical dotted line is positioned at the selected model (at the maximum GRSq
unless pmethod="none" was used) and indicates that the best model has 11 terms and
uses all 8 predictors (the number of predictors is shown by the black dashed line).

We can also see the number of predictors and terms we would need if we were prepared
to accept a lower GRSq (you can use the earth parameter nprune to trim the model).

To reduce clutter and the right-hand axis, use col.npreds=0.

8.2.3 The Residuals vs Fitted graph

The Residuals vs Fitted graph (bottom left of Figure 8) shows the residual for each
value of the predicted response. By comparing the scales of the axes one can get an
immediate idea of the size of the residuals relative to the predicted values.

The pale blue line is a loess fit. (Readers not familiar with loess fits can think of them
as fancy moving averages.) In this instance it shows that the mean residual is more or
less constant except at low fitted values. The end effect is possibly due to failure of the
model in that region because of smaller residuals. The model fitting algorithm will not
try hard to improve the fit on the left because there is little reduction in RSS to be
gained in that area.

Ideally the residuals should show constant variance i.e. the residuals should remain
evenly spread out, or homoscedastic, as the fitted values increase. (However, in flexible
models like earth, constant variance of the residuals isn’t as important as it is in linear
models.) In the example graph we see heteroscedasity — the residuals spread out in a
“<” shape. There is a decrease in the accuracy of the predictions as the predicted value
increases.

To reduce the heteroscedasity, we can refit the model after performing a transform on
the response. A cube root transform, for instance, evens out the residuals (Figure 9,
middle plot):

fit <- earth(O3^.33333 ~ ., data = ozone1, degree = 2)

plot(fit)

Transforming the data may cause other problems, such as mismatches to a known
underlying physical model or difficulties in interpretation, so it’s best to consult (or
become) an expert on the type of data being modeled (in this case, ozone pollution
data — an expert may say that taking the cube root is meaningless, or conversely may
say that it is essential).
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Figure 9: Three models built from the ozone data.
Left: The residuals of an earth model (same as bottom left of Figure 8).
Middle: The residuals of an earth model built on the cube root of the response.
Right: The residuals of a linear model.

Compare the residuals of the earth model to the linear model (Figure 9, right plot), and
notice how the smooth line shows that the earth model is more successful at modeling
non-linearities in the data. Also, the earth residuals are smaller — look at the left
hand axis labels. The code for the linear model plot is:

fit.lm <- lm(O3 ~ ., data = ozone1)

plot(fit.lm, which=1)

One should always look at the residuals themselves as well as looking at the loess fit,
which is itself an approximation. However, in the example plot the loess line appears
reliable.

Cases 192, 193, and 226 have the largest residuals and fall suspiciously into a sep-
arate cluster. (If overplotting makes the labels hard to read, reduce the number
of labels with the id.n argument of plot.earth.) As a general rule, it is worth-
while investigating cases with large residuals. Perhaps they should be excluded when
building the model. Conversely, it is possible that they reveal something important
about the data that could warrant changes to the model. In our example it is also
worthwhile looking at cases with small residuals because of non-linearity in that re-
gion. To see the example input matrix ordered on the magnitude of the residuals, use
ozone1[order(abs(fit$residuals)),].

Sometimes groups of residuals appear in a series of parallel lines. These lines usually
do not indicate a problem. They are formed when a set of plotted points has the same
observed value, commonly due to discretization in the measurement of the observed
response (e.g. by rounding to the nearest inch).

8.2.4 The Cumulative Distribution graph

The Cumulative Distribution graph (top right of Figure 8) shows the cumulative distri-
bution of the absolute values of residuals. What we would ideally like to see is a graph
that starts at 0 and shoots up quickly to 1. In the example graph, the median absolute
residual is about 2.2 (look at the vertical gray line for 50%). We see that 95% of the
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absolute values of residuals are less than about 7.1 (look at the vertical gray line for
95%). So in the training data, 95% of the time the predicted value is within 7.1 units
of the observed value.

8.2.5 The QQ graph

The QQ (quantile-quantile) plot (bottom right of Figure 8) compares the distribution of
the residuals to a normal distribution. If the residuals are distributed normally they will
lie on the line. (Normality of the residuals isn’t too important for earth models, but
the graph is useful for discovering outlying residuals and other anomalies.) Following R
convention, the abscissa is the normal axis and the ordinate is the residual axis; some
popular books have it the other way round. In the example, we see divergence from
normality in the left tail — the left tail of the distribution is fatter than that of a normal
distribution. Once again, we see that cases 192, 193, and 226 have the largest residuals.

8.3 Earth-glm models and plot.earth

The plot.earth function ignores the glm part of the model, if any. (“Earth-glm”models
are models created with earth’s glm argument, Chapter 3.) The plotted residuals are
residuals from earth’s call to lm.fit after the pruning pass, not glm residuals.

For earth-glm models, plotd (in the earth package) can be convenient. Example
(Figure 10):

fit <- earth(survived ~ ., data=etitanic, degree=2, glm=list(family=binomial))

plotd(fit, hist=TRUE)

Predicted Value

C
ou

nt

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

not survived
survived

Figure 10: Example of the plotd func-
tion.
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We can plot the glm model inside earth like this (not shown):

data(etitanic)

fit <- earth(survived~., data=etitanic, glm=list(family=binomial))

par(mfrow=c(2,2))

plot(fit$glm.list[[1]])

8.4 Cross-validated models and plot.earth

Earth builds cross-validated models with the nfold argument (Chapter 10 “Cross-
Validation”). The Model Selection plot will show cross-validation statistics, but only
if keepxy=TRUE was also used when building the model. (The cross-validation statis-
tics are ignored in the other plots generated by plot.earth.) Here is an example
(Figure 11):

fit <- earth(survived ~ ., data = etitanic, degree=2, nfold=5, keepxy=T)

plot(fit, which=1, col.rsq=0) # which=1 for Model Selection plot only

In Figure 11, as usual the vertical black dotted line shows the optimum number of terms
determined as usual by the peak GCV.

The pale pink lines show the out-of-fold RSq’s for each fold model. The red line is the
mean out-of-fold RSq for each model size.

The vertical red dotted line is at the maximum of the red line, i.e., the vertical line
shows the optimum number of terms determined by cross-validation. This is CV-with-
averaging ; another approach (not supported by plot.earth) is CV-with-voting which
uses the modal number-of-terms, i.e., the number-of-terms that is most often selected
at a fold.
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Figure 11: A cross-validated
earth model
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Figure 12: The same model, cross-validated three times. Note the random variation in
the cross-validation RSq’s as earth partitions the data into folds differently for each
run.

