
How To Use iSubpathwayMiner

Chunquan Li

February 21, 2012

Contents

1 Overview 2

2 The methods of graph-based reconstruction of pathways 3
2.1 Convert KGML files of KEGG pathways to a list in R 4
2.2 Convert metabolic pathways to graphs . 4

2.2.1 The method to convert metabolic pathways to graphs 4
2.2.2 Some simple examples of operating pathway graphs 7

2.3 Convert non-metabolic pathways to graphs . 9
2.3.1 The default method to convert non-metabolic pathways to graphs 9
2.3.2 The alternative method to convert non-metabolic pathways to graphs 11

2.4 Convert pathway graphs to other derivative graphs . 11
2.4.1 Convert pathway graphs to undirected graphs . 12
2.4.2 Map current organism-specific gene identifiers to nodes in pathway graphs 12
2.4.3 Filter nodes of pathway graphs . 13
2.4.4 Simplify pathway graphs as graphs with only gene products (or only compounds)

as nodes . 14
2.4.5 Expand nodes of pathway graphs . 14
2.4.6 Get simple pathway graphs . 15
2.4.7 Merge nodes with the same names . 15

2.5 The integrated application of pathway reconstruct methods 16
2.5.1 Example 1: enzyme-compound (KO-compound) pathway graphs 16
2.5.2 Example 2: enzyme-enzyme (KO-KO) pathway graphs 18
2.5.3 Example 3: compound-compound pathway graphs 20
2.5.4 Example 4: organism-specific gene-gene pathway graphs 20

3 Methods to analyze pathway graphs 21
3.1 The basic analyses based on graph model . 21

3.1.1 Node methods: degree, betweenness, local clustering coefficient, etc. 21
3.1.2 Edge method: shortest paths . 23
3.1.3 Graph method: degree distribution, diameter, global clustering coefficient, den-

sity, module, etc. 24
3.2 Topology-based pathway analysis of cellular component sets 25

3.2.1 Topology-based pathway analysis of gene sets . 25
3.3 Annotate cellular component sets and identify entire pathways 29

3.3.1 Annotate gene sets and identify entire pathways 29
3.3.2 Annotate compound sets and identify enire pathways 31
3.3.3 Annotate compound and gene sets and identify entire pathways 33
3.3.4 Other examples . 33

1

3.4 The k-cliques method to identify subpathways . 34
3.4.1 Annotate gene sets and identify subpathways . 35

4 Visualize a pathway graph 36
4.1 Change node label of the pathway graph . 36
4.2 The basic commands to visualize a pathway graph with custom style 36
4.3 The layout style of a pathway graph in R . 39
4.4 Visualize the result graph of pathway analyses . 41
4.5 Export a pathway graph . 45

5 Data management 45
5.1 Set or update the current organism and the type of gene identifier 45
5.2 Update pathway data . 46
5.3 Load and save the environment variable of the system 46

6 Session Info 47

1 Overview

This vignette demonstrates how to easily use the iSubpathwayMiner package. The package can im-
plement the graph-based reconstruction, analyses, and visualization of the KEGG pathways. (1) Our
system provides many strategies of converting pathways to graph models (see the section 2). Ten func-
tions related to conversion from pathways to graphs are developed. Furthermore, the combinations
of these functions can get many combined conversion strategies of pathway graphs (> 20). (2) The
iSubpathwayMiner can support the annotation and identification of pathways based on gene sets (see
the section 3.3.1 and 3.4.1), compound sets (see the section 3.3.2), and even the combined sets of genes
and compounds (see the section 3.3.3). The entire pathway and subpathway identification methods
are available for these sets (see the section 3.3 and 3.4). (3) The system also supports topology-based
pathway analysis of these sets (see the section 3.2). The current available topological properties contain
degree, local clustering coefficient, closeness and betweenness. (4) We develop KEGG layout style of
pathway graphs in R to simulate the layout of the pathway picture in KEGG website (see the section
4). In addition, our system has also provided many types of automatic layout styles. Pathway graphs
can also be exported to the GML format supported by Cytoscape [Shannon et al., 2003]. We firstly
give several examples as follows:

The following commands can convert two metabolic pathways to graphs.

> #get path of the KGML files

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/metabolic/ec/",sep="")

> #convert pathways to a list in R

> pList<-getPathway(path,c("ec00010.xml","ec00020.xml"))

> #convert metabolic pathways to graphs

> gmList<-getMetabolicGraph(pList)

The following commands visualize a pathway graph. The result is shown in Figure 1.

> #visualize

> plotGraph(gmList[[1]])

The following command gets the type of organism and identifier in the current environment variable.

> getOrgAndIdType()

2

[1] "hsa" "ncbi-geneid"

The following commands annotate gene sets to the above two metabolic pathways and evaluate the
enrichment significance of pathways.

> #To do this, let us generate an example of gene sets:

> geneList<-getExample(geneNumber=1000,compoundNumber=0)

> #see a part of the set.

> #organism:human (hsa)

> #identifier type:Entrez Gene IDs (ncbi-geneid)

> geneList[1:5]

[1] "10" "100" "1000" "10000" "10005"

> #annotate the sets to pathways

> #evaluate the enrichment significance of pathways

> ann<-identifyGraph(geneList,gmList)

> #print the results to screen

> printGraph(ann)

pathwayId pathwayName annComponentRatio annBgRatio

1 path:00010 Glycolysis / Gluconeogenesis 12/1000 64/21796

2 path:00020 Citrate cycle (TCA cycle) 4/1000 30/21796

pvalue fdr

1 2.942795e-05 5.885591e-05

2 4.678027e-02 4.678027e-02

2 The methods of graph-based reconstruction of pathways

The section introduces many strategies for converting pathways to different types of graphs. We
firstly need to use the function getPathway to convert KGML files (KEGG Markup Language, http:
//www.genome.jp/kegg/xml/) of KEGG pathways to a list variable in R, which is used to store path-
way data in the iSubpathwayMiner system (see the section 2.1). We can then use the function get-

MetabolicGraph or getNonMetabolicGraph to convert metabolic pathways or non-metabolic pathways
to graphs (Figure 1 and 2). The function getMetabolicGraph constructs graphs based on reaction
information of KGML files of pathways (see the section 2.2). The function getNonMetabolicGraph

constructs graphs based on relation information (see the section 2.3). After using the function get-

MetabolicGraph or getNonMetabolicGraph to convert pathways to graphs, users can change these pathway
graphs to other derivative graphs. We develop the function getUGraph, mapNode, filterNode, simpli-

fyGraph, mergeNode, getSimpleGraph, and expandNode (see the section 2.4). Through these functions,
many graph-based reconstruction strategies of pathways can be done such as constructing undirected
graphs, organism-specific and idType-specific graphs, the metabolic graphs with enzymes (compounds)
as nodes and compounds (enzymes) as edges, etc. Furthermore, the combination of these functions
can also get more useful pathway graphs (see the section 2.5). For example, we can construct the di-
rected/undirected pathway graphs of enzyme-compound (see the section 2.5.1), enzyme-enzyme (see the
section 2.5.2), KO-KO (see the section 2.5.2), compound-compound (see the section 2.5.3), organism-
specific gene-gene (see the section 2.5.4), etc. Most of these conversions represent current major ap-
plications [Smart et al., 2008, Schreiber et al., 2002, Klukas and Schreiber, 2007, Kanehisa et al., 2006,
Goffard and Weiller, 2007, Koyuturk et al., 2004, Hung et al., 2010, Xia and Wishart, 2010, Jeong et al., 2000,
Antonov et al., 2008, Guimera and Nunes Amaral, 2005, Draghici et al., 2007, Li et al., 2009, Ogata et al., 2000,
Hung et al., 2010, Barabasi and Oltvai, 2004]. The following sections will detailedly introduce the usage
of the functions relative to graph-based conversion of pathways.

3

http://www.genome.jp/kegg/xml/
http://www.genome.jp/kegg/xml/

2.1 Convert KGML files of KEGG pathways to a list in R

The KEGG Markup Language (KGML) is an exchange format of KEGG pathway data. In a KGML
file (.xml), the pathway element is a root element. The entry element stores information about nodes
of the pathway, including the attribute information (id, name, type, link, and reaction), the ”graphics”
subelement, the ”component” subelement. The relation element stores information about relationship
between gene products (or between gene products and compounds). It includes the attribute information
(entry1, entry2, and type), and the ”subtype” subelement that specifies more detailed information about
the interaction. The reaction element stores chemical reaction between a substrate and a product. It
includes the attribute information (id, name, and type), the ”substrate” subelement, and the ”product”
subelement. Detailed information is provided in http://www.genome.jp/kegg/xml/docs/.

In KEGG, there are two fundamental controlled vocabularies for matching genes to pathways. En-
zyme commission (EC) numbers are traditionally used as an effective vocabulary for annotating genes
to metabolic pathways. With the rapid development of KEGG, more and more non-metabolic pathways
including genetic information processing, environmental information processing and cellular processes
have been added to KEGG PATHWAY database. KEGG Orthology (KO) identifiers, which over-
come limitations of enzyme nomenclature and integrate the pathway and genome information, have
become a better controlled vocabulary for annotating genes to both metabolic and regulatory path-
ways [Kanehisa et al., 2006]. Therefore, KEGG has provided the KGML files of reference metabolic
pathways linked to EC identifiers, reference metabolic pathways linked to KO identifiers, and reference
non-metabolic pathways linked to KO identifiers. They can be obtained from KEGG ftp site.

The function getPathway can convert the above KGML files to a list variable in R, which is used as
pathway data in our system. The conversion only changes data structure in order to efficiently operate
data in R environment. After conversion, most of original information about pathways are not ignored
although data structure changed. The list that stores pathway information will be used as the input
of other functions such as getMetabolicGraph and getNonMetabolicGraph. The following commands can
convert KGML files of metabolic pathways to a list in R.

> #get path of the KGML files

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/metabolic/ec/",sep="")

> #convert pathways to a list in R

> p<-getPathway(path,c("ec00010.xml","ec00020.xml"))

2.2 Convert metabolic pathways to graphs

2.2.1 The method to convert metabolic pathways to graphs

The function getMetabolicGraph can convert metabolic pathways to graphs. A result graph mainly
contains three types of nodes: compounds, gene products (enzymes, KOs, or genes encoding them),
and maps that represent pathways linked with the current pathway. Edges are mainly constructed
from reactions. Specially, if a compound participates in a reaction as a substrate or product, a di-
rected edge connects the compound node to the reaction node (enzymes, KOs, or genes). That is,
substrates of a reaction are connected to the reaction node (enzymes, KOs, or genes) and the reaction
node is connected to products. For substrates, they are directed toward the reaction node. For prod-
ucts, the reaction node is directed toward them. Reversible reactions have twice edges of irreversible
reactions. The conversion strategy of pathway graphs has the advantage that graph algorithms and
standard graph drawing techniques can be used. More importantly, almost all information can be ef-
ficiently stored in the kind of graph model. The similar strategy is also adopt by many study groups
[Smart et al., 2008, Klukas and Schreiber, 2007, Goffard and Weiller, 2007, Goffard and Weiller, 2007,
Koyuturk et al., 2004].

