
Vignette: enaR

S.R. Borrett and M.K. Lau

October 3, 2012

Contents

1 Introduction 2

2 Background 2

3 Data Input: General 2
3.1 Model Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Network Data Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Building a Network Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Balancing for Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Data Input: Reading Common Data File Formats 7
4.1 Reading a SCOR file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Reading in a WAND file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Reading in a ENAM file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Network Visualization 8

6 Single Model Analysis 9
6.1 Structural Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Ascendency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Storage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.5 Utility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.6 Environ Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.7 Control Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.8 Mixed Trophic Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.9 Other Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Multi-Model Analyses (Batch Processing) 21

8 Connecting to Other Useful Packages 27
8.1 sna: Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 iGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Summary and Future 31

1



1 Introduction

This package is a collection of functions to implement Ecological Network Analysis (ENA), which
is a family of algorithms for investigating the structure and function of ecosystems modeled as
networks of thermodynamically conserved energy–matter exchanges. The package brings together
multiple ENA algorithms from several approaches into one common software framework that is
readily available and extensible. The package builds on the network data structure for R developed
by Butts (2008a). In addition to being able to perform several types of ENA with a single package,
users can also make use of network analysis tools built into the network package, the sna (social
network analysis) package (Butts, 2008b), and other components of what is now called statnet
(Handcock et al., 2008).

This vignette illustrates how to use the enaR package to perform ENA. It is not meant to be a
detailed guide to ENA, but we provide some references to the primary literature for those wishing
to learn more about the techniques.

2 Background

Before describing how to use this package, we provide a brief background of ENA. Users may find
this helpful as several software design decisions were predicated on the history and current state of
the field.

The ENA methodology is an application and extension of economic Input–Output Analysis
(Leontief, 1936, 1966) that was first introduced into ecology by Hannon (1973). Two major schools
have developed in ENA. The first is based on Dr. Robert E. Ulanowicz’s work with a strong focus
on trophic dynamics and a use of information theory (Ulanowicz, 1986, 1997, 2004). The second
school has an environment focus and is built on the environ concept introduced by Dr. Bernard
C. Patten (Fath and Patten, 1999; Patten, 1978; Patten et al., 1976). Patten’s approach has been
collectively referred to separately as Network Environ Analysis. At the core the two approaches are
very similar; however, they make some different starting assumptions and follow independent yet
braided development tracks. Recent work has started to bring the two approaches back together
(e.g., Scharler and Fath, 2009). Borrett et al. (2012) provides an entry level overview of the field.

Disparate software packages have been created to support ENA. Ulanowicz first developed and
distributed the DOS based NETWRK4 code, which is still available. Recently some of these algo-
rithms were reimplemented in an Microsoft Excel based WAND package (Allesina and Bondavalli,
2004). Some of these methods have also been encoded in the popular Ecopath with Ecosim soft-
ware that assists with model construction (Christensen and Walters, 2004). Fath and Borrett (2006)
published NEA.m, a MATLAB©function that collected the Patten School’s algorithms together
into one set of code. One objective for this R package is to begin to bring together these different
algorithms into a single accessible and extensible package.

3 Data Input: General

In this section we describe the data necessary for the Ecological Network Analysis and show how
to build the central network data object in R that contains the model data for subsequent analysis.
To start, we assume you have installed the enaR package, and then loaded the library as follows:

> library(enaR)

2



Tools for Social Network Analysis

Version 2.2-0 created on 2010-11-21.

copyright (c) 2005, Carter T. Butts, University of California-Irvine

Type help(package="sna") to get started.

>

3.1 Model Data

ENA is applied to a network model of energy–matter exchanges among system components. The
system is modeled as a set of n compartments or nodes that represent species, species-complexes
(i.e., trophic guilds or functional groups), or non-living components of the system in which energy–
matter is stored. Nodes are connected by L observed fluxes, termed directed edges or links. This
analysis requires an estimate of the energy–matter flowing from node i to j over a given period,
Fn×n = [fij ], i, j = 1, 2, . . . , n. These fluxes can be generated by any process such as feeding
(like a food web), excretion, and death. As ecosystems are thermodynamically open, there must
also be energy–matter inputs into the system z1×n = [zi], and output losses from the system
y1×n = [yi]. While the Patten School treats all outputs the same, the Ulanowicz School typically
partitions outputs into respiration r1×n = [ri] and export e1×n = [ei] to account for differences in
energetic quality. Note that yi = ri + ei, ∀i. Some analyses also require the amount of energy–
matter stored in each node (e.g., biomass), X1×n = [xi]. The final required information is a
categorization of each node as living or not, which is essential for algorithms from the Ulanowicz
School. For our implementation, we have created a logical vector Living1×n that indicates whether
the ith node is living (TRUE) or not (FALSE). Together, the model data M can be summarized
as M = {F, z, e, r,X,Living}.

Notice the row-to-column orientation of F. This is consistent with the Ulanowicz School of
network analysis, as well as the orientation commonly used in Social Network Analysis and used
in the statnet packages. However, this is the opposite orientation typically used in the Patten
School of analysis that conceptually builds from a system of differential equations and thus uses the
column-to-row orientation common in this area of mathematics. Even though the difference is only
a matrix transpose, this single difference may be the source of much confusion in the literature and
frustration on the part of users. We have selected to use row-to-column orientation for our primary
data structure as it is the dominant form and it is the assumed orientation in the statnet packages we
are building upon. To facilitate package use by the existing community, however, we have decided
to return results in the orientation of the School from which the algorithm was taken. Thus, results
of the Patten School algorithms are returned in their column-to-row orientation, while algorithms
we have coded from the Ulanowicz school return results in the row-to-column orientation.

3.2 Network Data Class

The enaR package stores the model data in the network class defined in the network package (see
Butts, 2008a, for details). Again, the primary network object components are:

• F = flow matrix oriented row to column

• z = inputs

• r = respiration

• e = exports

3



• y = respiration+exports

• X = biomass or storage values

• Living = logical vector indicating if the node is living (TRUE) or non-living (FALSE)

3.3 Building a Network Object

Users can assemble the necessary data elements described in Section 3.1 and then use the pack
function to create the network data object. Here is an example of doing this with hypothetical
data.

> # generate the flow matrix

> flow.mat <- array(abs(rnorm(100,4,2))*sample(c(0,1),100,replace=TRUE),

+ dim=c(4,4))

> # name the nodes

> rownames(flow.mat) <- colnames(flow.mat) <- paste('node',(1:nrow(flow.mat)),sep='')
> # generate the inputs

> inputs <- runif(nrow(flow.mat),0,4)

> # generate the exports

> exports <- inputs

> # pack

> fake.model <- pack(flow=flow.mat,

+ input=inputs,

+ export=exports,

+ living=TRUE)

> # model

> fake.model

Network attributes:

vertices = 4

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

flow:

node1 node2 node3 node4

Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:1.789 1st Qu.:0.000 1st Qu.:0.0000

Median :0.0000 Median :3.903 Median :2.190 Median :0.3489

Mean :0.5913 Mean :3.369 Mean :2.318 Mean :1.0193

3rd Qu.:0.5913 3rd Qu.:5.483 3rd Qu.:4.507 3rd Qu.:1.3682

Max. :2.3651 Max. :5.672 Max. :4.893 Max. :3.3795

balanced = FALSE

total edges= 5

missing edges= 0

non-missing edges= 5

4



Vertex attribute names:

export input living output respiration storage vertex.names

>

Unfortunately, the attributes() function does not clearly identify the network data objects we
are using.