Ideally the number of terms selected using GRSq would always match the number
of terms determined by cross-validation, and the two vertical lines coincide (although
plot.earth slightly jitters the lines very slightly to prevent overplotting). In reality,
the vertical lines are usually close but not identical. In the following example, note
how the graph varies as the cross-validation folds vary in each invocation of earth

(Figure 12):

plot1 <- function()

{

fit <- earth(survived~., data = etitanic, degree=2,

nfold=5, keepxy=TRUE)

plot(fit, which=1, ylim=c(0, .5), col.rsq=0)

}

plot1()

plot1()

plot1()

The above code keeps the vertical axis range constant across all three graphs with
ylim=c(0, .5), and reduces clutter with col.rsq=0.

We mention that in Figures 11 and 12 the cross-validation results are consistent with
the results obtained in the standard way using the GCV. The solid black and red lines
are very close. The vertical dotted red line dances around, but mostly because of the
flatness of the curve after about 6 terms. If we used the one-standard-error rule (not
yet supported by earth), the position of the vertical line would be much more stable.
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9 Estimating variable importance

This chapter discusses how to estimate the relative importance of variables in an earth

model. It was written in response to email about evimp.

9.1 Introduction to variable importance

What exactly is variable importance? A working definition is that a variable’s im-
portance is a measure of the effect that observed changes to the variable have on the
observed response (or better, the expectation of that effect over the population). It is
this measure of importance that evimp tries to estimate.

You might say that we can measure a variable’s importance by changing the variable’s
value and measuring how the response changes. Indeed, the fact that an earth model is
represented by an equation seems to imply that this is the way to go. However, except
in special situations, there are problems with this way of thinking because:

(i) It assumes we can change the variable, which is usually not the case. For example,
in the trees data, we cannot simply generate a new tree of arbitrary height.

(ii) It assumes that changes to a variable can occur in isolation. In practice, a variable
is usually tied to other variables, and a change to the variable would never occur in the
population without simultaneous changes to other variables. For example, in the trees

data, a change in height is associated with a change in the girth.

(iii) It implies a causal relationship, which often is not the case. Changing the amount
of mud does not tell us anything about the amount of rain.

Thus is is better to think in terms of the effect of the variable on the response averaged
over the entire population. That is to say, the expected effect. In practice, we have
to figure out how to use the model and the sample as a surrogate for the population,
which isn’t trivial.

Note that variable importance in the equation that MARS derives from the data is not
really what we have in mind here. For example, if two variables are highly correlated,
MARS will usually drop one when building the model. Both variables have the same
importance in the data but not in the MARS equation (one variable does not even
appear in the equation). Section 9.5 has a few words on how to use plotmo to estimate
variable importance in the MARS equation.

9.2 Estimating variable importance

Estimating predictor importance is in general a tricky and even controversial problem.
There is usually no completely reliable way to estimate the importance of the variables
in a standard MARS model. The evimp function just makes an educated (and in
practice useful) estimate as described below.
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9.3 Three criteria for estimating variable importance

The evimp functions uses three criteria for estimating variable importance in a MARS
model.

(i) The nsubsets criterion counts the number of model subsets that include the variable.
Variables that are included in more subsets are considered more important.

By ”subsets” we mean the subsets of terms generated by the pruning pass. There is one
subset for each model size (from 1 to the size of the selected model) and the subset is
the best set of terms for that model size. (These subsets are specified in $prune.terms

in earth’s return value.) Only subsets that are smaller than or equal in size to the final
model are used for estimating variable importance.

(ii) The rss criterion first calculates the decrease in the RSS for each subset relative
to the previous subset. (For multiple response models, RSS’s are calculated over all
responses.) Then for each variable it sums these decreases over all subsets that include
the variable. Finally, for ease of interpretation the summed decreases are scaled so the
largest summed decrease is 100. Variables which cause larger net decreases in the RSS
are considered more important.

(iii) The gcv criterion is the same, but uses the GCV instead of the RSS. Adding a
variable can increase the GCV, i.e., adding the variable has a deleterious effect on the
model. When this happens, the variable could even have a negative total importance,
and thus appear less important than unused variables.

Note that using RSq’s and GRSq’s instead of RSS’s and GCV’s would give identical
estimates of variable importance, because evimp calculates relative importances.

9.4 Example

This code

fit <- earth(O3 ~ ., data=ozone1, degree=2)

evimp(fit, trim=FALSE) # trim=FALSE to show unused variables

prints the following:

nsubsets gcv rss

temp 10 100.0 100.0

humidity 8 35.6 38.4

ibt 8 35.6 38.4

doy 7 33.6 36.0

dpg 5 25.9 28.0

ibh 4 30.9> 32.3>

vis 4 20.8 22.9

wind 1 8.7 9.9

vh-unused 0 0.0 0.0

The rows are sorted on nsubsets. We see that temp is considered the most important
variable, followed by humidity, and so on. We see that vh is unused in the final model,
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and thus is given an unused suffix. (Unused variable are printed here because we passed
trim=FALSE to evimp. Normally they are omitted from the print.)

The nsubsets column is the number of subsets that included the corresponding variable.
For example, temp appears in 10 subsets and humidity in 8.

The gcv and rss columns are scaled so the largest net decrease is 100.

A “>” is printed after gcv and rss entries that increase instead of decreasing (i.e.,
the ranking disagrees with the nsubsets ranking). We see that ibh is considered less
important than dpg using the nsubsets criterion, but not with the gcv and rss criteria.

9.5 Estimating variable importance in the MARS equation

Running plotmo with ylim=NULL (the default) gives an idea of which predictors in the
MARS equation make the largest changes to the predicted value (but only with all
other predictors at their median values).

Note that there is only a loose relationship between variable importance in the MARS
equation and variable importance in the data (Section 9.1).

9.6 Using drop1 to estimate variable importance

As an alternative to evimp, we can use the drop1 function (assuming we are using
the formula interface to earth). Calling drop1(my.earth.model) will delete each pre-
dictor in turn from the model, rebuild the model from scratch each time, and cal-
culate the GCV each time. We will get warnings that the earth library function
extractAIC.earth is returning GCVs instead of AICs — but that is what we want so
we can ignore the warnings. (Turn off just those warnings by passing warn=FALSE to
drop1.) The column labeled AIC in the printed response from drop1 will actually be a
column of GCVs not AICs. The Df column isn’t much use in this context.

Remember that this technique only tells us how important a variable is with the other
variables already in the model. It does not tell us the effect of a variable in isolation.