4

http://www.genome.jp/kegg/xml/docs/

In addition, a compound and a linked map will be connected by an edge if they have relationships get
from relation element of the KGML file. Other information such as node attribute, pathway attribute
(e.g., pathway name), etc. are converted to attribute of graph.

The following commands can convert metabolic pathways to graphs.

> #get path of the KGML files

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/metabolic/ec/",sep="")

> #convert pathways to a list in R

> p<-getPathway(path,c("ec00010.xml"))

> #convert metabolic pathways to graphs

> gm<-getMetabolicGraph(p)

The following commands can visualize the graph of the Glycolysis / Gluconeogenesis pathway. Figure
1 shows the result graph. In the figure, the blue rectangle nodes represent enzymes. The circle nodes
represent compounds. The white rectangle nodes represent maps.

> #name of graph gm[[1]]

> gm[[1]]$title

[1] "Glycolysis / Gluconeogenesis"

> #visualize

> plotGraph(gm[[1]])

For a pathway graph, the function summary can print the number of nodes and edges, names of node
and edge attributes, and whether the graph is directed as follows:

> summary(gm[[1]])

Vertices: 94

Edges: 183

Directed: TRUE

Graph attributes: name, number, org, title, image, link.

Vertex attributes: name, id, names, type, reaction, link, graphics_name, graphics_fgcolor, graphics_bgcolor, graphics_type, graphics_x, graphics_y, graphics_width, graphics_height, graphics_coords.

No edge attributes.

The function print can display the information similar to the function summary. In addition, the
function also displays edges, graph attributes, node attributes, and edge attributes. The following
command prints all information of a pathway graph:

> print(gm[["00010"]],v=TRUE,e=TRUE,g=TRUE)

Because the pathway graph is usually too large, here we only display its subgraph with five nodes in
order to save page space.

> #display a subgraph with 5 nodes.

> sgm<-subgraph(gm[[1]],V(gm[[1]])[1:5])

> print(sgm,g=TRUE,v=TRUE,e=TRUE)

Vertices: 5

Edges: 5

Directed: TRUE

Graph attributes:

5

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●● ●
●●

●

●

●

●
4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5
C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

Pyruvate metabolism 2.7.1.40

Citrate cycle (TCA cycle)

4.2.1.11

5.4.2.1

1.2.1.12

Carbon fixation in photosynthetic organisms

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3
2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

TITLE:Glycolysis / Gluconeogenesis

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022C05125C00024

C00084

C16255

C15973

C05378
C06186 C06187

C06188C01451

C00068

4.1.1.32C00036

1.1.2.7

4.1.1.49

Propanoate metabolism

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 1: The Glycolysis / Gluconeogenesis pathway graph.

6

[[name]]

[1] "path:ec00010"

[[number]]

[1] "00010"

[[org]]

[1] "ec"

[[title]]

[1] "Glycolysis / Gluconeogenesis"

[[image]]

[1] "http://www.genome.jp/kegg/pathway/ec/ec00010.png"

[[link]]

[1] "http://www.genome.jp/kegg-bin/show_pathway?ec00010"

Vertex attributes:

name id names type reaction

[0] 37 37 ec:1.2.1.3 enzyme rn:R00710

[1] 38 38 ec:6.2.1.13 enzyme rn:R00229

[2] 39 39 ec:1.2.1.5 enzyme rn:R00711

[3] 40 40 cpd:C00033 compound unknow

[4] 41 41 path:ec00030 map unknow

link graphics_name

[0] http://www.kegg.jp/dbget-bin/www_bget?1.2.1.3 1.2.1.3

[1] http://www.kegg.jp/dbget-bin/www_bget?6.2.1.13 6.2.1.13

[2] http://www.kegg.jp/dbget-bin/www_bget?1.2.1.5 1.2.1.5

[3] http://www.kegg.jp/dbget-bin/www_bget?C00033 C00033

[4] http://www.kegg.jp/dbget-bin/www_bget?ec00030 Pentose phosphate pathway

graphics_fgcolor graphics_bgcolor graphics_type graphics_x graphics_y

[0] #000000 #BFBFFF rectangle 289 943

[1] #000000 #BFBFFF rectangle 146 911

[2] #000000 #BFBFFF rectangle 289 964

[3] #000000 #FFFFFF circle 146 953

[4] #000000 #FFFFFF roundrectangle 656 339

graphics_width graphics_height graphics_coords

[0] 46 17 unknow

[1] 46 17 unknow

[2] 46 17 unknow

[3] 8 8 unknow

[4] 62 237 unknow

Edges and their attributes:

[0] '37' -> '40'

[1] '40' -> '37'

[2] '38' -> '40'

[3] '39' -> '40'

[4] '40' -> '39'

2.2.2 Some simple examples of operating pathway graphs

Since pathways can be converted to graphs, many analyses based on graph model are available by using
the functions provided in the igraph package. For example, we can get subgraph, degree, shortest path,
etc. Detailed information will be introduced in the section 3. Here, we only give some examples of
operating graphs, which are very important for effectively interpreting and operating pathway graphs.

7

We can get the name and number of the pathway, as follows:

> gm[[1]]$title

[1] "Glycolysis / Gluconeogenesis"

> gm[[1]]$number

[1] "00010"

We can get the attribute value of a node. In all attributes, the ”names” attribute is the most important.
It makes us able to identify the cellular components the node includes. Its values are usually the
identifiers of compound, enzyme, gene, or KO, etc. The following commands can get ”names” attribute
of the second node:

> V(gm[[1]])[2]$names

[1] "ec:6.2.1.13"

The result shows that the second node is the enzyme identifier. We can also use another method to get
”names” attribute of the node

> get.vertex.attribute(gm[[1]],"names",2)

[1] "ec:6.2.1.13"

We can get other attributes. For example, the following command gets the ”type” attribute of the
second node:

> V(gm[[1]])[2]$type

[1] "enzyme"

The result shows that the second node is the enzyme.
An important application is to identify some nodes that meet the certain conditions. For example,

one is likely to want to find the enzyme ”ec:4.1.2.13” and ”ec:1.2.1.59” in pathway graph ”00010”, and
then calculate the shortest path between them in the graph. One may also want to identify the enzyme
”ec:4.1.2.3”, and then calculate its betweenness, which represents the importance of the node.

In order to do these, one firstly needs to get indexes of interesting nodes. Node indexes are used
as input of most of functions in igraph package. We then use functions in the igraph package (e.g.,
get.shortest.paths, betweenness, etc.) to get the analysis results. The following commands get indexes
of nodes with ”names”=”ec:4.1.2.13” and ”ec:1.2.1.59” in graph ”00010”, then calculate shortest path of
them.

> #get indexes of nodes

> index1<-V(gm[[1]])[V(gm[[1]])$names=="ec:4.1.2.13"]

> index2<-V(gm[[1]])[V(gm[[1]])$names=="ec:1.2.1.59"]

> #get shortest path

> shortest.path<-get.shortest.paths(gm[[1]],index1,index2)

> #display shortest path

> shortest.path

[[1]]

[1] 0 88 80

8

> #convert indexes to names

> V(gm[[1]])[shortest.path[[1]]]$names

[1] "ec:4.1.2.13" "cpd:C00118" "ec:1.2.1.59"

Calculate betweenness of the enzyme ”ec:4.1.2.3”.

> index1<-V(gm[[1]])[V(gm[[1]])$names=="ec:4.1.2.13"]

> betweenness(gm[[1]],index1)

[1] 1756.746

Note that we should see node index value using the function as.integer. The direct display is not
real node index value, but the value of the ”id” attribute of nodes.

> #node index value

> as.integer(index1)

[1] 0

> #direct display is not real node index value.

> index1

Vertex sequence:

[1] "13"

> #it is equal to the value of the "id" attribute.

> index1$id

[1] "13"

2.3 Convert non-metabolic pathways to graphs

2.3.1 The default method to convert non-metabolic pathways to graphs

The function getNonMetabolicGraph can convert non-metabolic pathways to directed graphs. An result
graph mainly contains two types of nodes: gene products (KOs) and maps that represent pathways
linked with the pathway graph. Sometimes, there are several compounds in pathways such as IP3,
DAG, cAMP, ca+, etc. Edges are obtained from relations. In particular, two nodes are connected by an
edge if they have relationships get from relation element of the KGML file. The relation element specifies
relationships between nodes. For example, the attribute PPrel represents protein-protein interaction
such as binding and modification. Other information such as node attribute, pathway attribute, etc.
is converted to attribute of graphs. The following commands can convert non-metabolic pathways to
graphs. The result graph of the MAPK signaling pathway is shown in Figure 2.

> #get path

> pathn<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/non-metabolic/ko/",sep="")

> pn<-getPathway(pathn,c("ko04010.xml","ko04020.xml"))

> #Convert pathways to graphs

> gn1<-getNonMetabolicGraph(pn)

> #name of the first pathway

> gn1[[1]]$title

[1] "MAPK signaling pathway"

> #visualize

> plotGraph(gn1[[1]])

9

−−> −−> −−>

−−>
−−>
−−>

−−>

−−> −−> −−>

−−>

−−>
−−>

−−>
−−>

−−>

−−>
−−>

−−> −−>

−−−
−−−

−−− −−−
−−− −−−
−−− −−−

−−− −−−

−−− −−−
−−− −−−

−−− −−−
−−− −−−

−−− −−− −−−
−−−

−−− −−−

−−− −−−
−−− −−− −−− −−− −−− −−−

−−−
−−−

−−−
−−− −−−
−−−

−−−
−−− −−−

−−− −−− −−−
−−− −−−

−−−
−−− −−− −−−

+p

+p +p

−−>
−−>
−−>
−−>

+p
+p +p
+p +p
+p

+p +p

+p
+p
+p

+p

+p
+p
+p

+p +p

+p

−−>

−−>

−−>

−−>

−−>

−−>

−−>

−−>

+p
+p

+p

+p

+p
+p

+p
+p

+p

+p
+p

+p
+p

+p
+p

+p

+p
+p +p

+p

+p +p
+p

+p
+p
+p
+p +p

+p
+p
+p

+p
+p
+p
+p

+p +p

+p
+p

+p
+p

+p
+p

+p

+p

+p
+p

+p
+p

+p
+p

+p
+p

−−| +p

−−| +p

−−|
−−|

−−| −−| −p −−| −p

−−| −p

−−| −p

−−| −p

−−| −p
−−| −p
−−| −p

−−| −p
−−| −p

−−| −p

−−| −p

−−| −−|

−e−> −e−> −e−>

..>
..> ..>
..>

..>

..> ..>

−−>

−−>
−−>

−−> −−>

−−>

−−>

●

●●●
●

C00338

K04349...