> attributes(fake.model)

$names

[1] "mel" "gal" "val" "iel" "oel"

$class

[1] "network"

However, individual components can be extracted from the data object using the form specified
in the network package. For example, we can pull out node of vertex attributes as follows

> fake.model%v%'output'

[1] 3.9472104 1.9428545 1.7257228 0.2475129

> fake.model%v%'input'

[1] 3.9472104 1.9428545 1.7257228 0.2475129

> fake.model%v%'living'

[1] TRUE TRUE TRUE TRUE

For convenience, we have defined the flow matrix as a network based characteristic and it can
be extracted as

> fake.model%n%'flow'

node1 node2 node3 node4

node1 0.000000 5.419827 0.000000 3.3795308

node2 0.000000 5.672006 4.892553 0.0000000

node3 2.365092 0.000000 4.379095 0.0000000

node4 0.000000 2.385203 0.000000 0.6978212

There are times that it is useful to extract all of the ecosystem model data elements from the
network data object. This can be accomplished using the unpack function. The unpack output is
as follows:

> unpack(fake.model)

5



$F

node1 node2 node3 node4

node1 0.000000 5.419827 0.000000 3.3795308

node2 0.000000 5.672006 4.892553 0.0000000

node3 2.365092 0.000000 4.379095 0.0000000

node4 0.000000 2.385203 0.000000 0.6978212

$z

[1] 3.9472104 1.9428545 1.7257228 0.2475129

$r

[1] 0 0 0 0

$e

[1] 3.9472104 1.9428545 1.7257228 0.2475129

$y

[1] 3.9472104 1.9428545 1.7257228 0.2475129

$X

[1] 0 0 0 0

$Living

[1] TRUE TRUE TRUE TRUE

>

In this case we did not specify the node respiration in the model, so this vector is filled with
zeros. Also, we did not specify a Living vector when we built the data object, so pack defaulted
to the assumption that all the nodes were living.

3.4 Balancing for Steady-State

Many of the ENA functions assume that the network model is at steady-state (node inputs equal
node outputs). Thus, this package has functions for (1) checking to see if the assumption is met
and (2) automatically balancing the model so that input equal outputs.

To determine if the model is balanced and then balance it if necessary:

> ## --- Check to see if the model is balanced ---#

> ssCheck(fake.model)

[1] FALSE

> ## --- To BALANCE a model if needed --- #

> fake.model <- balance(fake.model,method="AVG2")

[1] AVG2

>

The automated balancing routines are based on those presented in Allesina and Bondavalli
(2003). These authors compare alternative balancing algorithms and further discuss the implica-
tions of using automated procedures. Caution is warranted when using these techniques.

6



4 Data Input: Reading Common Data File Formats

Several software packages exist in the literature for running ENA. For convenience, we have written
functions to read in a few of the more common data formats used by these software.

4.1 Reading a SCOR file

The read.scor function reads in data stored in the SCOR format specified by Ulanowicz and Kay
(1991) that is the input to the NETWRK4 programs. This function can be run as follows.

> m <- read.scor("~/Dropbox/RENA/package/data/oyster.dat")

>

This constructs the network data object from the SCOR file that stores the ecosystem model
data for an oyster reef model (Dame and Patten, 1981). The individual model elements are

> unpack(m)

$F

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.0000 0.0000 0.0000

Microbiota 0 0.0000 1.2060 1.2060

Meiofauna 0 0.0000 0.0000 0.6609

Deposit Feeders 0 0.0000 0.0000 0.0000

Predators 0 0.0000 0.0000 0.0000

Deposited Detritus 0 8.1721 7.2745 0.6431

Predators Deposited Detritus

Filter Feeders 0.5135 15.7910

Microbiota 0.0000 0.0000

Meiofauna 0.0000 4.2403

Deposit Feeders 0.1721 1.9076

Predators 0.0000 0.3262

Deposited Detritus 0.0000 0.0000

$z

[1] 41.47 0.00 0.00 0.00 0.00 0.00

$r

[1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

$e

[1] 0 0 0 0 0 0

$y

[1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

$X

[1] 2000.0000 2.4121 24.1210 16.2740 69.2370 1000.0000

7



$Living

[1] TRUE TRUE TRUE TRUE TRUE FALSE

This same data is stored as a network data object that is distributed with this package, which
can be accessed as:

> data(oyster)

> m <- oyster

4.2 Reading in a WAND file

In part to make ENA more accessible to biologists, Allesina and Bondavalli (2004) recoded some of
Ulanowicz’s NETWRK4 algorithms into a Microsoft Excel based tool called WAND. For this tool,
the model data is stored as a separate Excel file with two worksheets. The first contains many of
the node attributes and the second contains the flow matrix. The read.wand function will create
an R network data object from a WAND model file.

> m <- read.wand(paste(system.file(package='enaR'),'data','MDmar02_WAND.xls',sep='/'))

This code creates a network data object for enaR from the WAND formatted Mdloti ecosystem
model data (Scharler, 2012). This data is courtesy of U.M. Scharler.

4.3 Reading in a ENAM file

Another commonly used data format stores the necessary model data in a csv or Excel formatted
file. We include an example Excel file of the Mdloti estuary stored in this form (“MDMAR02.xlsx”,
courtesy of U. M. Scharler). This format has not been described technically in the literature nor
has it been named. We refer to it as ENAM as it is the ENA model data stored primarily as a
square matrix with several preliminary rows that include meta-data, the number of nodes, and
number of living nodes (similar to SCOR). The data format is generally similar in concept, if not
exact form, to the data system matrix used as the input to the NEA.m function (Fath and Borrett,
2006). However, the ENAM format includes information on whether nodes are living and partitions
output into respiration and exports.

This data format can be read into the enaR package as

> m <- read.enam(paste(system.file(package='enaR'),'data','MDMAR02.xlsx',sep='/'))

The current read.enam function assumes the data are stored on the first worksheet of an Excel
file. In the future, we expect to expand this function’s capabilities to read the data from a CSV
file.

5 Network Visualization

The enaR package uses the network package plot tools. Here is one example of how to plot a
network model. The figure scaling may need to be adjusted depending on computer and devices.
Also note that the graph only shows internal system flows.

Figure 1 (left) is a very simple example of to plot a graph of the oyster reef model accomplished
with default settings.

8



> data(oyster) # load data

> m <- oyster

> set.seed(2) # set random seed to control plot

> plot(m) # plot network data object (uses plot.network)

We can use the excellent graphics capabilities of R to make fancier plot of the same data
(Fig. 1(right)).

> # set colors to use

> my.col=c("red","yellow",

+ rgb(204,204,153,maxColorValue=255),

+ "grey22")

> F=m%n%'flow' # extract flow information for later use.

> f=which(F!=0, arr.ind=T) # get indices of positive flows

> opar <- par(las=1,bg=my.col[4],xpd=TRUE,mai=c(1.02, 0.62, 0.82, 0.42))

> set.seed(2) # each time the plot is called, the

> # layout orientation changes. setting

> # the seed ensures a consistent

> # orientation each time the plot

> # function is called.

> plot(m,

+ vertex.cex=log(m%v%'storage'), # scale nodes with storage

+ label= m%v%'vertex.names', # add node labels

+ boxed.labels=FALSE,

+ label.cex=0.65,

+ vertex.sides=45, # to make rounded

+ edge.lwd=log10(abs(F[f])), # scale arrows to flow magnitude

+ edge.col=my.col[3],

+ vertex.col=my.col[1],

+ label.col="white",

+ vertex.border = my.col[3],

+ vertex.lty = 1,

+ xlim=c(-4,1),ylim=c(-2,-2))

> rm(opar) # remove changes to the plotting parameters

>

6 Single Model Analysis

In practice, ENA is applied to a single model. Here, we walk through an example of applying
multiple ENA algorithms to the oyster reef model (Dame and Patten, 1981).

6.1 Structural Network Analysis

Structural network analysis is common to many types of network analysis. The structural analyses
applied here are based on those presented in NEA.m (Fath and Borrett, 2006) following the Patten
School. Thus, the adjacency matrix returned is oriented from column-to-row. In addition, several
network statistics are returned to describe the whole network. These include:

9



Filter Feeders

Microbiota

Meiofauna

Deposit Feeders

Predators

Deposited Detritus

Figure 1: Simple (left) and fancy (right) plot of the Oyster network model (Dame and Patten 1981).