We will get lots of output from drop1 if we built the original earth model with trace>0.
We can set trace=0 by updating the model before calling drop1. Do it like this:
my.model <- update(my.model, trace=0).

9.7 Estimating variable importance by building many models

The variance of the variable importances estimated from an earth model can be high
(meaning that the estimates of variable importance in a model built with a different
realization of the data would be different).

This variance can be partially averaged out by building a bagged earth model and
take the mean of the variable importances in the many earth models that make up the
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bagged model. You can do this easily using the functions bagEarth and varImp in Max
Kuhn’s caret package [14].

Measuring variable importance using Random Forests is another way to go, indepen-
dently of earth. See the functions randomForest and importance in the randomForest
package.

TODO Enhance evimp to use cross-validation statistics when available.

9.8 Remarks on evimp

The evimp function is useful in practice but the following issues can make it misleading.

Collinear (or otherwise related) variables can mask each other’s importance, just as
in linear models. This means that if two predictors are closely related, the forward
pass will somewhat arbitrarily choose one over the other. The chosen predictor will
incorrectly appear more important.

For interaction terms, each variable gets credit for the entire term — thus interaction
terms are counted more than once and get a total higher weighting than additive terms
(questionably). Each variable gets equal credit in interaction terms even though one
variable in that term may be far more important than the other.

MARS models can sometimes have a high variance — if the data change a little, the set
of basis terms created by the forward pass can change a lot. So estimates of predictor
importance can be unreliable because they can vary with different training data.

For factor predictors, importances are estimated on a per-level basis (because earth

splits factors into indicator columns, essentially treating each level as a separate vari-
able). The evimp function should have an option to aggregate the importances over all
levels, but that has not yet been implemented.
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10 Cross-validating earth models

Use cross-validation to get an estimate of R-Squared on independent data.
Example (note the nfold parameter):

> fit <- earth(survived ~ ., data=etitanic, degree=2, nfold=10)

> summary(fit)

Call: earth(formula=survived~., data=etitanic, nfold=10, degree=2)

... usual stuff not shown ...

GCV 0.14 RSS 140 GRSq 0.422 RSq 0.444 cv.rsq 0.42

Note: the cross-validation sd's below are standard deviations across folds

Cross validation: nterms 8.50 sd 0.53 nvars 5.40 sd 0.52

cv.rsq sd ClassRate sd MaxErr sd

0.42 0.082 0.80 0.028 -1.3 1.1

Cross-validation is done if nfold is greater than 1 (typically 5 or 10). Earth first builds
a standard model with all the data as usual. This means that the standard fields in
earth’s return value appear as usual, and will be displayed as usual by summary.earth.
Earth then builds nfold cross-validated models. For each fold it builds an earth model
with the in-fold data (typically nine tenths of the complete data) and using this model
measures the R-Squared from predictions made on the out-of-fold data (typically one
tenth of the complete data). The final mean cv.rsq printed by summary.earth is the
mean of these out-of-fold R-Squared’s.

The cross-validation results go into extra fields in earth’s return value. All of these
have a cv prefix — see the Value section of the earth help page for details. For
reproducibility, call set.seed before calling earth with nfold.

10.1 What is the best value for nfold?

The question of choosing the number of cross-validation folds remains in general an
open research question. We can only suggest that you try 5- or 10-fold cross-validation,
unless you have a small data set.

With a small data set some experimentation may be needed to get results without too
much variance. A smaller nfold like 2 may be appropriate, otherwise the out-of-fold
test sets are so small that variance becomes too large. (This assumes that the model
is stable enough to be built on a small training set, Section 11.3.) We can average out
the variance with ncross=10 (say) but even that is unstable if the out-of-fold sets are
too small.
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10.2 Two ways of collecting R-Squared

Earth uses two ways of collecting the R-Squareds generated during cross-validation
(Figure 13). The names used for these, cv.rsq and oof.rsq, are somewhat arbitrary,
but used consistently in earth’s code and documentation.

(i) The cv.rsq is primarily for model assessment, i.e., estimating generalization abil-
ity. The cv.rsq is printed by summary.earth, but by default not plotted by
plot.earth.

A cv.rsq is first calculated for each fold. A folds’s cv.rsq is calculated from
predictions made on the out-of-fold observations using the model built from the
in-fold data. The model is selected as usual using the GCV of the training (in-
fold) data. The cv.rsq printed by summary.earth is the mean of these per-fold
cv.rsq’s.

(ii) The oof.rsq’s are primarily for model selection, i.e., for selecting the best number
of terms. They aren’t printed by summary.earth, but by default are plotted by
plot.earth (Figure 14 on page 39).

The oof.rsq is calculated for every model size in each fold. (The model size is
the number of terms in the model.) For each fold, it is calculated from predictions
made on the out-of-fold observations using a model built with the in-fold data,
after the model is pruned to the desired size. (At each fold the oof.rsq of the
model with the highest GCV on the training data is that fold’s cv.rsq.)

Note 1: Earth does not actually use cross-validation for automatic model selection
(unlike, say, rpart). Earth’s backward pass with GCVs is always used for that (in
the current implementation at least; there is not yet a pmethod="cv" option). You
can however use plot.earth to see the number of terms that would be estimated
by cross-validation.

Note 2: The oof.rsq’s are calculated only when keepxy=TRUE, because calculating
them is slow — earth has to call update.earth and predict for every model size
in every fold.
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Figure 13: Five-fold cross-
validation of an earth model.

The pink lines are the oof.rsq’s
for each fold. The thick red line is
the mean of the pink lines.

The black dots show the cv.rsq’s
for each fold. The cv.rsq printed
by summary.earth is the mean of
the vertical position of these dots.
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10.3 Cross-validation statistics returned by earth

The previous section described the R-Squareds collected during cross-validation. This
section describes various additional cross-validation statistics.

Each of these is measured on the test (out-of-fold) set for each fold, and summarized by
averaging across all folds (except that MaxErr is “summarized”by taking the worst error
across all folds). Use summary.earth to see the summary statistics and their standard
deviation across folds.1 See the Value section of the earth page for more details of
these statistics.

The statistics are:

� cv.rsq See Section 10.2 Part (i).

� oof.rsq See Section 10.2 Part (ii).

� MaxErr Signed max absolute difference between the predicted and observed re-
sponse. This is the maximum of the absolute differences, multiplied by -1 if the
sign of the difference is negative. The “summary” MaxErr is the worst MaxErr

across folds.

� ClassRate (discrete responses only) Fraction of out-of-fold observations correctly
classified.

If we cross-validate a binomial or poisson model (specified using earth’s glm argument),
earth returns the following additional statistics:

� MeanDev Deviation divided by the number of observations.