K04459K04458

K04461

K04389

C00165
C00575

C01245

C00076

K04407

K01047

K04381
K04380

K02580...
K04467...
K04466

K04371

K04370

K04369
K04368

K04367
K04366

K04365

K04352
K08052

K02677

K04353...

K04345

K08018

K08053

K02833...

K04350...

K03099

K04346...

K04364
K04363...
K04362...
K04361

K03176...

K04344...

K04359
K04358
K04357

K04356...
K04355
K02582

TITLE:MAPK signaling pathway

Phosphatidylinositol signaling system

Cell cycle
Apoptosis

Wnt signaling pathway

p53 signaling pathway

K04465K04464K04463

K04468

K05866
K04445

K04443...
K04374

K04454
K04453
K04452
K04376

K04451
K04375
K04450

K04441

K04460

K04433

K04432

K04459
K04458

K04457
K04456

K04429

K04428

K04455

K04427

K04426

K04425

K04424
K04423
K04422

K04414

K04411...

K04405
K04404

K04403

K04402

K03175

K02308

K03173

K02187

K04391

K04388...
K04390

K04386...
K03158

K13375...

K04383...
K03156

K04442

K04392...K04409...K04420...
K04434...

K04419 K04431
K04440

K04430

K04438K04439 K04462
K03283

K04449
K04448

K04348...

K04436K04437

K04416

K04415

K04408

K04406

K04379K04378

K04377
K04376
K04375

K04374
K04373
K04372

Figure 2: The MAPK signaling pathway graph with ambiguous edges as bi-directed.

10

2.3.2 The alternative method to convert non-metabolic pathways to graphs

In non-metabolic pathways, there are usually many different types of edges between nodes. There
are four fundamental types of edges including ECrel (enzyme-enzyme relation), PPrel (protein-protein
interaction), GErel (gene expression interaction) and PCrel (protein-compound interaction). Each fun-
damental type usually contains many subtypes such as compound, hidden compound, activation, inhi-
bition, expression, repression, indirect effect, state change, binding/assoction, dissociation, and missing
interaction. Detailed information is provided in http://www.genome.jp/kegg/xml/docs/.

According to these substypes, we can obtain edge direction. For example, ”activation” means that
protein A activates B (A–>B). However, not all types of edges have definite direction. For example,
”binding/association” means that there is the binding or association relation between protein A and
protein B but we don’t know A–>B or B–>A. In addition, an edge is also likely to have no subtype and
thus we can’t know its direction. The argument ambiguousEdgeDirection can define direction of am-
biguous edges according to subtype of edges. Users firstly define which subtype of edges are considered
as ambiguous edges by setting the argument ambiguousEdgeList. The default ambiguous edges include
”compound”, ”hidden compound”, ”state change”, ”binding/association”, ”dissociation”, and ”unknow”.
Then users can define their direction through setting the value of the argument ambiguousEdgeDirection

as one of ”single”, ”bi-directed” or ”delete”, which means to convert ambiguous edges to ”–>”, ”<–>”,
or to delete these ambiguous edges. The default value is ”bi-directed”.

The following commands convert pathways to graphs with ambiguous edges deleted. Compared with
Figure 2, some edges are deleted such as edges related with the compound ”C00076” because the default
ambiguous edges include ”compound”.

> #Convert pathways to graphs with ambiguous edges as deleted

> gn2<-getNonMetabolicGraph(pn,ambiguousEdgeDirection="delete")

2.4 Convert pathway graphs to other derivative graphs

After using the function getMetabolicGraph or getNonMetabolicGraph to convert pathways to graphs,
users can change these pathway graphs to other derivative graphs. The following section will detailedly
introduce the usage of the related functions.

We firstly construct metabolic pathway graphs (gm) and non-metabolic pathway graphs (gn) as
examples of input data. The commands are as follows:

> ##get metabolic pathway graphs

> #get path of KGML files

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/metabolic/ec/",sep="")

> #convert metabolic pathways to graphs

> gm<-getMetabolicGraph(getPathway(path,c("ec00010.xml")))

> #show title of pathway graphs

> sapply(gm,function(x) x$title)

00010

"Glycolysis / Gluconeogenesis"

> ##get non-metabolic pathway graphs

> #get path

> path1<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/non-metabolic/ko/",sep="")

> #convert non-metabolic pathways to graphs

> gn<-getNonMetabolicGraph(getPathway(path1,c("ko04010.xml")),

+ ambiguousEdgeDirection="bi-directed")

11

http://www.genome.jp/kegg/xml/docs/

> #show title of pathway graphs

> sapply(gn,function(x) x$title)

04010

"MAPK signaling pathway"

Note that the variable gm is a list of metabolic pathway graphs. The variable gn is a list of non-metabolic
pathway graphs.

2.4.1 Convert pathway graphs to undirected graphs

The function getUGraph can convert directed graphs to undirected graphs. The following commands can
get the undirected simple pathway graph (see Figure ?? for the result graph).

> #get undirected pathway graphs

> g1<-getUGraph(gm,simpleGraph=TRUE)

2.4.2 Map current organism-specific gene identifiers to nodes in pathway graphs

The function mapNode can map current organism-specific gene identifiers to nodes of graphs. We can
use the function getOrgAndIdType to know the type of organism and identifier in the current study:

> getOrgAndIdType()

[1] "hsa" "ncbi-geneid"

The result means that the type of organism and identifier in the current study are Homo sapiens (hsa)
and Entrez gene identifiers (NCBI-geneid), which is the default value of the system (see the section ??).

The following commands use the function mapNode to map human gene identifiers (NCBI-geneid)
to nodes in pathway graphs. We can see the value of names attribute of some nodes revised. Green
rectangle nodes are those that can correspond to gene identifiers, suggesting that these nodes are
enzymes that human genes can encode. White rectangle nodes are those that can’t correspond to gene
identifiers, indicating that they may not be enzymes which human genes can encode. Therefore, the
graph can be considered as human Glycolysis / Gluconeogenesis pathway graph.

> #see the names attribute of nodes.

> V(gm[[1]])[1:10]$names

[1] "ec:1.2.1.3" "ec:6.2.1.13" "ec:1.2.1.5" "cpd:C00033" "path:ec00030"

[6] "path:ec00500" "ec:4.1.1.1" "ec:1.1.1.2" "ec:1.1.1.1" "ec:4.1.1.1"

> #get the organism-specific and idType-specific graph

> g1<-mapNode(gm)

> #see the names attribute of nodes in the new graph.

> #some node names are revised as NCBI-gene IDs

> V(g1[[1]])[1:10]$names

[1] "217 219 223 224 501" "ec:6.2.1.13"

[3] "218 220 221 222" "cpd:C00033"

[5] "path:ec00030" "path:ec00500"

[7] "ec:4.1.1.1" "10327"

[9] "124 125 126 127 128 130 131" "ec:4.1.1.1"

12

2.4.3 Filter nodes of pathway graphs

The function filterNode is used to filter ”not interesting” nodes. For example, it may be necessary to
ignore nodes with type=”map” when focusing on components such as compounds and gene products.
The function will delete nodes according to the argument nodeType and thus related edges are also
deleted.

The following commands can delete nodes whose types are ”map”.

> #We display them before nodes are filtered

> V(gn[[1]])$type

[1] "compound" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[7] "compound" "compound" "compound" "compound" "ortholog" "ortholog"

[13] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[19] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[25] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[31] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[37] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[43] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "map"

[49] "map" "map" "map" "map" "map" "ortholog"

[55] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[61] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[67] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[73] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[79] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[85] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[91] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[97] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[103] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[109] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[115] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[121] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[127] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[133] "ortholog"

> #delete nodes with type="map"

> g1<-filterNode(gn,nodeType=c("map"))

> #The "map" nodes are deleted in the new graph.

> V(g1[[1]])$type

[1] "compound" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[7] "compound" "compound" "compound" "compound" "ortholog" "ortholog"

[13] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[19] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[25] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[31] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[37] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[43] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[49] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[55] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[61] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[67] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[73] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

13

[79] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[85] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[91] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[97] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[103] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[109] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[115] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[121] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

[127] "ortholog"

2.4.4 Simplify pathway graphs as graphs with only gene products (or only compounds)
as nodes

When we focus on gene products, compounds may be not important. Similarly, gene products may
be not important when focusing on metabolites (compounds). For metabolic pathway graphs, a useful
approach is to get graphs with gene products (or compounds) as nodes and compounds (gene products)
as edges.

The function simplifyGraph can convert pathways to graphs with gene products (or compounds)
as nodes and compounds (or gene products) as edges. We take an example of constructing metabolic
pathway graphs with enzymes as nodes and compounds as edges. Firstly, all enzymes in a pathway
graph are used as nodes. For undirected, two nodes are then connected by an edge if their corresponding
reactions have a common compound. For directed, two nodes are connected by an edge if their cor-
responding reactions have a common compound and two nodes are reachable through the compound.
Finally, compound information is added into edge attribute of new graphs. Similarly, a metabolic path-
way graph can be converted to a graph with compounds as nodes. Two nodes are connected by an edge
if they belong to the same reaction. Enzyme information is added into edge attribute of new graphs.

The following commands construct pathway graphs with enzymes as nodes and compounds as edges.

> #get graphs with enzymes as nodes and compounds as edges

> g1<-simplifyGraph(gm,nodeType="geneProduct")

> #see the names attribute of three edges

> E(g1[[1]])[1:3]$names

[1] "cpd:C05378" "cpd:C00118" "cpd:C00118"

The following commands construct graphs with compounds as nodes and enzymes as edges.