• n = number of nodes

• L = number of links

• C = connectance (L/n2)

• LD = average link density L/n

• lam1A = dominant eigenvalue of A = rate of pathway proliferation (see Borrett et al., 2007,
for details)

• mlam1A = multiplicity of the dominant eigenvalue

• lam2A = second largest eigenvalue

• rho = damping ratio = lam1A/lam2A indicates how fast the pathway proliferation rate reaches
lam1A

• R = distance of lam1[A] from the bulk of the eigen spectrum (Farkas et al., 2001)

• d = difference between dominant eigenvalue and link density

• no.scc = number of strongly connected components (see Allesina et al., 2005; Borrett et al.,
2007, for details on SCCs)

• no.scc.big = number of strongly connected components with n>1

• pscc = percent of nodes participating in a large scc

10



> St <- enaStructure(m)

> attributes(St)

$names

[1] "A" "ns"

> St$ns

n L C LD lam1A mlam1A lam2A rho R

[1,] 6 12 0.3333333 2 2.147899 1 1 2.147899 0.4655712

d no.scc no.scc.big pscc

[1,] 0.147899 2 1 0.8333333

>

The structural network statistics show that the oyster reef model has 6 nodes, a pathway
proliferation rate of 2.14, and that the model is comprised of two strongly connected components
but that only one has more than one node.

6.2 Flow Analysis

Flow analysis or throughflow analysis is one of the core ENA analyses for both the Ulanowicz
and Patten Schools. The enaR implementation enaFlow mostly folllows the NEA.m function, with
small updates (e.g. calculating the ratio of indirect-to-direct flows Borrett and Freeze, 2011; Borrett
et al., 2011). Thus, the resultant matrices are oriented column-to-row. Again, the function returns
a number of whole network properties or network statistics. These include

• Boundary = Total boundary flow (input=output)

• TST = Total System ThroughFLOW

• APL = Average Path Length (Finn, 1976)

• FCI = Finn Cycling Index (Finn, 1980)

• BFI = Boundary Flow Intensity, Boundary/TST

• DFI = Direct Flow Intensity, Direct/TST

• IFI = Indirect Flow Intensity, Indirect/TST (Borrett et al., 2006)

• id = Ratio of Indirect to Direct Flow (realized = scaled to boundary flow, Borrett and Freeze
(2011); Borrett et al. (2011))

• id.I = input oriented ratio of indirect to direct flow intensity ((as in Fath and Borrett, 2006))

• id.O = output oriented ratio of indirect to direct flow intensity ((as in Fath and Borrett,
2006))

• HMG.I = input oriented network homogenization to direct flow intensity

• HMG.O = output oriented network homogenization to direct flow intensity

11



• AMP.strong.I = input oriented network amplification

• AMP.strong.O = output oriented network amplification

• mode0 = Boundary Flow

• mode1 = internal First Passage Flow

• mode2 = Cycled Flow

• mode3 = dissipative equivalent to mode 1

• mode4 = dissipative equivalent to mode 0

Here, we extract the flow statistics and then isolate and remove the output-oriented direct flow
intensity matrix G matrix. We also show the input-oriented integral flow matrix N′.

> F <- enaFlow(m)

> attributes(F)

$names

[1] "T" "G" "GP" "N" "NP" "ns"

> F$ns

Boundary TST TSTp APL FCI BFI DFI

[1,] 41.47 83.5833 125.0533 2.015512 0.1101686 0.4961517 0.1950689

IFI id id.I id.O HMG.I HMG.O

[1,] 0.3087794 1.582925 1.716607 1.534181 2.051826 1.891638

AMP.strong.I AMP.strong.O mode0 mode1 mode2 mode3 mode4

[1,] 3 1 41.47 32.90504 9.208256 32.90504 41.47

> G <- F$G # output-oriented direct flow matrix

> rm(G)

> F$NP # input-oriented integral flow matrix

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 1 0.0000000 0.0000000 0.0000000

Microbiota 1 1.1018630 0.2971032 0.1240688

Meiofauna 1 0.2440716 1.2971032 0.1240688

Deposit Feeders 1 0.6197856 0.5604100 1.1240688

Predators 1 0.1555792 0.1406747 0.2821649

Deposited Detritus 1 0.1018630 0.2971032 0.1240688

Predators Deposited Detritus

Filter Feeders 0.0000000 0.0000000

Microbiota 0.0203426 1.3885039

Meiofauna 0.0203426 1.3885039

Deposit Feeders 0.0203426 1.3885039

Predators 1.0051064 0.3485436

Deposited Detritus 0.0203426 1.3885039

12



Note: you can use the attach function to have access to the objects nested within an object.
Since some objects may conflict in name, it’s best to detach an object once it’s not in use.

> attach(F)

The following object(s) are masked from 'package:base':

T

> G

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0.00000000 0.0000000 0.00000000 0.00000000

Microbiota 0.00000000 0.0000000 0.00000000 0.00000000

Meiofauna 0.00000000 0.1475753 0.00000000 0.00000000

Deposit Feeders 0.00000000 0.1475753 0.07793173 0.00000000

Predators 0.01238245 0.0000000 0.00000000 0.06856574

Deposited Detritus 0.38078129 0.0000000 0.50000590 0.76000000

Predators Deposited Detritus

Filter Feeders 0.0000000 0.00000000

Microbiota 0.0000000 0.36703630

Meiofauna 0.0000000 0.32672209

Deposit Feeders 0.0000000 0.02888377

Predators 0.0000000 0.00000000

Deposited Detritus 0.4757876 0.00000000

> detach(F)

>

Matrix powers – raising a matrix to a power is not a native operation in R. Thus, the enaR
package includes a function mExp to facilitate this matrix operation commonly used in ENA.

> mExp(F$G,2)

Filter Feeders Microbiota Meiofauna

Filter Feeders 0.000000000 0.00000000 0.000000000

Microbiota 0.139760556 0.00000000 0.183520316

Meiofauna 0.124409658 0.00000000 0.163362971

Deposit Feeders 0.010998399 0.01150080 0.014442055

Predators 0.000000000 0.01011861 0.005343446

Deposited Detritus 0.005891414 0.18594573 0.059228112

Deposit Feeders Predators Deposited Detritus

Filter Feeders 0.00000000 0.00000000 0.000000000

Microbiota 0.27894759 0.17463133 0.000000000

Meiofauna 0.24830879 0.15545033 0.054165488

Deposit Feeders 0.02195166 0.01374254 0.079627504

Predators 0.00000000 0.00000000 0.001980437

Deposited Detritus 0.03262273 0.00000000 0.185314635

>

13



6.3 Ascendency

A key contribution of the Ulanowicz School to ENA is Ascendency concept and the development of
several information based indices (Ulanowicz, 1986, 1997). This analysis is based on all of the flows
in the system and does not assume the modeled system is at steady-state. The enaAscendency

function returns several of these information based measures.

> enaAscendency(oyster)

AMI ASC OH CAP ASC.CAP OH.CAP

[1,] 1.330211 166.3473 211.0979 377.4452 0.4407191 0.5592809

ASC.OH.RSUM

[1,] 1

These network statistics are as follows

• AMI = Average Mutual Information

• ASC = Ascendency

• OH = Overhead

• CAP = Capacity

• ASC.CAP = the Ascendency to Capacity Ratio

• OH.CAP = the Overhead to Capacity Ratio

• ASC.OH.RSUM = sum of Ascendency and Overhead, which should equal 1

6.4 Storage Analysis

Storage ENA was developed in the Patten School. It is similar to flow ENA, but divides by storage
(e.g., biomass) instead of throughflow. See Fath and Patten (1999) and Schramski et al. (2011) for
an overview of this method. This is again implemented as in NEA.m (Fath and Borrett, 2006), so
the resultant matricies are oriented column-to-row.