� CalibInt, CalibSlope Calibration intercept and slope (from regressing the ob-
served response on the predicted response).

� AUC (Binomial models only) Area under the ROC curve.

� cor (Poisson models only) Correlation between the predicted and observed re-
sponse.

For multiple response models, at each fold earth calculates these statistics for each
response independently, and combines them by taking their mean, or weighted mean if
the wp argument is used. Taking the mean is a rather dubious way of combining results
from what are essentially quite different models, but can nevertheless be useful.

Explanations of the above GLM statistics can be found in the following (and many
other) references: Pearce and Ferrier [19], Fawcett [6], and Harrell [10]. See the source
code in earth.cv.lib.R for details of how the statistics are calculated, based on code
kindly made available by Jane Elith and John Leathwick.

1We emphasize that summary.earth prints the deviation across folds, not the unknown deviation
across samples. See Section 11.4 “Variance of cross-validation estimates”. It is easy to confuse the two.
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10.4 Tracing cross-validation

With trace=.5 or higher, earth prints progress information as cross-validation pro-
ceeds. For example

CV fold 3: cv.rsq 0.622 n.oof 86 12% n.fold.nz 384 41% n.oof.nz 43 39%

shows that in cross-validation fold 3, the cv.rsq for the fold model was 0.622, measured
on the 86 observations in the out-of-fold set.

The print also shows the number and percentage of non-zero values in the observed
response in the in-fold and out-of-fold sets. This is useful if we have a binary or factor
response and want to check that we have enough examples of each factor level in each
fold. With the stratify argument (which is enabled by default), earth attempts to
keep the numbers of occurrences of any given level in the response constant across folds.

10.5 Plotting cross-validation results

If you want plot.earth to show cross-validation statistics, use keepxy=TRUE so earth

calculates the oof.rsq for every model size in every fold. Example (Figure 14, further
discussion in Section 8.4):

fit <- earth(survived ~ ., data=etitanic, degree=2,

nfold=5, keepxy=TRUE, trace=.5)

plot(fit, which=1) # which=1 selects just the Model Selection plot

In the figure, the pink lines for some of the fold models are truncated at the right. This
is because the maximum number of terms for those models happens to be less than the
16 terms in the full model.
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Figure 14: Five-fold cross-
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three cross-validation folds.

For the curious, plot.earth.models can be used to compare the models built at each
fold. Example (Figure 15):

fit <- earth(survived ~ ., data=etitanic, degree=2,

nfold=3, keepxy=TRUE)

plot.earth.models(fit$cv.list, which=1, ylim=c(0, .5))

10.6 The ncross argument

If we run earth twice with the same nfold argument we will get different cross-
validation results, because earth randomly splits the data into folds differently each
time. To average out this variation for more stable results, use the ncross argument to
repeat the whole process of taking nfold folds multiple times. Example (Figure 16):

fit <- earth(survived ~ ., data=etitanic, degree=2,

ncross=3, nfold=5, keepxy=T, trace=.5)

plot(fit, which=1, col.rsq=0)

TODO What are the statistical properties of ncross?
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Figure 16: Cross-validating with
ncross=3, nfold=5.
There are 15 folds in all.
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10.7 An example: training versus generalization error

Figure 17 is reproduced from Figure 7.1 in Hastie et al. [12]. The figure was created
from models built with 100 training sets generated synthetically.

Figure 18 is an example along the same lines. Instead of using new data, we use cross-
validation. (Also, we use earth and the mtcars data.) The figure was created with the
following code:

fit <- earth(mpg~., data=mtcars, ncross=10, nfold=2, keepxy=TRUE)

plot(fit, which=1,

col.mean.infold.rsq="blue", col.infold.rsq="lightblue",

col.grsq=0, col.rsq=0, col.vline=0, col.oof.vline=0)

Most of the pale lines are truncated because the maximum number of terms generated
by earth for those fold models is less than the 9 terms in the full model. We mention
also that many of the arguments in the call to plot.earth above simply remove display

Figure 17: Reproduced from
Figure 7.1 of Hastie et al. [12]

For models built from a
100 training sets, the pale
blue lines show the prediction
error measured on the training
set. The pink lines show the
error measured on a very large
independent test set.

The thick lines show the
expected error for the corre-
sponding set of pale lines.
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Figure 18: Cross-validation of
an earth model on the mtcars

data.

The Model Complexity along
the horizontal axis in the figure
above becomes the Number of
Terms in this figure.

Note the negative R-Squareds
in the pink curves at the far
left of the graph (FAQ 12.9).
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elements. The defaults for these arguments are inappropriate for this somewhat unusual
plot (we are not usually interested in the in-fold R-Squareds).

Figure 18 is “upside down” with respect to Figure 17 because it plots model perfor-
mance, not lack-of-performance. But we still see the same basic structure: the perfor-
mance measured on the training data increases as we increase model complexity; on
independent data the performance peaks and then decreases.

Much of the variation of the pink curves is due to the relatively small size of the out-
of-fold data sets. If we measured R-Squared on a very large test set (instead of the
out-of-fold data) we would still see variation, but much less. But note how variation
of the pink lines increases with the number of terms. The more flexible the model, the
more it overfits to randomness in the training set, and thus more randomness enters its
estimation of R-Squared on independent data.

The mtcars data set is small (32 observations). Only two folds were used above (but
repeated 10 times with ncross) to keep the out-of-fold sets large enough for somewhat
stable results. With this small nfold, cross-validation bias may be an issue, because of
the small size of the in-fold sets relative to the full data set. So the R-Squared on the
out-of-fold data will tend to be smaller than it would be across full-sized independent
samples. See Section 11.3 “Bias of cross-validation estimates”.

The maximum mean out-of-fold RSq is at 3 terms, which in this example coincides with
the number of terms selected by the GCV of the full model (set col.grsq to see this,
not shown). A larger number of terms would have been selected with degree equal to
2, which is actually more appropriate for the mtcars data.
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11 Understanding cross-validation

This chapter tries to clarify some aspects of cross-validation. It was written in response
to email about cross-validating earth models, and your feedback would be appreciated.
The chapter is mostly a general discussion, not limited to earth models. The exposition
takes a frequentist approach, using arguments based on hypothetical situations where
we have access to extra data.

We assume that you already know the basics of cross-validation (i.e., partition the data
into nfold subsets, repeatedly build a model on all but one of those subsets, measure
performance on the left-out data).

For a description of cross-validation, see for example Hastie et al. [12], Section 7.10,
Duda et al. [4] Section 9.6, or even Wikipedia
http://en.wikipedia.org/wiki/Cross-validation_(statistics).
An in-depth reference is Arlot and Celisse [1].