> #get graphs with compounds as nodes and enzymes as edges

> g2<-simplifyGraph(gm,nodeType="compound")

> #see the names attribute of three edges

> E(g2[[1]])[1:3]$names

[1] "ec:6.2.1.1" "ec:2.7.1.69" "ec:5.4.2.2"

2.4.5 Expand nodes of pathway graphs

In pathways, some nodes may have multiple components, which are considered as components of ”par-
alogues”. For example, node PDE, which is the enzyme node in Purine metabolism (ec00230), maps
to two enzymes: PDE (ec:3.1.4.17) and cGMP-PDE (ec:3.1.4.35). The function expandNode is just used
to expand those nodes with multiple components. Users can select which types of nodes are expanded
using the argument nodeType. The default values represent that all nodes are expanded. The following
commands expand nodes of non-metabolic pathway graphs:

14

> #We firstly display node number before nodes are expanded

> vcount(gn[[1]])

[1] 133

> ##expand nodes in Graphs

> g1<-expandNode(gn)

> #We can see change of node number in the new graph:

> #node number after nodes are expanded

> vcount(g1[[1]])

[1] 197

The argument nodeType can determine which types of nodes should be expanded. Expanding nodes
with certain node types is also available. The following commands only expand nodes that belong to
gene products.

> #only expand nodes with type="enzyme" or "ortholog" in graphs

> g2<-expandNode(gn,nodeType=c("ortholog","enzyme"))

2.4.6 Get simple pathway graphs

If a graph is simple, it does not contain loop or/and multiple edges. A loop edge is an edge where the
two endpoints have the same node (vertex). Two edges are multiple edges if they have exactly the same
two endpoints. If graphs are not simple, some graph-based algorithms may be not applied. We can use
the function getSimpleGraph to get a simple graph. Note that information of multiple edges is kept in
edge attribute using ”;” as separator.

The function is.simple can check whether a graph is simple as follows:

> all(sapply(gm,is.simple))

[1] TRUE

2.4.7 Merge nodes with the same names

A pathway usually includes some nodes with the same names. For example, an enzyme may appear
repeatedly in a pathway. As shown in Figure 1, the Glycolysis / Gluconeogenesis pathway contain
enzymes that appear repeatedly such as 2.7.1.69, 4.1.1.1, etc. The function mergeNode can merge those
nodes with the same names. Therefore, each node in the result graph will has unique name. The edges
of the merged nodes are obtained from edges of original nodes. After nodes are merged, multiple edges
or loops may appear. The argument simpleGraph can delete them, which will return simple graphs (see
the section 2.4.6). The following commands can get the graph in which nodes with the same names are
merged.

> #get node number before merge

> vcount(gm[[1]])

[1] 94

> #merge nodes

> g1<-mergeNode(gm,simple=FALSE)

> #get node number after merge

> vcount(g1[[1]])

[1] 83

15

2.5 The integrated application of pathway reconstruct methods

In the section, we have provided some examples for converting pathways to graphs using the combination
of graph conversion functions. Through the combination of these functions, many conversion strategies
of pathway graphs can be implemented.

The section introduces the 24 examples of pathway graphs. They include enzyme-compound (KO-
compound) pathway graphs, enzyme-enzyme (KO-KO) pathway graphs, compound-compound pathway
graphs, organism-specific gene-gene pathway graphs, etc. These examples represent current major ap-
plications [Smart et al., 2008, Schreiber et al., 2002, Klukas and Schreiber, 2007, Kanehisa et al., 2006,
Goffard and Weiller, 2007, Koyuturk et al., 2004, Hung et al., 2010, Xia and Wishart, 2010, Jeong et al., 2000,
Antonov et al., 2008, Guimera and Nunes Amaral, 2005, Draghici et al., 2007, Li et al., 2009, Ogata et al., 2000,
Hung et al., 2010, Barabasi and Oltvai, 2004]. In the following subsection, we will detailedly introduce
the combination usage of the graph conversion functions.

2.5.1 Example 1: enzyme-compound (KO-compound) pathway graphs

For metabolic pathways, the following commands can get pathway graphs with enzymes and compounds
as nodes.

> #get graphs with enzymes and compounds as nodes

> g1<-filterNode(gm,nodeType=c("map"))

> #visualize

> plotGraph(g1[[1]])

Figure 3 shows the result graph of the Glycolysis / Gluconeogenesis pathway. Compared with original
pathway graph (Figure 1), the ”map” nodes disappear in the new graph.

If we apply the above method to all metabolic pathways, we can get all metabolic pathway graphs
with enzymes and compounds as nodes. To do it easily, we have developed the function getMetabol-

icECCOGraph. The following command can use the function to get all metabolic pathway graphs with
enzymes and compounds as nodes.

> #get all metabolic pathway graphs with enzymes and compounds as nodes

> graphList<-getMetabolicECCOGraph()

The result of the function are equal to the result of the following commands:

> #get all metabolic pathway data

> metabolicEC<-get("metabolicEC",envir=k2ri)

> ##write the results to tab delimited file.

> graphList<-filterNode(getMetabolicGraph(metabolicEC),nodeType=c("map"))

The variable metabolicEC stores all metabolic pathway data (see the section 5). The variable graphList

stores all metabolic pathway graphs with enzymes and compounds as nodes.
The following commands can get the corresponding undirected graphs, that is, the undirected graphs

with enzymes and compounds as nodes. The function getMetabolicECCOUGraph can get all results.

> #get the undirected graphs with enzymes and compounds as nodes

> g2<-filterNode(getUGraph(gm),nodeType=c("map"))

The following commands can get graphs with enzymes and compounds as nodes, in which each node
only contains one enzyme/compound and each enzyme/compound only appears once. The function
getMetabolicECCOEMGraph can get all results.

16

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●● ●
●●

●

●

●

●
4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5
C00033

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

2.7.1.40

4.2.1.11

5.4.2.1

1.2.1.12

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3

2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022C05125C00024

C00084

C16255

C15973

C05378
C06186 C06187

C06188C01451

C00068

4.1.1.32
C00036

1.1.2.7

4.1.1.49

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 3: The Glycolysis / Gluconeogenesis pathway graph with enzymes and compounds as nodes.
Compared with original pathway graph (Figure 1), the ”map” nodes disappear in the new graph.

17

> #get graphs with enzymes and compounds as nodes

> #And, each node only contains one enzyme/compound and

> #each enzyme/compound only appears once in the graph.

> g3<-mergeNode(expandNode(filterNode(gm,nodeType=c("map"))))

The following commands can get the corresponding undirected graphs. The function getMetabol-

icECCOUEMGraph can get all results.

> #get the undirected graphs with enzymes and compounds as nodes

> #And, each node only contains one enzyme/compound and

> #each enzyme/compound only appears once in the graph.

> g4<-mergeNode(expandNode(filterNode(getUGraph(gm),nodeType=c("map"))))

For non-metabolic pathways, the following commands can get graphs with KOs and compounds as
nodes. The function getNonMetabolicKOCOGraph can get all results.

> #get graphs with KOs and compounds as nodes

> g5<-filterNode(gn,nodeType=c("map"))

The following commands can get the undirected graphs with KOs and compounds as nodes. The
function getNonMetabolicECCOUGraph can get all results.

> #get the undirected graphs with KOs and compounds as nodes

> g6<-filterNode(getUGraph(gn),nodeType=c("map"))

The following commands can get graphs with KOs and compounds as nodes. And, each node only
contains a KO/compound and each KO/compound only appears once in the graph. The function
getNonMetabolicKOCOEMGraph can get all results.

> #get graphs with KOs and compounds as nodes

> #And, each node only contains a KO/compound and

> #each KO/compound only appears once in the graph.

> g7<-mergeNode(expandNode(filterNode(gn,nodeType=c("map"))))

The following commands can get the corresponding undirected graphs. The function getNonMetabol-

icKOCOUEMGraph can get all results.

> #get the undirected graphs with KOs and compounds as nodes

> #And, each node only contains a KO/compound and

> #each KO/compound only appears once in the graph.

> g8<-mergeNode(expandNode(filterNode(getUGraph(gn),nodeType=c("map"))))

2.5.2 Example 2: enzyme-enzyme (KO-KO) pathway graphs

For metabolic pathways, the following commands can get graphs with enzymes as nodes and compounds
as edges. The function getMetabolicECECGraph can get the results of all metabolic pathway graphs with
enzymes as nodes and compounds as edges.

> #get graphs with enzymes as nodes and compounds as edges

> g1<-simplifyGraph(filterNode(gm,nodeType=c("map")),nodeType="geneProduct")

The following commands can get the corresponding undirected graphs, that is, the undirected graphs
with enzymes as nodes and compounds as edges. The function getMetabolicECECUGraph can get all
results.

18

> #get the undirected graphs with enzymes as nodes and compounds as edges

> g2<-simplifyGraph(filterNode(getUGraph(gm),nodeType=c("map")),nodeType="geneProduct")

The following commands can get graphs with enzymes as nodes and compounds as edges. And, each
node contains only one enzyme and each enzyme only appears once in the graph. The graph can be
treated as the enzyme-enzyme network obtained from the Glycolysis / Gluconeogenesis pathway. The
function getMetabolicECECEMGraph can get all results.

> #get graphs with enzymes as nodes and compounds as edges

> #And, each node contains only one enzyme and each enzyme only appears once.

> g3<-mergeNode(expandNode(simplifyGraph(filterNode(gm,

+ nodeType=c("map")),nodeType="geneProduct")))

The following commands can get the corresponding undirected graphs. The function getMetabol-

icECECUEMGraph can get all results.

> #get undirected graphs with enzymes as nodes and compounds as edges.

> #And, each node contains only one enzyme and each enzyme only appears once.

> g4<-mergeNode(expandNode(simplifyGraph(filterNode(getUGraph(gm),

+ nodeType=c("map")),nodeType="geneProduct")))

For non-metabolic pathways, the following commands can get graphs with KOs as nodes. The
function getNonMetabolicKOKOGraph can get all results.

> #get graphs with KOs as nodes

> g5<-simplifyGraph(filterNode(gn,nodeType=c("map")),nodeType="geneProduct")

The following commands can get the corresponding undirected graphs, that is, the undirected graphs
with KOs as nodes. The function getNonMetabolicKOKOUGraph can get all results.

> #get the undirected graphs with KOs as nodes

> g6<-simplifyGraph(filterNode(getUGraph(gn),

+ nodeType=c("map")),nodeType="geneProduct")

The following commands can get graphs with KOs as nodes. And, each node contains only a KO
and each KO only appears once in the graph. The function getNonMetabolicKOKOEMGraph can get all
results.

> #get graphs with only KOs as nodes. And, each node contains

> #only a KO and each KO only appears once in the graph.

> g7<-mergeNode(expandNode(simplifyGraph(filterNode(gn,

+ nodeType=c("map")),nodeType="geneProduct")))

The following commands can get the corresponding undirected graphs. The function getNonMetabol-

icKOKOUEMGraph can get all results.

> #get the undirected graphs with only KOs as nodes. And, each node contains

> #only a KO and each KO only appears once in the graph.