> S <- enaStorage(m)

> attributes(S)

$names

[1] "C" "P" "S" "Q" "CP" "PP" "SP" "QP" "dt" "ns"

> S$ns

TSS CIS NAS NASP IDS.i IDS.o IDS.r HMG.S.o

[1,] 3112.044 0.9940252 20 21 454.227 294.1527 299.1171 1.115985

HMG.S.i lam1P rhoP lam1PP rhoPP AGG.S

[1,] 1.38251 0.9975603 1.001521 0.9975603 1.001521 75.04326

14



6.5 Utility Analysis

Utility analysis describes the relationship between node pairs in the ecosystem model when consid-
ering both direct and indirect interactions. It developed in the Patten School (Fath and Patten,
1999; Patten, 1991) and is similar to yet distinct from the Ulanowicz School mixed trophic impacts
analysis (Ulanowicz and Puccia, 1990). Utility analysis can be conducted from both the flow and
storage perspectives, so the “type” argument needs to be set to suit the users needs. This is again
implemented as in NEA.m.

> UF <- enaUtility(m,eigen.check=TRUE,type="flow")

> US <- enaUtility(m,eigen.check=TRUE,type="storage")

> attributes(UF)

$names

[1] "D" "U" "Y" "ns"

>

Please note the function argument “eigen.check=TRUE”. For this analysis to work, the power
series of the direct utility matrices must converge, which is only true if the dominant eigenvalue
of the direct utility matrix is less than 1. The function default prevents the analysis from being
performed if this condition is not met. Users that wish to perform the analysis anyway can set
“eigen.check=FALSE”. Care should be used when doing this, as the meaning of the underlying
mathematics is uncertain.

6.6 Environ Analysis

Environ Analysis finds the n unit input and n output environs for the model (Fath and Patten,
1999; Patten, 1978). These unit environs are returned by the environ function as in NEA.m. They
indicate the flow activity in each subnetwork generated by pulling a unit out of a node (input
environs) or pushing a unit into a node (output environ). These unit environs can be converted
into “realized” environs by multiplying each by the relevant observed input or output (Borrett and
Freeze, 2011).

> E <- environ(m)

> attributes(E)

$names

[1] "input" "output"

> E$output[1]

$`Filter Feeders`
[,1] [,2] [,3] [,4]

Filter Feeders -1.00000000 0.00000000 0.00000000 0.000000000

Microbiota 0.00000000 -0.19706053 0.00000000 0.000000000

Meiofauna 0.00000000 0.02908126 -0.20449723 0.000000000

Deposit Feeders 0.00000000 0.02908126 0.01593682 -0.060525681

Predators 0.01238245 0.00000000 0.00000000 0.004149988

Deposited Detritus 0.38078129 0.00000000 0.10224982 0.045999518

15



0.60683627 0.13889800 0.08631059 0.010376176

[,5] [,6] [,7]

Filter Feeders 0.000000000 0.0000000 1

Microbiota 0.000000000 0.1970605 0

Meiofauna 0.000000000 0.1754160 0

Deposit Feeders 0.000000000 0.0155076 0

Predators -0.016532433 0.0000000 0

Deposited Detritus 0.007865927 -0.5368966 0

0.008666506 0.1489125 0

The TET function returns vectors of the unit and realized input and output total environ
throughflow. The realized total environ throughflow is an environ based partition of the total
system throughflow (TST).

> tet <- TET(m)

> show(tet)

$realized.input

[1] 25.165000 22.647638 14.582798 2.028052 1.053786 18.107007

$realized.output

[1] 83.5833 0.0000 0.0000 0.0000 0.0000 0.0000

$unit.input

[1] 1.000000 3.931882 4.074090 4.713111 2.932069 2.931882

$unit.output

[1] 2.015512 1.836089 2.540670 3.124836 2.234317 2.594261

The TES functions returns the both the realized and unit total environ storage for the input
and output environs. Again, the realized TES is a partition of the total system storage (TSS).

> tes <- TES(m)

> show(tes)

$realized.input

Filter Feeders Microbiota Meiofauna

2000.00000 2.41209 24.12171

Deposit Feeders Predators Deposited Detritus

16.27440 69.23803 1000.03118

$realized.output

[1] 3112.044 0.000 0.000 0.000 0.000 0.000

$unit.input

Filter Feeders Microbiota Meiofauna

289.3658066 0.6561948 7.3735209

Deposit Feeders Predators Deposited Detritus

11.5308112 109.7205293 265.1036470

16



$unit.output

Filter Feeders Microbiota Meiofauna

75.04326 16.06273 41.03146

Deposit Feeders Predators Deposited Detritus

65.81279 132.44451 66.11575

6.7 Control Analysis

Control analysis is implemented as in the original NEA.m function. Recent updates to control
analysis (e.g., Schramski et al., 2006, 2007) still need to be included.

> C <- enaControl(m)

> attributes(C)

$names

[1] "CN" "CQ"

The flow control CN and storage control CQ matrices are oriented column-to-row.

6.8 Mixed Trophic Impacts

Mixed Trophic Impacts is a popular analysis from the Ulanowicz School of ENA (Ulanowicz and
Puccia, 1990). The mixedTrophicImpacts function generates comparable results to the calculations
in Ulanowicz and Puccia (1990).

> mti <- mixedTrophicImpacts(oyster)

> attributes(mti)

$names

[1] "G" "FP" "Q" "M"

> mti$M # shows the total impact matrix

[1] NA

In this case, the power series of the direct trophic impacts matrix does not converge (dominant
eigenvalue is greater than one). Thus, the function returns the mti$M = NA. Like with Utility anal-
ysis, however, we can use the eigen.check argument to do the calculation despite the mathematical
problem.

> mti <- mixedTrophicImpacts(oyster,eigen.check=FALSE)

> attributes(mti)

$names

[1] "G" "FP" "Q" "M"

> mti$M # shows the total impact matrix

17



Filter Feeders Microbiota Meiofauna

Filter Feeders -0.0250635283 0.16956382 0.431493557

Microbiota -0.0015848556 -0.30675078 -0.182458391

Meiofauna -0.0001241781 -0.47413204 -0.070959618

Deposit Feeders -0.0069255188 -0.26769125 -0.007062628

Predators -0.0301817448 0.02000515 -0.004028911

Deposited Detritus -0.0034657973 0.21795628 0.612654910

Deposit Feeders Predators Deposited Detritus

Filter Feeders 0.26144106 0.795834137 0.516016759

Microbiota 0.20520368 0.050323410 -0.295378609

Meiofauna 0.01607831 0.003942987 -0.001592286

Deposit Feeders -0.10329881 0.219903765 0.177109591

Predators -0.07586335 -0.041648786 -0.019939324

Deposited Detritus 0.44874394 0.110048344 -0.251366300

In this case, the G, FP, Q, and M matrices are oriented from row-to-column.

6.9 Other Analyses

There are a number of additional tools in the package. Here we highlight a couple of them.
A quick way to get a list of all of the global network statistics reported in Structure, Flow,

Ascendency, Storage, and Utility analysis is to use the get.ns function.

> ns <- get.ns(m)

> str(ns) # examine the structure of ns

'data.frame': 1 obs. of 60 variables:

$ n : num 6

$ L : num 12

$ C : num 0.333

$ LD : num 2

$ lam1A : num 2.15

$ mlam1A : num 1

$ lam2A : num 1

$ rho : num 2.15

$ R : num 0.466

$ d : num 0.148

$ no.scc : num 2

$ no.scc.big : num 1

$ pscc : num 0.833

$ Boundary : num 41.5

$ TST : num 83.6

$ TSTp : num 125

$ APL : num 2.02

$ FCI : num 0.11

$ BFI : num 0.496

$ DFI : num 0.195

$ IFI : num 0.309

$ id : num 1.58

18



$ id.I : num 1.72

$ id.O : num 1.53

$ HMG.I : num 2.05

$ HMG.O : num 1.89

$ AMP.strong.I: num 3

$ AMP.strong.O: num 1

$ mode0 : num 41.5

$ mode1 : num 32.9

$ mode2 : num 9.21

$ mode3 : num 32.9

$ mode4 : num 41.5

$ AMI : num 1.33

$ ASC : num 166

$ OH : num 211

$ CAP : num 377

$ ASC.CAP : num 0.441

$ OH.CAP : num 0.559

$ ASC.OH.RSUM : num 1

$ TSS : num 3112

$ CIS : num 0.994

$ NAS : num 20

$ NASP : num 21

$ IDS.i : num 454

$ IDS.o : num 294

$ IDS.r : num 299

$ HMG.S.o : num 1.12

$ HMG.S.i : num 1.38

$ lam1P : num 0.998

$ rhoP : num 1

$ lam1PP : num 0.998

$ rhoPP : num 1

$ AGG.S : num 75

$ lam1D : num 0.899

$ synergism.F : num 4.92

$ mutualism.F : num 2.27

$ lam1DS : num 0.302

$ synergism.S : num 13.1

$ mutualism.S : num 2.6

Centrality analysis is a large topic in network science. Fann and Borrett (2012) introduced an
environ based centrality and contrasted it with the more commonly used eigenvector centrality.
Both of these centralities can be calculated in enaR as follows:

> F <- enaFlow(oyster)

> ec <- environCentrality(F$N)

> show(ec)

$ECin

Filter Feeders Microbiota Meiofauna

19



0.06970737 0.19108709 0.20595483

Deposit Feeders Predators Deposited Detritus

0.12350944 0.07903903 0.33070223

$ECout

Filter Feeders Microbiota Meiofauna

0.1404961 0.1279889 0.1771034

Deposit Feeders Predators Deposited Detritus

0.2178241 0.1557484 0.1808391

$AEC

Filter Feeders Microbiota Meiofauna

0.1051017 0.1595380 0.1915291

Deposit Feeders Predators Deposited Detritus

0.1706668 0.1173937 0.2557707

> eigenCentrality(F$G)

$EVCin

[1] 0.00000000 0.23325048 0.26566843 0.11130122 0.01286707 0.37691280

$EVCout

[1] 0.1207568 0.1093625 0.1876329 0.2518905 0.1470501 0.1833072

$AEVC

[1] 0.06037842 0.17130647 0.22665067 0.18159586 0.07995858 0.28011000

>

These centrality values have been normalized to sum to one.
Figure 3 shows one way to visualize the Average Environ Centralities.

> # set plotting parameters

> opar <- par(las=1,mar=c(7,5,1,1),xpd=TRUE,bg="white")

> # find centrality order

> o <- order(ec$AEC,decreasing=TRUE)

> bp <- barplot(ec$AEC[o], # create barplot

+ names.arg=NA,

+ ylab="Average Environ Centrality",

+ col="blue",border=NA)

> text(bp,-0.008, # add labels

+ labels=names(ec$AEC)[o],

+ srt=35,adj=1,cex=1)

> rm(opar) # remove the plotting parameters

>

20



A
ve

ra
ge

 E
nv

iro
n 

C
en

tr
al

ity
0.00

0.05

0.10

0.15

0.20

0.25

Deposite
d Detrit

us

Meiofauna

Deposit 
Feeders

Micr
obiota

Predators

Filte
r F

eeders

Figure 2: Bar plot of the Oyster Reef model Average Environ Centralities.

7 Multi-Model Analyses (Batch Processing)

While many investigators analyze single models, much of ENA is used to compare ecosystem models
(e.g., Baird et al., 1991, 1995; Christian and Thomas, 2003; Whipple et al., 2007). Investigators have
also analyzed large set of models to determine the generality of hypothesized ecosystem properties
(e.g., Borrett and Salas, 2010; Christensen, 1995; Salas and Borrett, 2011). For both of these
applications, investigators need to analyze multiple models. One advantage of the enaR R package
is that it simplifies this batch processing. Here we illustrate how to batch analyze a selection of
models.

Our first step is to read in the model data from multiple SCOR formatted data files.

> old.wd <- getwd()

> setwd("~/Dropbox/RENA/package/data/")

> #list of model names to analyze

> models <- c('oyster.dat',
+ 'cone_spring.dat',
+ 'LakeLanier_avg_N.dat',
+ 'Sylt_Romo_Bight_C.dat',
+ 'Sylt_Romo_Bight_N.dat',
+ 'Sylt_Romo_Bight_P.dat',
+ 'chesapeake_mesohaline_C_annual.dat',
+ 'chesapeake_meso_ann_N.dat',
+ 'chesapeake_meso_ann_P.dat',
+ 'mdmar02.bal')
> mm <- length(models) # number of models

> model.list=list() # initialize the model list

> # loop through models, #storing the network objects in a list.

> for(i in 1:mm){

+ model.list[[i]] <- read.scor(models[i])

+ }

> setwd(old.wd) #return to original working directory

Now that we have the raw data loaded, we can start to manipulate it. The first step is to

21



balance the models and then we can run the flow analysis. We are using the lapply function to
apply the analysis across the list of models stored in model.list.

> # balance models as necessary

> m.list <- lapply(model.list,balance)

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] AVG2

[1] BALANCED

[1] AVG2

[1] BALANCED

[1] BALANCED

[1] AVG2

[1] BALANCED

> # if balancing fails, you can use force.balance

> # to repeatedly apply the balancing procedure

> unlist(lapply(m.list,ssCheck))

[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE

> m.list <- lapply(model.list,force.balance)

[1] AVG2

[1] AVG2

[1] AVG2

[1] AVG2

[1] AVG2

[1] AVG2

[1] AVG2

[1] AVG2

> unlist(lapply(m.list,ssCheck))

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> # Example Flow Analysis

> F.list <- lapply(m.list, enaFlow)

> # the full results of the flow analysis is now stored in the elements

> # of the F.list. To get the results for just the first model...

> F.list[[1]]

$T

Filter Feeders Microbiota Meiofauna

41.4700 8.1721 8.4805

Deposit Feeders Predators Deposited Detritus

2.5100 0.6856 22.2651

22



$G

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0.00000000 0.0000000 0.00000000 0.00000000

Microbiota 0.00000000 0.0000000 0.00000000 0.00000000

Meiofauna 0.00000000 0.1475753 0.00000000 0.00000000

Deposit Feeders 0.00000000 0.1475753 0.07793173 0.00000000

Predators 0.01238245 0.0000000 0.00000000 0.06856574

Deposited Detritus 0.38078129 0.0000000 0.50000590 0.76000000

Predators Deposited Detritus

Filter Feeders 0.0000000 0.00000000

Microbiota 0.0000000 0.36703630

Meiofauna 0.0000000 0.32672209

Deposit Feeders 0.0000000 0.02888377

Predators 0.0000000 0.00000000

Deposited Detritus 0.4757876 0.00000000

$GP

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0.0000000 0.0000000 0.0000000 0.00000000

Microbiota 0.0000000 0.0000000 0.0000000 0.00000000

Meiofauna 0.0000000 0.1422086 0.0000000 0.00000000

Deposit Feeders 0.0000000 0.4804781 0.2633068 0.00000000

Predators 0.7489790 0.0000000 0.0000000 0.25102100

Deposited Detritus 0.7092265 0.0000000 0.1904460 0.08567669

Predators Deposited Detritus

Filter Feeders 0.00000000 0.0000000

Microbiota 0.00000000 1.0000000

Meiofauna 0.00000000 0.8577914

Deposit Feeders 0.00000000 0.2562151

Predators 0.00000000 0.0000000

Deposited Detritus 0.01465073 0.0000000

$N

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 1.00000000 0.00000000 0.00000000 0.00000000

Microbiota 0.19706053 1.10186299 0.28629883 0.40394538

Meiofauna 0.20449723 0.25328240 1.29710322 0.41918954

Deposit Feeders 0.06052568 0.19036255 0.16586629 1.12406883

Predators 0.01653243 0.01305235 0.01137274 0.07707261

Deposited Detritus 0.53689655 0.27752837 0.78002865 1.10055975

Predators Deposited Detritus

Filter Feeders 0.0000000 0.00000000

Microbiota 0.2424763 0.50963134

Meiofauna 0.2516269 0.52886388

Deposit Feeders 0.0744748 0.15652949

Predators 1.0051064 0.01073256

Deposited Detritus 0.6606330 1.38850389

23



$NP

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 1 0.0000000 0.0000000 0.0000000