11.1 Data sets for measuring performance

In the next section we will discuss what it is that cross-validation actually measures. But
first in this section we review some aspects of measuring a model’s performance, and the
data sets needed to do that. Understanding the role of these data sets is important for
applying cross-validation correctly (Section 11.5 “Common cross-validation mistakes”).

Typically we want to measure our model’s generalization performance, and so want
to measure prediction error on new data, i.e., not on the training data. (If that isn’t
immediately obvious, please see FAQ 12.8.) We typically want to measure performance
in two scenarios:

(i) For parameter selection, i.e., to choose certain key model parameters during
the model building process. For example, for earth models we need to select the
best number of terms (so the parameter here is the number of terms). And for
rpart trees we need to choose the optimum tree size. The new data are used as
parameter-selection data, also commonly called model-selection or validation data.

(ii) For model assessment, i.e., to measure the performance of the final model. Here
the new data are used as test data.

We thus require three independent data sets:

(i) the training data,

(ii) the parameter-selection data for (i) above,

(iii) the test data for (ii) above.

The ideal way to meet these requirements is to actually have large amounts of new data
drawn from the same population. Usually we don’t actually have access to such data,
and so must resort to other techniques.

One such technique is the GCV used when building MARS models, which bypasses the
need for model-selection data by using a formula to approximate the RSS that would
be measured on new data.
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Another technique, more universal, is cross-validation. Depending on how it is used,
cross-validation can emulate either the parameter-selection or test data.

Some readers may wonder why we don’t bother with the above data sets for linear
models. When building a linear model, there is no separate model-selection step, so we
don’t need a model-selection set. And with these simple models the difference between
the residual sum-of-squares measured on the training data and on independent test
data is inconsequential, provided certain assumptions are met. So we don’t need a
separate test set. Things change with more flexible models (for example, if we are
doing automatic variable selection for a linear model). The difference between the
residual sum-of-squares on the training data and on independent test data becomes
consequential, and formulas to estimate prediction error get complicated, if they exist
at all.

11.2 What does cross-validation measure?

The mechanics of cross-validation are easy to understand. Understanding what cross-
validation actually estimates involves some subtleties.

Cross-validation estimates “expected” not “conditional” error

Cross-validation does not really estimate the generalization performance of our model,
built on a single set of data (which is usually what we want to know when applying a
modeling technique like earth). Instead, cross-validation estimates the performance of
our model building algorithm on a range of training sets. It approximates the average
performance we would see in a hypothetical scenario where we build many models, each
on a fresh sample of training data of approximately the same size as the original sample,
and measure the performance of each of those models on independent test data (all data
being i.i.d. from the same population).

In other words, cross-validation is better at estimating the expected prediction error
across training sets, not the prediction error conditional on the training data we have
at hand. In Figure 17 on page 41, our model is one pink line but cross-validation
approximates the solid red line. See also Hastie et al. [12] Section 7.12 “Conditional or
Expected Test Error?”

Some details. Cross-validation differs from the hypothetical scenario above because in
cross-validation the training (in-fold) sets share observations and are not as varied as
they would be in the hypothetical scenario. Also, the training set of a fold incorporates
test sets from other folds. This induces a relationship between the residual errors (or
whatever is used to measure performance) across folds, particularly in the presence of
outliers.

Expected value of R-Squared across models

Consider the hypothetical scenario above, and for concreteness let us measure perfor-
mance as R-Squared on the independent test data. If we built many models (with
training sets of constant size) and took the average R-Squared over all the models, we
would eventually close in on a stable average R-Squared value. This average R-Squared
would be the same regardless of the size of the test sets, assuming we repeated the
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experiment enough times (all data being i.i.d. from the same population). In other
words, the expected value of R-Squared across models does not depend on the size of
the test sets — but the variance of the R-Squared’s certainly does, which leads to the
next section.

Variance of R-Squared across models

Once we have an estimate of the generalization performance of the model (such as R-
Squared on independent data), we typically want to know the stability of that estimate,
usually expressed as the variance of the estimate.

Typically we want to know how our estimated R-Squared would be expected to change
if we had a different training set — the sampling variance of R-Squared. This is the
variance we would measure across models in the hypothetical scenario above if the test
sets were extremely large (so all variation is due to the training sets, not the test sets).

On the other hand, if the test sets are small, the variance of R-Squared will include
extra variation due to the small size of the test sets. And this is the scenario emulated
by cross-validation. In cross-validation, it isn’t possible in general to disentangle the
variability due to the in-fold training sets and the variability due to the small out-of-fold
test sets.
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Figure 19: The estimated learning curve
of an earth model.

The dark line is the mean of the
gray lines.

Each gray line shows the GRSq for
one set of subsets of the training data.
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11.3 Bias of cross-validation estimates

Cross-validation tries to establish the quality of a model built on the full sample by
using models built on smaller subsets of the sample (often 4/5 or 9/10 of the sample).
Generally a model built with a subset will be “worse” than a model built with the full
sample. Thus the cross-validation R-Squared1 will tend to be lower than it should be.
That is, the cross-validation R-Squared is conservatively biased.

To see where the model sits on the learning curve (Figure 7.8 in Hastie et al. [12]),
one technique for earth models is plot the GRSq of models built with different sized
subsets of the sample, and average out variation by repeating several times. We make
the assumption that the behavior of the model’s GRSq in the face of a smaller sample
is an adequate indication of that behavior for the full model’s R-Squared (measured
on independent data). Figure 19 gives an example, produced by the following R code.
(You can ignore the code for now and just look at the figure.)

learning.curve <- function(data, func, field="grsq", ncurves=30)

{

# set up the plot (call func on full data to establish ylim)

body <- body(func) # needed only for the plot title

plot(0, xlim=c(0,1), ylim=c(0, 1.2 * func(data)[[field]]), type="n",

xlab="fraction of data", ylab=field, cex.main=1.1, xpd=NA,

main=paste("estimated learning curve\n",

substr(paste(deparse(substitute(body)), collapse=""), 1, 40)))

grid(col="linen", lty=1)

all.results <- rep(0, 10)

for(curve in 1:ncurves) { # for each gray line

sample <- sample.int(nrow(data))

results <- double(10)

for(fold in 1:10) {

sub.data <- data[sample[1:(fold * nrow(data) / 10)],]

results[fold] <- func(sub.data)[[field]]

}

lines((1:10)/10, results, col="gray") # one gray line

all.results <- all.results + results

}

lines((1:10)/10, all.results / ncurves, lwd=2) # the mean line

}

learning.curve(etitanic,

function(data) earth(pclass~., data, degree=2))

From the figure, the bias is small enough with 10 folds (the curve is flat enough with
90% of the data).