> g8<-mergeNode(expandNode(simplifyGraph(filterNode(gn,

+ nodeType=c("map")),nodeType="geneProduct")))

19

2.5.3 Example 3: compound-compound pathway graphs

For metabolic pathways, the following commands can get graphs with compounds as nodes and enzymes
as edges. The function getMetabolicCOCOGraph with setting the argument type as ”EC” can get all
metabolic pathway graphs with compounds as nodes and enzymes as edges.

> #The graph with compounds as nodes and enzymes as edges

> g1<-simplifyGraph(filterNode(gm,nodeType=c("map")),nodeType="compound")

The following commands can get the undirected graphs with compounds as nodes and enzymes as
edges. The function getMetabolicCOCOUGraph with setting the argument type as ”EC” can get all results.

> #The undirected graph with compounds as nodes and enzymes as edges

> g2<-simplifyGraph(filterNode(getUGraph(gm),nodeType=c("map")),nodeType="compound")

The following commands can get graphs with compounds as nodes and enzymes as edges. Each
node only contains a compound and each compound only appears once in the graph. The function
getMetabolicCOCOEMGraph with setting the argument type as ”EC” can get all results.

> #The graph with compounds as nodes and enzymes as edges

> #Each node only contains a compound and each compound only appears once in the graph.

> g3<-mergeNode(expandNode(simplifyGraph(filterNode(gm,

+ nodeType=c("map")),nodeType="compound")))

The following commands can get the undirected graphs with compounds as nodes and enzymes as
edges. Each node only contains a compound and each compound only appears once in the graph. The
function getMetabolicCOCOUEMGraph with setting the argument type as ”EC” can get all results.

> #The undirected graph with compounds as nodes and enzymes as edges

> #Each node only contains a compound and each compound only appears once in the graph.

> g4<-mergeNode(expandNode(simplifyGraph(filterNode(getUGraph(gm),

+ nodeType=c("map")),nodeType="compound")))

2.5.4 Example 4: organism-specific gene-gene pathway graphs

For metabolic pathways, the following commands can get graphs with organism-specific genes as nodes
and compounds as edges. And, each node contains only a gene and each gene only appears once in
the graph. The function getMetabolicGEGEEMGraph with setting the argument type as ”EC” can get all
metabolic pathway graphs with organism-specific genes as nodes and compounds as edges.

> #get graphs with organism-specific genes as nodes and compounds as edges

> g1<-mergeNode(expandNode(simplifyGraph(filterNode(mapNode(gm),

+ nodeType=c("map","enzyme")),nodeType="geneProduct")))

The following commands can get the corresponding undirected graphs. The function getMetabol-

icGEGEEMUGraph with setting the argument type as ”EC” can get all results.

> #get the undirected graphs with organism-specific genes as nodes and compounds as edges

> g2<-mergeNode(expandNode(simplifyGraph(filterNode(mapNode(getUGraph(gm)),

+ nodeType=c("map","enzyme")),nodeType="geneProduct")))

For non-metabolic pathways, the following commands can get graphs with organism-specific genes as
nodes and compounds as edges. Moreover, each node contains only a gene and each gene only appears
once in the graph. The function getNonMetabolicGEGEEMGraph can get all results.

20

> #get graphs with organism-specific genes as nodes

> g3<-mergeNode(expandNode(simplifyGraph(filterNode(mapNode(gn),

+ nodeType=c("map","ortholog")),nodeType="geneProduct")))

The following commands can get the corresponding undirected graphs. The function getNonMetabol-

icGEGEUEMGraph can get all results.

> #get the undirected graphs with organism-specific genes as nodes

> g4<-mergeNode(expandNode(simplifyGraph(filterNode(mapNode(gn),

+ nodeType=c("map","ortholog")),nodeType="geneProduct")))

3 Methods to analyze pathway graphs

3.1 The basic analyses based on graph model

Since pathways are able to be converted to different types of graphs, many analyses based on graph model
are available by using the functions provided in the igraph package. For example, we can get subgraph,
degree, shortest path, etc [Csardi and Nepusz, 2006]. Here, we will give some detailed examples of
operating graphs, nodes, edges, attributes. To do these, we firstly construct pathway graphs as the
example graphs of the basic analyses based on graph model. The commands are as follows:

We can get metabolic pathway graphs as follows:

> #get path of KGML files

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/metabolic/ec/",sep="")

> #convert metabolic pathways to graphs with "map" node deleted

> gmf<-filterNode(getMetabolicGraph(getPathway(path,c("ec00010.xml"))))

> #show title of pathway graphs

> sapply(gmf,function(x) x$title)

00010

"Glycolysis / Gluconeogenesis"

> #convert metablic pathways to graphs with enzymes as nodes and compounds as edges

> gmfs<-simplifyGraph(gmf,nodeType="geneProduct")

Figure 4 displays gmfs[[1]]. It is the Glycolysis / Gluconeogenesis pathway graph with enzymes as
nodes and compounds as edges. The ”map” nodes are deleted.

3.1.1 Node methods: degree, betweenness, local clustering coefficient, etc.

Degree (or connectivity) of a node is defined as the number of its adjacent edges [Csardi and Nepusz, 2006,
Barabasi and Oltvai, 2004, Huber et al., 2007]. It is a local quantitative measure of a node relative to
other nodes. The following commands can get the degree of the first node in the graph.

> #get degree of nodes

> igraph::degree(gmfs[[1]],0)

[1] 12

We can see names of the first node as follows:

> #see name of the first node

> V(gmfs[[1]])[0]$names

21

4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

2.7.1.40

4.2.1.11

5.4.2.1

1.2.1.12

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3

2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

4.1.1.32

1.1.2.7

4.1.1.49

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

3.1.3.13

5.4.2.4

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 4: The Glycolysis / Gluconeogenesis pathway graph with enzymes as nodes and compounds as
edges. The ”map” nodes are deleted. The graph is stored in the variable gmfs[[1]].

22

[1] "ec:4.1.2.13"

The first node is the enzyme ”ec:4.1.2.13” and is at the right-top part of Figure 4.
We can identify enzyme ”ec:4.1.2.13” and get degree of a node with given names as follows:

> #get indexes of nodes

> index1<-V(gmfs[[1]])[V(gmfs[[1]])$names=="ec:4.1.2.13"]

> #get degree of node

> igraph::degree(gmfs[[1]],index1)

[1] 12

We may also want to calculate its betweeness, which is (roughly) defined by the number of shortest
paths going through a node [Csardi and Nepusz, 2006, Barabasi and Oltvai, 2004, Huber et al., 2007].

> #Calculate betweenness of enzyme "ec:4.1.2.13".

> betweenness(gmfs[[1]],index1)

[1] 960

The local clustering coefficient measures the probability that the adjacent nodes of a node are
connected.

> #Calculate the clustering coefficient of enzyme "ec:4.1.2.13".

> igraph::transitivity(gmfs[[1]],type="local",vids=index1)

[1] 0.3888889

3.1.2 Edge method: shortest paths

The following commands can get the shortest path between the first node and the second node [Csardi and Nepusz, 2006,
Barabasi and Oltvai, 2004, Huber et al., 2007].

> #get the shortest path

> shortest.path<-get.shortest.paths(gmf[[1]],0,1,mode="out")

We can see name of nodes as follows:

> #see name of the first and second nodes

> V(gmf[[1]])[0:1]$names

[1] "ec:4.1.2.13" "ec:1.2.1.3"

> #see name of nodes in the shortest path

> V(gmf[[1]])[shortest.path[[1]]]$names

[1] "ec:4.1.2.13" "cpd:C00118" "ec:1.2.7.6" "cpd:C00197" "ec:5.4.2.1"

[6] "cpd:C00631" "ec:4.2.1.11" "cpd:C00074" "ec:2.7.1.40" "cpd:C00022"

[11] "ec:4.1.1.1" "cpd:C05125" "ec:4.1.1.1" "cpd:C00084" "ec:1.2.1.3"

We sometimes may want to get the shortest path between two enzymes in a pathway, i.e., the shortest
path between enzyme ”ec:4.1.2.13” and ”ec:1.2.1.3” in the Glycolysis / Gluconeogenesis pathway. To do
this, we need to get indexes of interesting nodes and then use the function get.shortest.paths to get
the result. The above strategy is usually necessary because in the igraph package, node indexes is used
as input of most of functions. The following commands can calculate the shortest path between enzyme
”ec:4.1.2.13” and ”ec:1.2.1.3” in the Glycolysis / Gluconeogenesis pathway.

23

> #get indexes of nodes

> index1<-V(gmf[[1]])[V(gmf[[1]])$names=="ec:4.1.2.13"]

> index2<-V(gmf[[1]])[V(gmf[[1]])$names=="ec:1.2.1.3"]

> #get shortest path

> shortest.path<-get.shortest.paths(gmf[[1]],index1,index2)

> #display shortest path

> shortest.path

[[1]]

[1] 0 81 74 52 15 44 14 51 13 57 8 58 5 60 1

> #convert indexs to names

> V(gmf[[1]])[shortest.path[[1]]]$names

[1] "ec:4.1.2.13" "cpd:C00118" "ec:1.2.7.6" "cpd:C00197" "ec:5.4.2.1"

[6] "cpd:C00631" "ec:4.2.1.11" "cpd:C00074" "ec:2.7.1.40" "cpd:C00022"

[11] "ec:4.1.1.1" "cpd:C05125" "ec:4.1.1.1" "cpd:C00084" "ec:1.2.1.3"

3.1.3 Graph method: degree distribution, diameter, global clustering coefficient, density,
module, etc.

The following command can get degree distribution of a pathway graph [Csardi and Nepusz, 2006,
Barabasi and Oltvai, 2004, Huber et al., 2007].

> #degree distribution.

> degree.distribution<-degree.distribution(gmfs[[1]])

The diameter of a pathway graph is the length of the longest geodesic [Csardi and Nepusz, 2006].

> #get diameter

> diameter(gmfs[[1]])

[1] 11

The following command can get the global clustering coefficient [Csardi and Nepusz, 2006].

> #Calculate the clustering coefficient.

> igraph::transitivity(gmfs[[1]])

[1] 0.5209302

The following command can get density of a pathway graph. The density of a graph is the ratio of
the number of edges and the number of possible edges [Csardi and Nepusz, 2006].

> #Calculate the density.

> graph.density(gmfs[[1]])

[1] 0.0788961

The following commands can find densely connected subgraphs (modules or communities) in a
pathway graph. We use walktrap community finding algorithm in the igraph package to find modules in
the graph via random walks [Csardi and Nepusz, 2006]. Short random walks tend to stay in the same
module.

24

> #find modules.

