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1 Introduction

This R package is about implementing the Features Annealed Independence Rules pro-

posed by Fan, J. and Fan, Y. (2008) on high dimensional classification. The problem is as

follows:

For the p-dimensional classification problem between two classes C1 and C2, suppose we

have nk observations Yk1...Yknk
in Rp in the kth class. The jth feature of the ith sample from

class Ck satisfies the model

Ykij = µkij + εkij, k = 1, 2, i = 1, 2, ..nk, j = 1, 2...p

In matrix form, it is

Yki = µk + εki, k = 1, 2, i = 1, 2, ..nk, j = 1, 2...p

where µk = (µk1...µkp)
′ is the mean vector from class Ck, and εki = (εki1, ..εkip)

′ has distribu-

tion N(0, Σk).

We further denote that µ̂k =
∑nk

i=1 Yki/nk, µ̂ = (µ1 + µ2)/2, D̂ = diag{(S2
1j + S2

2j)/2}.
where S2

kj is the sample variance of the jth feature in class k. so the classification rule is

δ̂(x) = (x− µ̂)′D̂−1(µ̂1 − µ̂2)

If δ̂(x) > 0, we classify the observation in class 1, otherwise we put it in class 2.

When the number of covariates p is way larger than the sample size n, classification is dif-

ficult since it is not easy to know which variables are important and which are unimportant.

Because of the high dimension issue, the Fisher discriminant analysis gives poor performance
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because the p*p variance covariance matrix is huge and estimation of this matrix is nearly

impossible. Bickel and Levina (2004) propose the independence rule by using only the diag-

onal elements of the variance covariance matrix to construct the Fisher’s rule. Fan, J. and

Fan, Y. (2008) show that this is still needs to be improved because the classification effect

is not satisfactory. To enhance the classification power, Fan, J. and Fan, Y (2008) propose

the Features Annealed Independence Rules. In their opinion, the dissatisfactory performance

of the independence rule is due to the inclusion of unimportant predictors(features). As a

matter of fact, these unimportant features accumulate the errors and add to much noise.

To extract important features in the first step is the key to mitigate this problem. They

proposed the Features Annealed Independence Rules. Two methods are used and named as

”t test” and ”oracle”.

Tj =
Ŷ1j − Ŷ2j√

S2
1j/n1 + S2

2j/n2

Oj = Ŷ1j − Ŷ2j

where

Ŷkj =

nk∑
i=1

ykij/nk

The first method is about ranking features according to the absolute value of the sample

t statistic for each predictor in the training sample. The second method is about ranking

features according to the absolute value of the sample mean difference for each predictors in

the training sample. These two methods to some extent reflect whether the predictors are

important or not in the classification process. Fan and Fan propose that firstly, we need to

select important features, and secondly, we only need to construct the independence rules

based on the selected features.
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2 Theorems

Key Assumptions for the model are: All observations are independent across samples and

within each class Ck; Observations Yk1...Yknk
are identically distributed; c1 ≤ n1

n2
≤ c2, where

c1 and c2 are positive constants and lastly, Σ1 = Σ2 = Σ.

Theorem 2.1. Suppose a is a p-dimensional uniformly distributed random vector on a (p−
1) dimensional sphere. Let λ1..λp be the eigenvalue of the covariance matrix Σ. Suppose

limp
1
p2

p∑
j=1

λ2
j < ∞, and limp

1
p

p∑
j=1

λj = τ with τ a constant, moreover assume that p−1α′α →

0, then if we define

δ̂a(x) = (a′x− a′µ̂)(a′µ̂1 − a′µ̂2) (1)

The misclassification error P (δ̂a(X) ≤ 0|Yki, i = 1, ..nk, k = 1, 2) → 1

2
in probability.

Theorem 2.2. Let s be a sequence such that log(p − s) = o(nγ), and log(s) = o(n1/2−γβn)

for some βn → 0 and 0 < γ < 1
3
. Suppose that min1≤j≤s

|aj |√
σ2
1j+σ2

2j

= n−γβn. Then under

some conditions, for x ∼ cnγ/2 with c some positive constant, we have

P (min
j≤s

|Tj| ≥ x and max
j>s

|Tj| < x) → 1

3 R Functions

>fairselect(training, testing, method)

This function does feature selection in the binary classification on the high dimensional data

using FAIR. See reference for more details. Arguments are shown below:

training: training dataset should be in the form of matrix. It is used to build models.

testing: testing dataset should be in the form of matrix. It is used to check model accuracy.

method: method has two options: ”ttest” or ”oracle”. They are different criteria for feature

3



selection on high dimensional data.

The function will return several values:

value: the minimum misclassification error by employing the model onto the testing data.

feature: the optimal number of important features to select.

m1: the sample mean of the first class in the training data.

m2: the sample mean of the second class in the training data.

cova: variance covariance matrix of the training sample data.

>classify(newdata,fairobject)

This function does binary classification on the new dataset based on the model.

newdata: newdata set should be in the form of numeric.

fairobject: The fair object with which we use to construct the classifier.

4 Examples

Here is an artificial example to illustrate how the functions work.

>x=matrix(rnorm(30*100),nrow=30)

>x[,1]=rbinom(30,1,prob=0.5)

>y=matrix(rnorm(30*100,0,1),nrow=30)

>y[,1]=rbinom(30,1,prob=0.5)

>training=x

>testing=y

>newdata=rnorm(99)

>a=fairselect(x,y,"ttest") # returns the method we use, features selected,
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sample mean in the training samples for two classes, and sample

variance covariance of the features.

>b=fairselect(x,y,"oracle")

>classify(newdata,a) #returns the value of 0 or 1
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