Remember that this is just an estimated learning curve because it is created from a
single training sample. Ideally we would like to estimate the learning curve using many
fresh training sets. If we did that, we would see variation in the curves on the far right
of graph which we do not see in Figure 19. So even with nfold=5 the bias is acceptably
small, relative to the (unknown) variance.

1The Cross-validation R-Squared here is the mean of the R-Squareds of each fold, each measured
on the out-of-fold data. It is the cv.rsq printed by summary.earth.
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11.4 Variance of cross-validation estimates

Cross-validation bias seems to be much discussed, but usually a more serious problem
with cross-validation is the variance of cross-validation estimates across samples, and
our inability to estimate this variance. How much would we expect the cross-validation
R-Squared (averaged across folds) to change if we used a different training sample?
(The new sample would be of the same size and drawn from the same population as the
original, and, to make things more confusing, perhaps even generate the same model,
but usually not.) It is not much comfort to know that the expected value of a statistic
is correct up to small bias, if the single statistic we have at hand could be far from that
expected value.

Quantifying the variance of cross-validation statistics in general is an ongoing research
problem (see Bengio and Grandvalet [2] for a clear explanation of some of the difficulties
involved). Unfortunately it is not really possible to estimate the variance of the cross-
validation R-Squared of earth models.

An indication is given by the variance of the CV R-Squared across folds (printed by
summary.earth as a standard deviation). However, this variance includes extra vari-
ability because we are looking at the R-Squared per fold instead of the mean R-Squared
across folds. On the other hand, it incorporates less variability due to training sets than
if we actually used fresh training data at each fold. Also it is unstable because of the
small size of the out-of-fold test sets (the variance of the variance is high).

For earth models, another indication is the variance of GRSq in the estimated learning
curve (Figure 19). Assuming GRSq is an acceptable surrogate for R-Squared on inde-
pendent data, the variance across the gray curves gives an approximate lower bound
of R-Squared variance across models for variously sized training sets. We say “lower
bound” because the estimated learning curve is created from only a single training set
(if we used fresh data for each model the variance at the right of the curve would not
taper to zero).

11.5 Common cross-validation mistakes

In this section we list some mistakes that are easy to make when cross-validating. All
of these make the model’s performance seem better than it is. Given how easy it is to
make these mistakes, a certain amount of skepticism is warranted when papers present
final model assessment statistics based on cross-validation.

The central point is that any data that have been used to select model parameters cannot
be used as independent test data. This rule can be violated in subtle ways, as discussed
below.

Independence of observations

The out-of-fold data must play the role of new data. It is thus important that it isn’t
“contaminated” by the in-fold training data. This implies that the observations must
be independent. Lack of independence means that the in-fold data used for training are
partially included in some sense in the out-of-fold data used for testing. Thus cross-
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validation will tend to give an optimistic R-Squared and select an overfitted model. At
a minimum, we should avoid “twinned” observations.

Pre-tuning

Cross-validation must be applied to the entire model building process. Any parameter
that is tuned to the training data must not be tuned before cross-validation begins.
Instead, it must be included in the cross-validation process. (This does not apply to
decisions made independently of the training data.) For example, it is a mistake to use
the training data to choose which subset of the variables to include in the model (before
calling earth), then cross-validate the earth model (with nfold) using only that subset
of variables.1 The convenience of earth’s nfold argument makes it perhaps a little too
easy to make that kind of mistake.

A word of explanation for the above paragraph. Let’s say we do in fact optimize a
parameter to the full data set before cross-validation begins. By optimizing to the full
data, we are also to some extent optimizing to the out-of-fold data used during cross-
validation (because the out-of-fold data are, after all, drawn from the full data). The
out-of-fold data are thus contaminated and can no longer legitimately play the role of
independent test data, and the R-Squared’s measured on the out-of-fold data will tend
to be better than they should be.

There are however a few contexts where it is acceptable to select variables before cross-
validation. See the comments in Hastie et al.. [12] Section 7.10.2.

Conflating the validation and test data

If the cross-validation R-Squared is used to select a model,2 then the test R-Squared
quoted for the selected model must be recalculated for that model using independent
data. The cross-validation R-Squared used to select a model cannot be quoted as the
R-Squared of that model — that would be conflating the validation and test data.

1The “parameter” being tuned here is which predictors are good.
2However the earth package does not provide facilities to do that (Section 10.2 Part 2).
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12 FAQ

12.1 What are your plans for earth?

We would like to add support of case weights (to allow boosting), but that won’t happen
anytime soon.

We would also like to add the capability to pass earth an existing model (a linear,
MARS, or basically any model) and earth would build a MARS model that fills in the
remaining residuals.

12.2 How do I cite the earth package?

Thank you for asking that question :)

For earth the following BibTex entry seems to do the trick. The extra curly braces
in the author field are necessary to get BibTex to order the entry correctly on the last
name of the first author.

@Manual{earthpackage,

title = {earth: Multivariate Adaptive Regression Spline Models},

author = {Stephen {Milborrow. Derived from mda:mars by

Trevor Hastie and Rob Tibshirani.}},

year = {2011},

note = {R package \url{http://CRAN.R-project.org/package=earth}}

}

From within R you can use (you will have to massage the results to get BibTex to order
the entry correctly):

> library(earth)

> citation("earth")

12.3 How can I establish variable importance?

Use the evimp function. See its help page and Chapter 9 for more details.

The summary.earth function lists the predictors in order of estimated importance using
the nsubsets criterion of evimp.

12.4 Which predictors are used in the model?

The following function will give a list of predictors in the model:

get.used.pred.names <- function(obj) # obj is an earth object

{

any1 <- function(x) any(x != 0) # like any but no warning if x is double

names(which(apply(obj$dirs[obj$selected.terms, , drop=FALSE], 2, any1)))

}
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12.5 Which predictors were added to the model first?

You can see the forward pass adding terms with trace=2 or higher. But remember,
pruning will usually remove some of the terms. You can also use

summary(my.model, decomp="none")

which will list the terms remaining after pruning, in the order they were added by the
forward pass. But it should be remarked that the order in which terms or predictors
are added is not necessarily indicative of their importance.