Microbiota 1 1.1018630 0.2971032 0.1240688

Meiofauna 1 0.2440716 1.2971032 0.1240688

Deposit Feeders 1 0.6197856 0.5604100 1.1240688

Predators 1 0.1555792 0.1406747 0.2821649

Deposited Detritus 1 0.1018630 0.2971032 0.1240688

Predators Deposited Detritus

Filter Feeders 0.0000000 0.0000000

Microbiota 0.0203426 1.3885039

Meiofauna 0.0203426 1.3885039

Deposit Feeders 0.0203426 1.3885039

Predators 1.0051064 0.3485436

Deposited Detritus 0.0203426 1.3885039

$ns

Boundary TST TSTp APL FCI BFI DFI

[1,] 41.47 83.5833 125.0533 2.015512 0.1101686 0.4961517 0.1950689

IFI id id.I id.O HMG.I HMG.O

[1,] 0.3087794 1.582925 1.716607 1.534181 2.051826 1.891638

AMP.strong.I AMP.strong.O mode0 mode1 mode2 mode3 mode4

[1,] 3 1 41.47 32.90504 9.208256 32.90504 41.47

>

We can use the same technique to extract specific information, like just the ratio of Indirect-to-
Direct flow for each model.

> # Example of extracting just specific information - Indirect Effects Ratio

> IDs <- unlist(lapply(m.list, function(x) enaFlow(x)$ns[8]))

> names(IDs) <- models

> show(IDs)

oyster.dat cone_spring.dat

0.3087794 0.3105362

LakeLanier_avg_N.dat Sylt_Romo_Bight_C.dat

0.7694837 0.3635677

Sylt_Romo_Bight_N.dat Sylt_Romo_Bight_P.dat

0.5942724 0.9131001

chesapeake_mesohaline_C_annual.dat chesapeake_meso_ann_N.dat

0.5320786 0.7136606

chesapeake_meso_ann_P.dat mdmar02.bal

0.8191133 0.3735556

>

We can also collect the set of output-oriented integral flow matrices.

24



> # Here is a list containing only the output-oriented integral flow matrices

> N.list <- lapply(m.list,function(x) enaFlow(x)$N)

We can also apply the get.ns function to extract all of the network statistics for each model.
We then use the do.call function to reshape the network statistics into a single data frame.

> # Collecting and combining all network statistics

> ns.list <- lapply(m.list,get.ns) # returns as list

> ns <- do.call(rbind,ns.list) # ns as a data.frame

> rownames(ns) <- models

> str(ns)

'data.frame': 10 obs. of 60 variables:

$ n : num 6 5 11 59 59 59 36 36 36 49

$ L : num 12 8 26 276 328 328 122 153 153 386

$ C : num 0.3333 0.32 0.2149 0.0793 0.0942 ...

$ LD : num 2 1.6 2.36 4.68 5.56 ...

$ lam1A : num 2.15 1.84 2.75 6.72 7.2 ...

$ mlam1A : num 1 1 1 1 1 1 1 1 1 1

$ lam2A : num 1 1 1.28 3.4 3.85 ...

$ rho : num 2.15 1.84 2.14 1.98 1.87 ...

$ R : num 4.66e-01 6.69e-01 1.85e-01 0.00 4.37e-32 ...

$ d : num 0.148 0.239 0.382 2.042 1.645 ...

$ no.scc : num 2 2 1 11 1 1 16 1 1 3

$ no.scc.big : num 1 1 1 1 1 1 2 1 1 1

$ pscc : num 0.833 0.8 1 0.831 1 ...

$ Boundary : num 41.5 11819 95.8 683448.3 99613 ...

$ TST : num 8.36e+01 3.06e+04 7.49e+02 1.78e+06 3.64e+05 ...

$ TSTp : num 125 42445 845 2106101 463305 ...

$ APL : num 2.02 2.59 7.82 2.61 3.65 ...

$ FCI : num 0.1102 0.0919 0.3988 0.0943 0.2314 ...

$ BFI : num 0.496 0.386 0.128 0.384 0.274 ...

$ DFI : num 0.195 0.304 0.103 0.253 0.132 ...

$ IFI : num 0.309 0.311 0.769 0.364 0.594 ...

$ id : num 1.58 1.02 7.5 1.44 4.51 ...

$ id.I : num 1.72 1.41 7.07 1.47 4.21 ...

$ id.O : num 1.534 0.913 7.222 1.133 2.945 ...

$ HMG.I : num 2.05 2.47 3.15 1.76 2.15 ...

$ HMG.O : num 1.89 1.87 3.29 1.72 2.11 ...

$ AMP.strong.I: num 3 4 22 8 88 365 31 83 144 69

$ AMP.strong.O: num 1 0 18 9 59 323 11 58 85 22

$ mode0 : num 41.5 11819 95.8 683448.3 99613 ...

$ mode1 : num 32.9 15991.3 354.7 929687.6 179907.2 ...

$ mode2 : num 9.21 2.82e+03 2.99e+02 1.68e+05 8.42e+04 ...

$ mode3 : num 32.9 15991.3 354.7 929687.6 179907.2 ...

$ mode4 : num 41.5 11819 95.8 683448.3 99613 ...

$ AMI : num 1.33 1.34 1.87 1.9 1.89 ...

$ ASC : num 166 56725 1579 4686962 876030 ...

$ OH : num 211 79139 2581 7333395 1167766 ...

25



$ CAP : num 377 135865 4160 12020357 2043795 ...

$ ASC.CAP : num 0.441 0.418 0.38 0.39 0.429 ...

$ OH.CAP : num 0.559 0.582 0.62 0.61 0.571 ...

$ ASC.OH.RSUM : num 1 1 1 1 1 1 1 1 1 1

$ TSS : num 3112 5 1634 53347 10987 ...

$ CIS : num 0.994 0.516 0.862 0.989 0.997 ...

$ NAS : num 20 4 91 377 1443 ...

$ NASP : num 21 4 83 532 1481 ...

$ IDS.i : num 454.2 12.1 39.3 391.5 2087.4 ...

$ IDS.o : num 294.2 12.1 36.1 274 1602.1 ...

$ IDS.r : num 299.12 3.87 34.05 262.38 1688.48 ...

$ HMG.S.o : num 1.116 0.681 2.239 1.014 1.495 ...

$ HMG.S.i : num 1.383 0.681 2.25 1.308 1.704 ...

$ lam1P : num 0.998 0.968 0.978 0.999 1 ...

$ rhoP : num 1 1.21 1.06 1 1 ...

$ lam1PP : num 0.998 0.968 0.978 0.999 1 ...

$ rhoPP : num 1 1.21 1.06 1 1 ...

$ AGG.S : num 7.50e+01 4.23e-04 1.71e+01 7.81e-02 1.10e-01 ...

$ lam1D : num 0.899 1.016 1.213 1.264 1.282 ...

$ synergism.F : num 4.92 3.98 3.8 3.21 3.92 ...

$ mutualism.F : num 2.273 2.125 2.184 0.774 0.847 ...

$ lam1DS : num 0.302 9815.89 0.667 751.549 2196.043 ...

$ synergism.S : num 13.09 1031.213 4.462 0.944 6.789 ...

$ mutualism.S : num 2.6 3.17 1.75 1.05 1.46 ...

Given this data frame of network statistics, we can construct interesting plots for further anal-
ysis.