> wtc <- walktrap.community(gmfs[[1]])

> module<-community.to.membership(gmfs[[1]], wtc$merges, steps=53)

> module

$membership

[1] 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 1 1 1

[39] 1 1 1 0 0 0 2 2 2 0 2 2 2 0 1 1 1 0

$csize

[1] 20 25 11

The result shows that three modules are found. They contain 20, 25, and 11 nodes respectively. We
can also see names of nodes in the first module as follows:

> V(gmfs[[1]])[module$membership==0]$names

[1] "ec:1.2.1.3" "ec:6.2.1.13" "ec:1.2.1.5" "ec:4.1.1.1" "ec:1.1.1.2"

[6] "ec:1.1.1.1" "ec:4.1.1.1" "ec:1.2.4.1" "ec:1.2.4.1" "ec:2.3.1.12"

[11] "ec:1.1.1.27" "ec:2.7.1.40" "ec:4.2.1.11" "ec:1.8.1.4" "ec:4.1.1.32"

[16] "ec:1.1.2.7" "ec:4.1.1.49" "ec:1.2.7.1" "ec:6.2.1.1" "ec:1.1.2.8"

This function modularity can calculate how modular is a given division of a graph into modules.

> modularity(gmfs[[1]], module$membership)

[1] 0.6122966

3.2 Topology-based pathway analysis of cellular component sets

The section mainly introduces topology-based pathway analysis of cellular component sets. Currently,
our system can support input of three kinds of cellular component sets: gene sets, compound (metabo-
lite) sets, and gene and compound sets at the same time. Therefore, the system can provide topology-
based pathway analysis of gene sets. Topological significance of pathways can be also evaluated by the
system. For example, if users input a set of interesting genes, the set can be mapped onto pathways.
The topological property values can then be calculated. The topological significance of pathways can
be evaluated. The available topological properties contain degree, clustering coefficient, betweenness,
and closeness [Csardi and Nepusz, 2006, Barabasi and Oltvai, 2004, Huber et al., 2007]. Degree of a
node is the number of its adjacent edges. Local clustering coefficient quantifies the probability that
the neighbours of a node are connected. Node betweenness can be calculated based on the number of
shortest path passing through a given node. Closeness measures how many steps is required to access
every other nodes from a given node.

3.2.1 Topology-based pathway analysis of gene sets

The function identifyTopo in the iSubpathwayMiner package facilitates topology-based pathway analysis
of gene sets. We need to set the value of the argument type of the function as ”gene”. Moreover, we
need to set the argument propertyName as a specific property (e.g., ”degree”).

To do topology-based pathway analysis of gene sets, we firstly construct a list of pathway graphs.
We secondly input the interesting gene set and the list of pathway graphs to the function identifyTopo.
The function can map interesting gene sets onto each pathway. For the mapped genes in a pathway,
their topological property values can be calculated. These values can be compared with property values
of all genes in the pathway. Finally, the statistical significance can be calculated using wilcoxon rank
sum test.

25

The return value of the function identifyTopo is a list. Each element of the list is another list.
It includes following elements: ’pathwayId’, ’pathwayName’, ’annComponentList’, ’annComponent-
Number’, ’annBgComponentList’, ’annBgNumber’, ’ComponentNumber’, ’bgNumber’, ’propertyName’,
’annComponentPropertyValueList’, ’propertyValue’, ’annBgComponentPropertyValueList’, ’bgProper-
tyValue’, ’pvalue’, and ’fdr’. They correspond to pathway identifier, pathway name, the submitted
components annotated to a pathway, numbers of submitted components annotated to a pathway, the
background components annotated to a pathway, numbers of background components annotated to a
pathway, numbers of submitted components, numbers of background components, topological property
name (e.g., ’degree’), topological property values of submitted components annotated to a pathway, av-
erage topological property values of submitted components annotated to a pathway, topological property
values of the background components annotated to a pathway, average topological property values of
the background components annotated to a pathway, p-value of wilcoxon rank sum test for ’annCompo-
nentPropertyValueList’ and ’annBgComponentPropertyValueList’, and Benjamini-Hochberg fdr values.
The list of results returned from the function identifyTopo can also be converted to data.frame using
the function printTopo.

The following commands can perform topology-based pathway analysis of gene sets. The list of path-
way graphs is obtained from the function getMetabolicECECGraph, which can get all directed metabolic
pathway graphs with enzymes as nodes and compounds as edges (see the section 2.5.2).

> #get pathway graphs with enzymes as nodes.

> graphList<-getMetabolicECECGraph()

> #get a set of genes

> geneList<-getExample(geneNumber=1000,compoundNumber=0)

> #topology-based pathway analysis

> ann<-identifyTopo(geneList,graphList,type="gene",propertyName="degree")

> result<-printTopo(ann)

> #print a part of the result

> result[1:5,]

pathwayId pathwayName annComponentRatio annBgRatio

1 path:00982 Drug metabolism - cytochrome P450 29/1000 82/21796

2 path:00380 Tryptophan metabolism 28/1000 65/21796

3 path:00562 Inositol phosphate metabolism 3/1000 55/21796

4 path:00670 One carbon pool by folate 7/1000 18/21796

5 path:00591 Linoleic acid metabolism 21/1000 42/21796

propertyName propertyValue bgPropertyValue pvalue fdr

1 degree 0.5923372 0.5089431 0.006771113 0.5755446

2 degree 1.3511905 1.9128205 0.022801872 0.8365032

3 degree 6.6666667 4.2242424 0.041951602 0.8365032

4 degree 16.3809524 22.1388889 0.054268216 0.8365032

5 degree 2.6666667 4.6190476 0.054602392 0.8365032

The each row of the result (data.frame) is a pathway. Columns include pathwayId, pathwayName,
annComponentRatio, annBgRatio, propertyName, propertyValue, bgPropertyValue, pvalue, and fdr.
The annComponentRatio is the ratio of the annotated components. For example, 30/1000 means that 30
components in 1000 components are annotated. The propertyValue is average topological property value
of submitted components annotated to a pathway. The bgPropertyValue is average topological property
value of the background components annotated to a pathway. When many correlated pathways are
considered, a false positive discovery rate is likely to result. Because the result is a data.frame, we are
able to use the function write.table to export the result to a tab delimited file. If setting the argument
detail as TRUE, we can also get more detailed result. For example, the topological property values of
submitted genes annotated to a pathway can be exported using ”;” as separator.

26

> ##write the results to tab delimited file.

> write.table(result,file="result.txt",row.names=FALSE,sep="\t")

>

> #detailed information is also outputed

> result1<-printTopo(ann,detail=TRUE)

> ##write the results to tab delimited file.

> write.table(result1,file="result1.txt",row.names=FALSE,sep="\t")

The result of topology-based anlysis shows that the degrees of the interesting genes in the inos-
itol phosphate metabolism graph (path:00562) are significantly high. This suggests that these genes
may play a more important role in the pathway. We can visualize the pathway using the function
plotAnnGraph.

> #visualize

> plotAnnGraph("path:00562",graphList,ann)

The result pathway graph is shown in Figure 5. The mapped nodes, which correspond to the interesting
genes, are colored red. From the figure, we can also see that degrees of these nodes are higher than the
average degrees in the pathway.

The function identifyTopo is flexible. Users can change pathway graphs for different topological
analyses. The following commands can use the function getMetabolicGEGEUEMGraph (see the section
2.5.4) to generate pathway graphs with genes as nodes, where each node contains only a gene and each
gene only appears once. We can then use the data to analyze topological properties of gene sets in
pathways. The following commands analyze local clustering coefficients of gene sets.

> #get undirected pathway graphs with genes as nodes.

> graphList<-getMetabolicGEGEUEMGraph(type="EC")

> #get a set of genes

> geneList<-getExample(geneNumber=1000,compoundNumber=0)

> #topology-based pathway analysis

> ann<-identifyTopo(geneList,graphList,type="gene",propertyName="clusteringCoefficient")

> result<-printTopo(ann)

> #print a part of the result

> result[1:10,c(1,3,6:8)]

pathwayId annComponentRatio propertyValue bgPropertyValue pvalue

1 path:00980 32/1000 0.2994552 0.4067389 0.005909343

2 path:00020 4/1000 0.4418651 0.5832804 0.014690575

3 path:00010 12/1000 0.6926918 0.5681654 0.023844855

4 path:00260 14/1000 0.8113791 0.5944147 0.026165910

5 path:00591 21/1000 0.8661994 0.9071813 0.054602392

6 path:00140 31/1000 0.7430575 0.7850713 0.061484669

7 path:00640 3/1000 0.0000000 0.3840278 0.120709223

8 path:00310 4/1000 0.3490119 0.6790014 0.131664235

9 path:00603 1/1000 0.0000000 0.7285714 0.151493992

10 path:00360 1/1000 0.4230769 0.6591660 0.152025014

The result shows that the local clustering coefficients of the interesting genes in the Glycolysis / Glu-
coneogenesis pathway (path:00562) are significantly high. This suggests that these genes tend to be
in the functional module of the pathway. The local clustering coefficient measures the probability
that the adjacent nodes of a node are connected [Csardi and Nepusz, 2006, Barabasi and Oltvai, 2004,
Huber et al., 2007].

27

2.7.1.149

3.1.3.36

2.7.1.151

2.7.1.151

3.1.3.67

3.1.3.62

3.1.3.56

2.7.1.127

2.7.1.159

3.1.3.83.1.3.26

2.7.1.159

2.7.1.140

2.7.1.134

3.1.3.56

3.1.3.57

3.1.3.57

3.1.3.66

3.1.3.64
5.5.1.4

3.1.3.25

3.1.3.25

1.13.99.1

2.7.1.64

2.7.1.67

3.1.4.3

2.7.1.68

2.7.1.1373.1.3.64

3.1.3.25

3.1.4.11

4.6.1.13

2.1.1.39

2.1.1.402.7.1.158

2.7.1.153

1.1.1.18

4.2.1.44

3.7.1.− 5.3.1.− 2.7.1.92

4.1.2.29

1.2.1.27

1.2.1.18

5.3.1.1

2.7.1.150

2.7.8.11

3.1.3.66

2.7.1.154

Figure 5: The inositol phosphate metabolism (path:00562) graph with enzymes as nodes and compounds
as edges. The mapped nodes are colored red. We can see that degrees of these nodes are higher than
the average degrees in the pathway.

28

3.3 Annotate cellular component sets and identify entire pathways

3.3.1 Annotate gene sets and identify entire pathways

The function identifyGraph in the iSubpathwayMiner package facilitates the annotation and identification
of entire pathways. Firstly, we need to construct a list of pathway graphs. We then input the interesting
gene set and the list of pathway graphs to the function identifyGraph. Through performing the function,
the interesting gene set can be annotated to pathway graphs. Finally, the enrichment significance of
pathways can be evaluated using hypergeometric test.