12.6 How can I train on one set of data and test on another?

The example below demonstrates one way to train on 80% of the data and test on the
remaining 20%.

train.subset <- sample(1:nrow(trees), .8 * nrow(trees))

test.subset <- (1:nrow(trees))[-train.subset]

fit <- earth(Volume ~ ., data = trees[train.subset, ])

yhat <- predict(fit, newdata = trees[test.subset, ])

y <- trees$Volume[test.subset]

print(1 - sum((y - yhat)^2) / sum((y - mean(y))^2)) # print R-Squared

In practice a data set larger than the one in the example should be used for splitting.
The model variance is too high with this small set — run the example a few times to
see how the model changes as sample splits the data set differently on each run. Also,
remember that the test set should not be used for parameter tuning because you will
be optimizing for the test set — instead use GCVs, separate parameter-selection sets,
or techniques such as cross-validation with earth’s nfold parameter. (Cross-validation
repeats the process in the above code five or ten times, using a different subset each
time, Sections 10 and 11.)

12.7 What is a GCV, in simple terms?

GCVs are important for MARS because the pruning pass uses GCVs to evaluate model
subsets.

In general terms, when testing a model (not necessarily a MARS model) we want to
test generalization performance, and so want to measure error on independent data,
i.e., not on the training data. Often a decent set of independent data is unavailable and
so we resort to cross-validation or leave-one-out methods. But that introduces other
complications and can be painfully slow. As an alternative, for certain forms of model
we can use a formula to approximate the error that would be determined by leave-one-
out validation — that approximation is the GCV. The formula adjusts (i.e., increases)
the training RSS to take into account the flexibility of the model. Summarizing, the
GCV approximates the RSS (divided by the number of cases) that would be measured
on independent data. Even when the approximation is not that good, it is usually good
enough for comparing models during pruning.
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GCVs were introduced by Craven and Wahba [3], and extended by Friedman and Sil-
verman [7,9]. See Hastie et al. [12], Section 7.10 “Cross-Validation”, and the Friedman
MARS paper [7]. GCV stands for “Generalized Cross Validation”, a perhaps misleading
term. because no cross-validation is actually performed.

The GRSq measure used in the earth package standardizes the raw GCV, in the same
way that R-Squared standardizes the RSS (FAQ 12.10).

12.8 If GCVs are so important, why don’t linear models use
them?

First a few words about overfitting. An overfit model fits the training data well but
will not give good predictions on new data. The idea is that the training data capture
the underlying structure in the system being modeled, plus noise. We want to model
the underlying structure and ignore the noise. An overfit model models the specific
realization of noise in the training data and is thus too specific to that training data.

The more flexible a model, the more its propensity to overfit the training data. Linear
models are constrained, with usually only a few parameters (viz. the intercept and
regression coefficients) and don’t have the tendency to overfit like more flexible models
such as MARS. This means that for linear models, the RSS on the data used to build
the model is usually an adequate measure of generalization ability, and we don’t need
GCVs.

This is no longer true if we do automatic variable selection on linear models, because
the process of selecting variables increases the flexibility of the model. Hence the AIC
— as used in, say, drop1. The GCV, AIC, and friends are means to the same end.
Depending on what information is available during model building. we use one of these
statistics to estimate model generalization performance for the purpose of selecting a
model.

12.9 Can R-Squared be negative?

Yes, R-Squared (rsq) can be negative if

(i) the test set is not the training set (for example, in cross-validation), and,

(ii) we use the general definition of R-Squared

rsq = 1 - rss / tss,

where rss = sum((y - yhat)^2) is the residual sum-of-squares and tss = sum((y

- mean(y)^2) is the total sum-of-squares. This is the definition used in the earth
code.

The simplest example is an intercept-only model. This will give a negative rsq on test
data, unless the training data and test data happen to have the same mean. When
we calculate rsq on the test data, the intercept-only model predicts the mean of the
training data. Thus on the test data the residuals will be greater on the whole than if
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we predicted the mean of the test data.1 That is another way of saying that on the test
data the residual sum-of-squares will be greater than the total sum-of-squares, and
rsq = 1 - rss / tss will be negative. Examples can be seen in the left of Figure 18.

There is actually more than way of defining rsq. You may be more familiar with the
definition

rsq = regression.sum.of.squares / tss,

which is indeed always non-negative. With rsq measured on the training data, the
two definitions are equivalent for linear regression with an intercept and for earth

models. The Wikipedia page on RSq has a clear explanation (accessed May 2011)
http://en.wikipedia.org/wiki/R-squared.

The “squared” in R-Squared is misleading. Perhaps we should use the alternative term
“coefficient of determination”, but “R-Squared” is common.

12.10 Can GRSq be negative?

The statistic GRSq is earth’s estimate of the generalization performance of the model.
It is defined, analogously to R-Squared (FAQ 12.9), as

GRSq = 1 - GCV / GCV.null,

where GCV.null is the GCV of an intercept-only model.

A negative GRSq indicates a severely over parameterized model — a model that would
not generalize well even though it may be a good fit to the training data. During earth

model building, GRSq can become negative. However, after pruning the model will end
up with a non-negative GRSq.

Adding a term to the model will always increase the R-Squared on the training data
(up to the limits of numerical accuracy). But adding that term could reduce the pre-
dictive power of the model on new data, and would thus decrease GRSq. (We see that

1Recall that
∑

i(xi − µ)2 is minimimized when µ is the mean of the xi’s.
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happening in almost any earth Model Selection graph.) Decrease GRSq often enough
and it will eventually become negative. Watch the GRSq take a nose dive in this exam-
ple (Figure 20):

fit <- earth(mpg~., data=mtcars, trace=4)

plot(fit, which=1, col.npreds=0,

col.sel.grid="linen", legend.pos="bottomleft")

In severe cases, GRSq might even be set to -Inf, which brings us to the following FAQ.

12.11 Why am I seeing a GRSq of -Inf (with trace enabled)?

During the forward pass, if “too many” terms are generated relative to the number of
observations, earth will set the model’s GCV to Inf and consequentially the GRSq to
-Inf. However, after pruning the final model’s GCV and GRSq will be non-negative
(so you will only see a negative GRSq if tracing is enabled).

Infinite GCVs were introduced in earth Version 3.1-2, to replace the warning issued in
previous versions (which is no longer needed):

effective number of GCV parameters >= number of cases.

Some details. Earth sets the GCV to Inf during model building if the effective number
of parameters for a term is greater than the number of observations. The GCV no
longer approximates the leave-one-out RSS. To see this, consider the formula for the
GCV

GCV = RSS / (nobs * (1 - nparams / nobs)^2)).

From the formula we see that the GCV increases and then decreases if nparams /

nobs approaches and then exceeds 1 as terms are added to the model. To prevent this
undesirable behavior, if nparams / nobs >= 1 then earth does not use the formula
but instead directly sets the GCV to Inf.