> #quartz("Quartz",width=8,height=4.5,pointsize=12)

> opar <- par(las=1,mar=c(8,5,2,1),xpd=TRUE,mfrow=c(1,2))

> bp=barplot(ns$id,ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

+ col="darkgreen",border=NA)

> text(bp,-1, # add labels

+ labels=rownames(ns),

+ srt=35,adj=1,cex=0.85)

> opar <- par(xpd=FALSE)

> abline(h=1,col="orange",lwd=2)

> #

> plot(ns$FCI,ns$id,pch=20,col="blue",cex=2,

+ ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

+ xlab="Finn Cycling Index (FCI)",

+ xlim=c(0,0.8),ylim=c(0,22))

> #

> rm(opar) # remove the plotting parameters

>

26



In
di

re
ct

−
to

−
D

ire
ct

 F
lo

w
 R

at
io

 (
I/D

, R
ea

liz
ed

)
0

5

10

15

20

oyst
er.d

at

co
ne_sp

rin
g.dat

Lake
Lanier_avg

_N.dat

Sylt_
Romo_Bight_C.dat

Sylt_
Romo_Bight_N.dat

Sylt_
Romo_Bight_P.dat

ch
esa

peake
_meso

haline_C_annual.d
at

ch
esa

peake
_meso

_ann_N.dat

ch
esa

peake
_meso

_ann_P.dat

mdmar02.bal

●●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0

5

10

15

20

Finn Cycling Index (FCI)

In
di

re
ct

−
to

−
D

ire
ct

 F
lo

w
 R

at
io

 (
I/D

, R
ea

liz
ed

)

Figure 3: Ratio of Indirect-to-Direct Flow for nine ecosystem models (left) and relationship between
the Finn Cycling Index and the ratio of Indirect-to-Direct flow in the nine models.

8 Connecting to Other Useful Packages

Another advantage of building the enaR package in R is that it lets ecologists take advantage
of other types of network analysis and statistical tools that already exist in R. We highlight two
examples here.

8.1 sna: Social Network Analysis

The sna package for Social Network Analysis is bundled in the statnet package and uses the same
network data object defined in network that we selected to use for enaR. Thus, the design decision
to use the network data object gives users direct access to sna tools.

Multiple measures of network centrality have been proposed, and the sna package provides a
way of calculating several. Thus, ecologists can now use the sna algorithms to determine different
types of centrality for their models.

> betweenness(oyster)

[1] 0.0 0.0 0.5 3.5 0.0 9.0

> closeness(oyster)

[1] 0.625 0.000 0.000 0.000 0.000 0.000

The sna package introduced new graphical capabilities as well. For example, it will create a
target diagram of centralities.

27



> m <- read.scor("~/Dropbox/RENA/package/pkg_skeleton/ena/data/chesapeake_mesohaline_C_annual.dat")

> b <- betweenness(m) # calculate betweenness centrality

> nms <- m%v%'vertex.names' # get vertex names

> show(nms)

[1] "Phytoplankton" "Bacteria in Suspended POC"

[3] "Bacteria in Sediment POC" "Benthic Diatoms"

[5] "Free Bacteria" "Heterotrophic Microflagelates"

[7] "Ciliates" "Zooplankton"

[9] "Ctenophores" "Sea Nettle"

[11] "Other Suspension Feeders" "Mya arenaria"

[13] "Oysters" "Other Polychaetes"

[15] "Nereis" "Macoma spp."

[17] "Meiofauna" "Crustacean Deposit Feeder"

[19] "Blue Crab" "Fish Larvae"

[21] "Alewife & Blue Herring" "Bay Anchovy"

[23] "Menhaden" "Shad"

[25] "Croaker" "Hogchoker"

[27] "Spot" "White Perch"

[29] "Catfish" "Bluefish"

[31] "Weakfish" "Summer Flounder"

[33] "Striped Bass" "Dissolved Organic Carbon"

[35] "Suspended Particulate Carbon" "Sediment Partculate Carbon"

> nms[b<=(0.1*max(b))] <- NA # exclude less central nodes

> set.seed(3)

> opar <- par(xpd=TRUE,mfrow=c(1,1))

> # create target plot

> gplot.target(m,b,#circ.lab=FALSE,

+ edge.col="grey",

+ label=nms) # show only labels of most central nodes

> #xlim=c(-1,4))

> rm(opar)

In addition to the node-level measures, sna includes graph-level indices.

> centralization(oyster, degree)

[1] 0.45

> centralization(oyster,closeness)

[1] 0.75

> centralization(oyster,betweenness)

[1] 0.41

>

28



[1] "Phytoplankton" "Bacteria in Suspended POC"

[3] "Bacteria in Sediment POC" "Benthic Diatoms"

[5] "Free Bacteria" "Heterotrophic Microflagelates"

[7] "Ciliates" "Zooplankton"

[9] "Ctenophores" "Sea Nettle"

[11] "Other Suspension Feeders" "Mya arenaria"

[13] "Oysters" "Other Polychaetes"

[15] "Nereis" "Macoma spp."

[17] "Meiofauna" "Crustacean Deposit Feeder"

[19] "Blue Crab" "Fish Larvae"

[21] "Alewife & Blue Herring" "Bay Anchovy"

[23] "Menhaden" "Shad"

[25] "Croaker" "Hogchoker"

[27] "Spot" "White Perch"

[29] "Catfish" "Bluefish"

[31] "Weakfish" "Summer Flounder"

[33] "Striped Bass" "Dissolved Organic Carbon"

[35] "Suspended Particulate Carbon" "Sediment Partculate Carbon"

Bacteria in Sediment POC

Other Polychaetes

Nereis

Crustacean Deposit Feeder
Bay Anchovy

Suspended Particulate Carbon

Sediment Partculate Carbon
348.8310271.3232.5193.8155116.377.538.80

Figure 4: Target plot of node betweenness centrality for the Chesapeake Bay model (mesohaline,
carbon, annual).

29



●

●

●

●
●

●

0

1

2

3

4
5

Figure 5: Plot of Oyster reef model using iGraph

8.2 iGraph

The iGraph package can also be useful for analyzing network data. Here are a few examples of using
the package. Note that some functions in iGraph conflict with other functions already defined, so
care is required when using iGraph.

> library(igraph)

> # The adjacency matrix

> A <- t(St$A) # I am transposing the matrix to be

> # row-to-column oriented as expected by iGraph

>

> # creating an iGraph graph

> g <- graph.adjacency(A)

> plot(g) # uses iGraph plot tools

iGraph has a different set of visualization tools and generates a different looking graph (Fig. 5).

> # betweenness centrality (calculated by iGraph and sna)

> betweenness(g)

[1] 0.0 0.0 0.5 3.5 0.0 9.0

> # shortest path between any two nodes

> shortest.paths(g)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 2 2 2 1 1

[2,] 2 0 1 1 2 1

[3,] 2 1 0 1 2 1

[4,] 2 1 1 0 1 1

[5,] 1 2 2 1 0 1

[6,] 1 1 1 1 1 0

30



> # average path length in the network (graph theory sense)

> average.path.length(g,directed=TRUE)

[1] 1.52

> diameter(g) # diameter of the graph

[1] 2

> vertex.connectivity(g) # connectivity of a graph (group cohesion)

[1] 0

> subcomponent(g,1,'in') # subcomponent reachable from 1 along inputs

[1] 1 5 0 2 3 4

> subcomponent(g,2,'in') # subcomponent reachable from 2 along inputs

[1] 2 1 5 0 3 4

> subcomponent(g,1,'out') # subcomponent reachable from 1 along outputs

[1] 1 2 3 5 4

> subcomponent(g,2,'out') # subcomponent reachable from 2 along output

[1] 2 3 5 4 1

> edge.connectivity(g)

[1] 0

> detach(package:igraph) # detach igraph package

There are other R packages that have graph and network analysis tools, like Bioconductor, that
might also be useful for ecologists

9 Summary and Future

This vignette shows how to use several of the key features of the enaR package that enables
scientists to perform Ecological Network Analysis in R. The vision for this package is that it will
provide access to ENA algorithms from both the Ulanowicz and Patten Schools. In its current
form it replicates, updates, and extends the functionality of the NEA.m function (Fath and Borrett,
2006). It also includes both ascendency calculations and mixed trophic impacts from the Ulanowicz
school of ENA, but there remains many possibilities for future development. We hope to do this
in collaboration with users. This vignette also illustrates how users can further analyze their data
with other R packages for graph and network analysis like sna and iGraph. In summary, we hope
you find this package useful for your ENA needs.