The return value of the function identifyGraph is a list of the annotated information. Each element
of the list is another list. It includes the following elements: ’pathwayId’, ’pathwayName’, ’annCom-
ponentList’, ’annComponentNumber’, ’annBgComponentList’, ’annBgNumber’, ’ComponentNumber’,
’bgNumber’, ’pvalue’, and ’fdr’. They correspond to pathway identifier, pathway name, the submitted
components annotated to a pathway, numbers of submitted components annotated to a pathway, the
background components annotated to a pathway, numbers of background components annotated to a
pathway, numbers of submitted components, numbers of background components, p-value of the hy-
pergeometric test, and Benjamini-Hochberg fdr values. The list of results returned from the function
identifyGraph can also be converted to data.frame using the function printGraph.

The following commands annotate a gene set to metabolic pathways and identify significantly en-
riched metabolic pathways.

> ##Convert all metabolic pathways to graphs.

> metabolicEC<-get("metabolicEC",envir=k2ri)

> graphList<-getMetabolicGraph(metabolicEC)

> ##get a set of genes

> geneList<-getExample(geneNumber=1000)

> #annotate gene sets to pathway graphs

> #and identify significant pathway graphs

> ann<-identifyGraph(geneList,graphList)

> #convert ann to data.frame

> result<-printGraph(ann)

> #print a part of the results to screen

> result[1:10,]

pathwayId pathwayName annComponentRatio

1 path:00071 Fatty acid metabolism 36/1000

2 path:00140 Steroid hormone biosynthesis 31/1000

3 path:00232 Caffeine metabolism 20/1000

4 path:00380 Tryptophan metabolism 28/1000

5 path:00591 Linoleic acid metabolism 21/1000

6 path:00830 Retinol metabolism 30/1000

7 path:00980 Metabolism of xenobiotics by cytochrome P450 32/1000

8 path:00982 Drug metabolism - cytochrome P450 29/1000

9 path:00983 Drug metabolism - other enzymes 27/1000

10 path:00564 Glycerophospholipid metabolism 24/1000

annBgRatio pvalue fdr

1 67/21796 0.000000e+00 0.000000e+00

2 73/21796 0.000000e+00 0.000000e+00

3 27/21796 0.000000e+00 0.000000e+00

4 65/21796 0.000000e+00 0.000000e+00

5 42/21796 0.000000e+00 0.000000e+00

6 61/21796 0.000000e+00 0.000000e+00

29

7 80/21796 0.000000e+00 0.000000e+00

8 82/21796 0.000000e+00 0.000000e+00

9 70/21796 0.000000e+00 0.000000e+00

10 76/21796 2.220446e-14 1.887379e-13

Each row of the result (data.frame) is a pathway. Its columns include pathwayId, pathwayName,
annComponentRatio, annBgRatio, pvalue, and fdr. The annComponentRatio is the ratio of the annotated
components. For example, 30/1000 means that 30 components in 1000 components are annotated to
the pathway. When many correlated pathways are considered, a false positive discovery rate is likely to
result. Because the result is a data.frame, it is able to use the function write.table to export the result
to a tab delimited file. If setting the argument detail as TRUE, we can also get more detailed result.
For example, the annotated components and the annotated background components can be exported
using ”;” as separator.

> ##write the annotation results to tab delimited file.

> write.table(result,file="result.txt",row.names=FALSE,sep="\t")

>

> #detailed information is also outputed

> result1<-printGraph(ann,detail=TRUE)

> ##write the annotation results to tab delimited file.

> write.table(result1,file="result1.txt",row.names=FALSE,sep="\t")

The following command displays a part of the return result of the function identifyGraph.

> #list of the result

> ann[1]

[[1]]

[[1]]$pathwayId

[1] "path:00071"

[[1]]$pathwayName

[1] "Fatty acid metabolism"

[[1]]$annComponentList

[1] "10449" "10455" "11001" "124" "125" "126" "126129" "127"

[9] "128" "130" "131" "1374" "1375" "1376" "1543" "1544"

[17] "1545" "1548" "1549" "1551" "1553" "1555" "1557" "1558"

[25] "1559" "1562" "1565" "1571" "1572" "1573" "1576" "1577"

[33] "1579" "1588" "1632" "1892"

[[1]]$annComponentNumber

[1] 36

[[1]]$annBgComponentList

[1] "10449" "10455" "11001" "124" "125" "126" "126129" "127"

[9] "128" "130" "131" "1374" "1375" "1376" "1543" "1544"

[17] "1545" "1548" "1549" "1551" "1553" "1555" "1557" "1558"

[25] "1559" "1562" "1565" "1571" "1572" "1573" "1576" "1577"

[33] "1579" "1580" "1588" "1632" "1892" "1962" "199974" "217"

[41] "2180" "2181" "2182" "219" "223" "224" "23305" "260293"

[49] "2639" "284541" "29785" "30" "3028" "3030" "3032" "3033"

30

[57] "3295" "33" "34" "35" "38" "39" "501" "51"

[65] "51703" "64816" "8310"

[[1]]$annBgNumber

[1] 67

[[1]]$componentNumber

[1] 1000

[[1]]$bgNumber

[1] 21796

[[1]]$pvalue

[1] 0

[[1]]$fdr

[1] 0

The result is a list. It includes the following elements: ’pathwayId’, ’pathwayName’, ’annCompo-
nentList’, ’annComponentNumber’, ’annBgComponentList’, ’annBgNumber’, ’ComponentNumber’, ’bgNum-
ber’, ’pvalue’, and ’fdr’.

The Glycolysis / Gluconeogenesis pathway (path:00010) is significant in the analysis result of path-
way. We can see the identified result of the pathway as follows:

> result[result[,1] %in% "path:00010",]

pathwayId pathwayName annComponentRatio annBgRatio

20 path:00010 Glycolysis / Gluconeogenesis 12/1000 64/21796

pvalue fdr

20 2.942795e-05 0.0001250688

This means that the submitted interesting genes are significantly enriched to the Glycolysis / Gluco-
neogenesis pathway. If these genes is disease-related genes (e.g., risk genes associated with lung cancer),
the Glycolysis / Gluconeogenesis pathway may be highly associted with the disease.

We can visualize the annotated pathways using the function plotAnnGraph. The following com-
mand displays the Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

> #visualize

> plotAnnGraph("path:00010",graphList,ann)

The result graph is shown in Figure 6. The red nodes in the result graph represent the enzymes which
include the submitted genes.

3.3.2 Annotate compound sets and identify enire pathways

Our system can provide the annotation and identification of pathways based on compound sets. Users
only need to set the value of the argument type of the function identifyGraph as ”compound”. We still
use the above pathway graphs. We then input the interesting compound set and the list of pathway
graphs to the function identifyGraph. Through performing the function identifyGraph, the interesting
gene set can be annotated to pathway graphs. Finally, the enrichment significance of pathways can
be evaluated using hypergeometric test. The following commands can annotate a compound set and
identify statistically significantly enriched metabolic pathways.

31

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●● ●
●●

●

●

●

●
4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5
C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

Pyruvate metabolism 2.7.1.40

Citrate cycle (TCA cycle)

4.2.1.11

5.4.2.1

1.2.1.12

Carbon fixation in photosynthetic organisms

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3
2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

TITLE:Glycolysis / Gluconeogenesis

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022C05125C00024

C00084

C16255

C15973

C05378
C06186 C06187

C06188C01451

C00068

4.1.1.32C00036

1.1.2.7

4.1.1.49

Propanoate metabolism

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 6: The Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

32

> #get a set of compounds

> compoundList<-getExample(geneNumber=0,compoundNumber=100)

> #annotate compound sets and identify significant pathways

> ann<-identifyGraph(compoundList,graphList,type="compound")

> result<-printGraph(ann)

> #display a part of the result

> result[1:5,c(1,3,4,5)]

pathwayId annComponentRatio annBgRatio pvalue

1 path:00190 11/100 16/14931 0.000000e+00

2 path:00230 17/100 92/14931 0.000000e+00

3 path:00970 14/100 53/14931 0.000000e+00

4 path:00250 9/100 24/14931 2.253753e-14

5 path:00270 11/100 56/14931 8.026912e-14

3.3.3 Annotate compound and gene sets and identify entire pathways

If users have not only interesting gene sets but also interesting compound sets, then users can anno-
tate them at the same time and identify significant entire pathways. To do this, we need to set the
argument type of the function identifyGraph as ”gene compound”. We input the interesting compound
set and the list of pathway graphs to the function identifyGraph. Through performing the function
identifyGraph, the interesting gene and compound set can be annotated to pathway graphs. Finally,
the enrichment significance of pathways can be evaluated using hypergeometric test. The following
commands can annotate a combined set of genes and compounds and identify statistically significantly
enriched metabolic pathways.

> #get a set of compounds and genes

> componentList<-getExample(geneNumber=1000,compoundNumber=100)

> #annotate gene and compound sets to metabolic graphs

> #and identify significant graphs

> ann<-identifyGraph(componentList,graphList,type="gene_compound")

> result<-printGraph(ann)

> #display a part of results

> result[1:5,c(1,3,4,5)]

pathwayId annComponentRatio annBgRatio pvalue

1 path:00071 39/1100 117/36727 0

2 path:00190 32/1100 146/36727 0

3 path:00230 44/1100 243/36727 0

4 path:00232 21/1100 48/36727 0

5 path:00240 32/1100 153/36727 0

3.3.4 Other examples

The function identifyGraph is flexible in input of pathway data. We can change pathway data for
different analyses. For example, we can use reference pathways linked to KO identifiers to support the
identification of not only metabolic pathways but also non-metabolic pathways. The following com-
mands annotate a gene set and identify significantly enriched metabolic and non-metabolic pathways:

> ##Convert all metabolic pathways to graphs.