12.12 How is the default number of terms nk calculated?

If we don’t explicitly specify nk, the default is used:

nk = min(200, max(20, 2 * ncol(x))) + 1

This doubles the number of predictors, forces that into the range of 20 to 200, and
finally adds 1 for the intercept.

The numbers 20 and 200 are fairly arbitrary. The lower limit of 20 seems reasonable
for situations where we have just a few predictors. The upper limit of 200 prevents
excessive memory use in the forward pass. Typically we will reach one of termination
conditions long before we reach 200 terms. (The termination conditions are described
in Section 2.4.1 “Termination conditions for the forward pass”.)
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12.13 Why do I get fewer terms than nk, even
with pmethod="none"?

There are several conditions that can terminate the forward pass, and reaching nk is
just one of them. See Section 2.4.1 “Termination conditions for the forward pass”.

Setting earth’s argument thresh to zero is treated as a special case: thresh=0 disables
all termination conditions except nk and conditions involving numerical limits. By
disabling thresh we are allowing earth to continue processing even if numerical issues
can cause instability. This opens up the possibility of nonsensical RSq’s and GRSq’s.

12.14 Why do I get fewer terms than nprune?

The pruning pass selects a model with the lowest GCV that has nprune or fewer terms.
Thus the nprune argument specifies the maximum number of permissible terms in the
final pruned model.

You can work around this because you will get exactly nprune if you specify penalty=-1.
This special value of penalty causes earth to set the GCV to RSS/nrow(x). Since the
RSS on the training set always decreases with more terms, the pruning pass will choose
the maximum allowable number of terms. An example:

earth(Volume ~ ., data=trees, trace=3, nprune=3, penalty=-1)

12.15 Is it best to hold down model size with nk or nprune?

If you want the best possible small model, build a big set of basis functions in the
forward pass (by specifying a big nk) and prune this set back (by specifying a small
nprune). This is better than directly building a small model by specifying a small nk.
You will get a better set of terms because the pruning pass can look at all the terms
whereas the forward pass can only see one term ahead. However, it is faster building a
small model by specifying a small nk.

12.16 What about bagging MARS?

The caret package [14] provides functions for bagging earth (and for parameter selec-
tion). Our personal experience has been that bagging MARS does not give models with
better predictive ability (probably because the MARS algorithm is fairly stable in the
presence of perturbations of the data, and bagging works best for “unstable” models).
Your mileage may vary (we would be interested if it does). We tested just a couple of
data sets, but did try a few different approaches, including using a modified version of
earth that randomized the set of variables available at each forward step to increase
variability (similar to random forests).

54



12.17 Why do I get Warning: glm.fit: fitted probabilities

numerically 0 or 1 occurred?

You will only see this warning when using earth’s glm argument. You can safely ignore
the warning in an earth context. The GLM coefficients for the model terms may be
very large, but it doesn’t matter — the predictive ability of the model is unimpaired.

The warning is issued when glm.fit generates a model that perfectly separates the
classes in the training data. A perfect fit is usually considered a good thing, not
something that should cause a warning. However, the warning is issued because certain
model statistics (such as the t-values) generated by the mathematics inside glm.fit will
be unreliable for subsequent inference on the model. That doesn’t matter in an earth

context, because earth doesn’t use those statistics. (And, anyway, the t-values are
meaningless even when the warning is not issued, because of the amount of processing
done by earth to generate the terms before it calls glm.fit.)

The warning message is more likely to occur during cross-validation (using earth’s
nfold parameter). With cross-validation we are looking at more, and smaller, data
sets, so the chance of a perfectly separable set is more likely. If the warning is issued,
the coefficients for the terms of the fold model may be very large, but they aren’t used
in the final model anyway. The cross-validation statistics calculated by earth (such as
cv.rsq) remain valid.

12.18 Why do I get Error: XHAUST returned error code -999?

The short answer: you should never see the above message (fixed in earth version
2.6-0). If you do, please let us know.

One work-around is to change pmethod from "exhaustive" to "backward".

You can also try the following. These instructions work on the assumption that the
default value of Exhaustive.tol is too big for your data set. First please read the
description of the Exhaustive.tol argument in the Arguments section of the earth

help page. Then run earth with trace=1, so earth prints the reciprocal of the condition
number of the earth basis matrix bx. (The condition number here is the ratio of largest
to the smallest singular value of bx.) Then set Exhaustive.tol to greater than the
printed value (something like Exhaustive.tol=1e-8), and run earth again. Now earth

will automatically change pmethod from "exhaustive" to "backward" when necessary
to avoid the above error message.

It must be said that it is hard to believe under these conditions that the resulting model
will be much good. The data do not allow a decent predictive model to be built.

Some details. Certain data cause collinearity in the earth basis matrix bx which slips
by the usual checks. This causes the leaps routine to fail. The usual checks are:

(i) while building the basis matrix, the C code does a check to drop collinear terms
(BX_TOL and QR_TOL in the C code)

(ii) after building the basis matrix, the C code drops any remaining collinear terms
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(RegressAndFix in the C code)

(iii) the leaps Fortran routine sing checks for collinearity.

Some data get through all these tests, probably because we are near the numerical
noise floor and numerical rounding is essentially changing the data randomly. When
pmethod="exhaustive", earth performs an SVD of bx, and as a last resort if the
condition number is out-of-range forces pmethod from "exhaustive" to "backward".

12.19 How does summary.earth order terms?

With decomp="none", the terms are ordered as created by the forward pass.

With the default decomp="anova", the terms are ordered in increasing order of inter-
action. In detail:

(i) terms are sorted first on degree of interaction

(ii) then terms with a linpreds linear factor before standard terms

(iii) then on the predictors (in the order of the columns in the input matrix)

(iv) and finally on increasing knot values.

It’s actually earth:::reorder.earth that does the ordering.

12.20 Why is plot.earth not showing the cross-validation data?

Use keepxy=TRUE in the call to earth (as well as nfold). See Section 10.5.

12.21 How do I add a plot to an existing page with plot.earth

or plotmo?

Use do.par = FALSE, otherwise these plotting functions start a new page.

12.22 summary.earth lists predictors with weird names that
aren’t in x. What gives?

You probably have factors in your x matrix, and earth is applying contrasts. See
Chapter 4 “Factors”.

12.23 What happened to get.nterms.per.degree,
get.nused.preds.per.subset, and reorder.earth?

From release 1.3.0, some earth functions are no longer public, to help simplify the user
interface. The functions are still available (and stable) if you need them — use for
example earth:::reorder.earth().
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