31



References

Allesina, S., A. Bodini, and C. Bondavalli. 2005. Ecological subsystems via graph theory: the role
of strongly connected components. Oikos 110:164–176.

Allesina, S., and C. Bondavalli. 2003. Steady state of ecosystem flow networks: A comparison
between balancing procedures. Ecol. Model. 165:221–229.

Allesina, S., and C. Bondavalli. 2004. WAND: An ecological network analysis user-friendly tool.
Environ. Model. Softw. 19:337–340.

Baird, D., J. M. McGlade, and R. E. Ulanowicz. 1991. The comparative ecology of six marine
ecosystems. Philos. Trans. R. Soc. Lond. B 333:15–29.

Baird, D., R. E. Ulanowicz, and W. R. Boynton. 1995. Seasonal nitrogen dynamics in Chesapeake
Bay—a network approach. Estuar. Coast. Shelf Sci. 41:137–162.

Borrett, S. R., R. R. Christian, and R. E. Ulanowicz, 2012. Network Ecology. in A. H. El-Shaarawi
and W. W. Piegorsch, editors. Encyclopedia of Environmetrics. John Wiley & Sons, 2nd edition.

Borrett, S. R., B. D. Fath, and B. C. Patten. 2007. Functional integration of ecological networks
through pathway proliferation. J. Theor. Biol. 245:98–111.

Borrett, S. R., and M. A. Freeze. 2011. Reconnecting Environs to their Environment. Ecol. Model.
222:2393–2403.

Borrett, S. R., M. A. Freeze, and A. Salas. 2011. Equivalence of the realized input and output
oriented indirect effects metrics in ecological network analysis. Ecol. Model. 222:2142–2148.

Borrett, S. R., and A. K. Salas. 2010. Evidence for resource homogenization in 50 trophic ecosystem
networks. Ecol. Model. 221:1710–1716.

Borrett, S. R., S. J. Whipple, B. C. Patten, and R. R. Christian. 2006. Indirect effects and dis-
tributed control in ecosystems 3. Temporal variability of indirect effects in a seven-compartment
model of nitrogen flow in the Neuse River Estuary (USA)—Time series analysis. Ecol. Model.
194:178–188.

Butts, C. 2008a. network: A Package for Managing Relational Data in R. J. Stat. Softw. 24.

Butts, C. 2008b. Social network analysis with sna. J. Stat. Softw. 24:1–51.

Christensen, V. 1995. Ecosystem maturity—Towards quantification. Ecol. Model. 77:3–32.

Christensen, V., and C. J. Walters. 2004. Ecopath with Ecosim: Methods, capabilities and limita-
tions. Ecol. Model. 172:109–139.

Christian, R. R., and C. R. Thomas. 2003. Network analysis of nitrogen inputs and cycling in the
Neuse River Estuary, North Carolina, USA. Estuaries 26:815–828.

Dame, R. F., and B. C. Patten. 1981. Analysis of energy flows in an intertidal oyster reef. Mar.
Ecol. Prog. Ser. 5:115–124.

Fann, S. L., and S. R. Borrett. 2012. Environ centrality reveals the tendency of indirect effects to
homogenize the functional importance of species in ecosystems. J. Theor. Biol. 294:74–86.

32



Farkas, I., I. Derenyi, A. Barabasi, and T. Vicsek. 2001. Spectra of “real-world” graphs: Beyond
the semicircle law. Physical Review E 64:026704.

Fath, B. D., and S. R. Borrett. 2006. A Matlab© function for Network Environ Analysis. Environ.
Model. Softw. 21:375–405.

Fath, B. D., and B. C. Patten. 1999. Review of the foundations of network environ analysis.
Ecosystems 2:167–179.

Finn, J. T. 1976. Measures of ecosystem structure and function derived from analysis of flows. J.
Theor. Biol. 56:363–380.

Finn, J. T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology 61:562–571.

Handcock, M., D. Hunter, C. Butts, S. Goodreau, and M. Morris. 2008. statnet: Software tools
for the representation, visualization, analysis and simulation of network data. J. Stat. Softw.
24:1548.

Hannon, B. 1973. The structure of ecosystems. J. Theor. Biol. 41:535–546.

Leontief, W. 1936. Quantitative input and output relations in the economic systems of the United
States. The Review of Economics and Statistics 18:105–125.

Leontief, W. W. 1966. Input–Output Economics. Oxford University Press, New York.

Patten, B. C. 1978. Systems approach to the concept of environment. Ohio J. Sci. 78:206–222.

Patten, B. C., 1991. Network ecology: Indirect determination of the life–environment relation-
ship in ecosystems. Pages 288–351 in M. Higashi and T. Burns, editors. Theoretical Studies of
Ecosystems: The Network Perspective. Cambridge University Press, New York.

Patten, B. C., R. W. Bosserman, J. T. Finn, and W. G. Cale, 1976. Propagation of cause in
ecosystems. Pages 457–579 in B. C. Patten, editor. Systems Analysis and Simulation in Ecology,
Vol. IV. Academic Press, New York.

Salas, A. K., and S. R. Borrett. 2011. Evidence for dominance of indirect effects in 50 trophic
ecosystem networks. Ecol. Model. 222:1192–1204.

Scharler, U. 2012. Ecosystem development during open and closed phases of temporarily
open/closed estuaries on the subtropical east coast of South Africa. Estuar. Coast. Shelf Sci.
108:119–131.

Scharler, U., and B. Fath. 2009. Comparing network analysis methodologies for consumer–resource
relations at species and ecosystems scales. Ecol. Model. 220:3210–3218.

Schramski, J. R., D. K. Gattie, B. C. Patten, S. R. Borrett, B. D. Fath, C. R. Thomas, and S. J.
Whipple. 2006. Indirect effects and distributed control in ecosystems: Distributed control in the
environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary,
USA—Steady-state analysis. Ecol. Model. 194:189–201.

Schramski, J. R., D. K. Gattie, B. C. Patten, S. R. Borrett, B. D. Fath, and S. J. Whipple. 2007.
Indirect effects and distributed control in ecosystems: Distributed control in the environ networks
of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series
analysis. Ecol. Model. 206:18–30.

33



Schramski, J. R., C. Kazanci, and E. W. Tollner. 2011. Network environ theory, simulation and
EcoNet© 2.0. Environ. Model. Softw. 26:419–428.

Ulanowicz, R. E. 1986. Growth and Development: Ecosystems Phenomenology. Springer–Verlag,
New York.

Ulanowicz, R. E. 1997. Ecology, the Ascendent Perspective. Columbia University Press, New York.

Ulanowicz, R. E. 2004. Quantitative methods for ecological network analysis. Comput. Biol. Chem.
28:321–339. URL http://dx.doi.org/10.1016/j.compbiolchem.2004.09.001.

Ulanowicz, R. E., and J. Kay. 1991. A package for the analysis of ecosystem flow networks.
Environmental Software 6:131–142.

Ulanowicz, R. E., and C. J. Puccia. 1990. Mixed trophic impacts in ecosystems. Coenoses 5:7–16.

Whipple, S. J., S. R. Borrett, B. C. Patten, D. K. Gattie, J. R. Schramski, and S. A. Bata. 2007.
Indirect effects and distributed control in ecosystems: Comparative network environ analysis
of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series
analysis. Ecol. Model. 206:1–17.

34

http://dx.doi.org/10.1016/j.compbiolchem.2004.09.001

	Introduction
	Background
	Data Input: General
	Model Data
	Network Data Class
	Building a Network Object
	Balancing for Steady-State

	Data Input: Reading Common Data File Formats
	Reading a SCOR file
	Reading in a WAND file
	Reading in a ENAM file

	Network Visualization
	Single Model Analysis
	Structural Network Analysis
	Flow Analysis
	Ascendency
	Storage Analysis
	Utility Analysis
	Environ Analysis
	Control Analysis
	Mixed Trophic Impacts
	Other Analyses

	Multi-Model Analyses (Batch Processing)
	Connecting to Other Useful Packages
	sna: Social Network Analysis
	iGraph

	Summary and Future