> metabolicKO<-get("metabolicKO",envir=k2ri)

> gm<-getMetabolicGraph(metabolicKO)

> ##Convert all non-metabolic pathways to graphs,

33

> nonMetabolicKO<-get("nonMetabolicKO",envir=k2ri)

> gn<-getNonMetabolicGraph(nonMetabolicKO)

> graphList<-c(gm,gn)

> ##get a set of genes

> geneList<-getExample(geneNumber=1000,compoundNumber=0)

> #annotate gene sets and identify significant pathways

> ann<-identifyGraph(geneList,graphList,type="gene")

> result<-printGraph(ann)

> #display part of results

> result[1:5,c(1,3,4,5)]

pathwayId annComponentRatio annBgRatio pvalue

1 path:00830 29/1000 65/21796 0

2 path:00980 26/1000 71/21796 0

3 path:04080 66/1000 272/21796 0

4 path:04142 35/1000 117/21796 0

5 path:04740 76/1000 384/21796 0

The result includes both metabolic pathways and non-metabolic pathways.
Note that for metabolic pathways, the results of pathway analyses based on KO may be slightly

different from that based on EC. We suggest users to use reference pathways linked to KO identifiers to
analyze metabolic pathways because KEGG uses KO to annotate genes to pathways. In this vignette,
many examples of pathway analyses use reference pathways linked to EC identifiers because enzymes
may be more easily understood by users. The following commands can annotate a gene set and identify
significantly enriched metabolic pathways by using KO metabolic pathways:

> ##Convert all metabolic pathways to graphs.

> metabolicKO<-get("metabolicKO",envir=k2ri)

> graphList<-getMetabolicGraph(metabolicKO)

> ##get a set of genes

> geneList<-getExample(geneNumber=1000,compoundNumber=0)

> #annotate gene sets and identify significant pathways

> ann<-identifyGraph(geneList,graphList)

> result<-printGraph(ann)

> #display part of results

> result[1:10,c(1,3,4,5)]

pathwayId annComponentRatio annBgRatio pvalue

1 path:00830 29/1000 65/21796 0.000000e+00

2 path:00980 26/1000 71/21796 0.000000e+00

3 path:00982 24/1000 73/21796 7.993606e-15

4 path:00564 24/1000 79/21796 5.873080e-14

5 path:00071 16/1000 42/21796 1.851408e-11

6 path:00140 18/1000 56/21796 2.838807e-11

7 path:00561 16/1000 49/21796 2.749426e-10

8 path:00240 22/1000 99/21796 5.635397e-10

9 path:00190 25/1000 132/21796 1.388163e-09

10 path:00591 12/1000 29/21796 2.051083e-09

3.4 The k-cliques method to identify subpathways

The section mainly introduces the annotation and identification of subpathways. We developed the k-
cliques subpathway identification method [Li et al., 2009] according to pathway structure data provided

34

by KEGG.

3.4.1 Annotate gene sets and identify subpathways

Users can annotate the interesting gene sets and identify significantly enriched subpathways. Firstly,
we need to construct a list of the undirected pathway graphs with enzymes as nodes. Enzymes in a
graph are connected by an edge if their corresponding reactions have a common compound. Secondly,
we use the function getKcSubiGraph to mine subpathways with the parameter k. We then input the
interesting gene set and the list of subpathways to the function identifyGraph. Through performing the
function, the interesting gene set can be annotated to subpathways. Finally, the enrichment significance
of pathways can be evaluated using hypergeometric test.

The following commands can annotate gene sets and identify statistically significantly enriched
metabolic subpathways based on the k-cliques method. The list of pathway graphs is obtained from the
function getMetabolicECECUGraph, which can get all undirected metabolic pathway graphs with enzymes
as nodes and compounds as edges (see the section 2.5.2).

> ##identify metabolic subpathways based on gene sets

> #get the enzyme-enzyme pathway graphs

> graphList<-getMetabolicECECUGraph()

> #get all 4-clique subgraphs

> subGraphList<-getKcSubiGraph(k=4,graphList)

> #get a set of genes

> geneList<-getExample(geneNumber=1000,compoundNumber=0)

> #annotate gene sets to subpathways

> #and identify significant graphs

> ann<-identifyGraph(geneList,subGraphList,type="gene")

> result<-printGraph(ann)

> #display a part of results

> result[1:15,c(1,3,4,5)]

pathwayId annComponentRatio annBgRatio pvalue

1 path:00071_8 27/1000 38/21796 0

2 path:00140_5 25/1000 36/21796 0

3 path:00140_6 25/1000 43/21796 0

4 path:00140_7 25/1000 43/21796 0

5 path:00140_8 24/1000 41/21796 0

6 path:00140_9 25/1000 43/21796 0

7 path:00140_10 28/1000 64/21796 0

8 path:00140_19 27/1000 63/21796 0

9 path:00140_20 27/1000 63/21796 0

10 path:00140_21 27/1000 63/21796 0

11 path:00232_1 20/1000 27/21796 0

12 path:00232_2 20/1000 27/21796 0

13 path:00380_5 24/1000 40/21796 0

14 path:00591_1 21/1000 42/21796 0

15 path:00830_1 30/1000 61/21796 0

We find that the subpathway ”path:00010 3”, which is a subpathway of the Glycolysis / Gluco-
neogenesis pathway, is statistically significant. We can see the identified result of the subpathway as
follows:

> result[result[,1] %in% "path:00010_3",]

35

pathwayId pathwayName annComponentRatio annBgRatio

72 path:00010_3 Glycolysis / Gluconeogenesis 11/1000 36/21796

pvalue fdr

72 3.747776e-07 3.523951e-06

The following commands can display the subpathway.

> plotAnnGraph("path:00010_3",subGraphList,ann)

The result is shown in Figure 7. The nodes identified in the submitted genes are colored red.

4 Visualize a pathway graph

We provide the function plotGraph for visualization of a pathway graph. The function can display a
pathway graph using varieties of layout styles. The default is the KEGG style. We implement it by using
detailed information about pathway map obtained from KGML files, which are converted to attributes
of the corresponding graph, including graphics x, graphics y, graphics name, graphics type, names,
type, etc. The function is developed based on the function plot.igraph in the igraph and the function
plot. Therefore, most of functions in plot.igraph and plot are also available for the plotGraph. We
will detailedly describe how to efficiently use the function. The following command is a simple usage
for the function to visualize pathway graphs with the KEGG style.

We firstly generate a pathway graph.

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/metabolic/ec/",sep="")

> gm<-getMetabolicGraph(getPathway(path,c("ec00010.xml")))

We can use plotGraph to visualize the pathway graph as follows:

> #visualize

> plotGraph(gm[[1]])

The result graph is shown in Figure 8. The default layout style of the function is the KEGG style.

4.1 Change node label of the pathway graph

We can change node labels into the gene identifiers of the current organism as follows:

> plotGraph(gm[[1]],vertex.label=getNodeLabel(gm[[1]],

+ type="currentId",displayNumber=1))

4.2 The basic commands to visualize a pathway graph with custom style

We can display a pathway graph with different styles by using some basic commands. For example, we
can set a color vector and then use it to change color of each node frame. Figure ?? shows an example
of changing the certain enzyme node as red frame. The commands are as follows:

> #add red frame to the enzyme "ec:4.1.2.13"

> vertex.frame.color<-ifelse(V(gm[[1]])$names=="ec:4.1.2.13","red","dimgray")

> vertex.frame.color

36

1.2.1.3

6.2.1.13

1.2.1.5

4.1.1.1

1.1.1.2
1.1.1.1

4.1.1.1

1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

2.7.1.40

4.2.1.11

1.8.1.4

4.1.1.32

1.1.2.7

4.1.1.49

1.2.7.1

6.2.1.1

1.1.2.8

Figure 7: A significant subpathway of the Glycolysis / Gluconeogenesis pathway. The subpathway is
constructed based on the k-clique method. In the subpathway, the distance between any two nodes is
no greater than 4. The nodes identified in the submitted genes are colored red.

37

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●● ●
●●

●

●

●

●
4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5
C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

Pyruvate metabolism 2.7.1.40

Citrate cycle (TCA cycle)

4.2.1.11

5.4.2.1

1.2.1.12

Carbon fixation in photosynthetic organisms

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3
2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

TITLE:Glycolysis / Gluconeogenesis

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022C05125C00024

C00084

C16255

C15973

C05378
C06186 C06187

C06188C01451

C00068

4.1.1.32C00036

1.1.2.7

4.1.1.49

Propanoate metabolism

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 8: The Glycolysis / Gluconeogenesis pathway graph with the KEGG style

38

[1] "red" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[8] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[15] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[22] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[29] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[36] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[43] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[50] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[57] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[64] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[71] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[78] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[85] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

[92] "dimgray" "dimgray" "dimgray"

> #display new graph

> plotGraph(gm[[1]],vertex.frame.color=vertex.frame.color)

Operations to change other settings are similar to the example. In order to change styles of a graph,
we only need to get and change the value of vectors related to styles and then transfer them to the
function plotGraph. Detailed information can be provided in the help of the function plot.igraph in the
igraph package and the function plot in the graphics package. Here, we only provide some examples of
setting some styles for interpreting the usages of the function plotGraph. For instance, we can change
node color, size, label font, x-y coordinates, etc. Figure 9 shows the results and the corresponding
commands as follows:

> #add green label to the comound "cpd:C00111"

> vertex.label.color<-ifelse(V(gm[[1]])$names=="cpd:C00111","green","dimgray")

> #change node color

> vertex.color<-sapply(V(gm[[1]])$type,function(x) if(x=="enzyme"){"pink"}

+ else if(x=="compound"){"yellow"} else{"white"})

> #change node size

> size<-ifelse(V(gm[[1]])$graphics_name=="Starch and sucrose metabolism",20,8)

> #change a compound label

> #font size

> vertex.label.cex<-ifelse(V(gm[[1]])$names=="cpd:C00036",1.0,0.6)

> #italic

> vertex.label.font<-ifelse(V(gm[[1]])$names=="cpd:C00036",3,1)

> #change y coordinate of an enzyme

> layout<-getLayout(gm[[1]])

> index<-V(gm[[1]])[V(gm[[1]])$names=="ec:4.1.1.32"]

> layout[index+1,2]<-layout[index+1,2]+50

> #display the new graph

> plotGraph(gm[[1]],vertex.frame.color=vertex.frame.color,

+ vertex.label.color=vertex.label.color,vertex.color=vertex.color,

+ vertex.size=size,vertex.size2=size,vertex.label.cex=vertex.label.cex,

+ vertex.label.font=vertex.label.font,layout=layout)

4.3 The layout style of a pathway graph in R

The argument layout of the function plotGraph is used to determine the placement of the nodes for
drawing a graph. There are mainly two methods to determine the placement of the nodes for drawing a

39

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●● ●
●●

●

●

●

●
4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5
C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

Pyruvate metabolism 2.7.1.40

Citrate cycle (TCA cycle)

4.2.1.11

5.4.2.1

1.2.1.12

Carbon fixation in photosynthetic organisms

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3
2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

TITLE:Glycolysis / Gluconeogenesis

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69
2.7.1.69

3.2.1.86
3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022C05125C00024

C00084

C16255

C15973

C05378
C06186 C06187

C06188C01451

C00068

4.1.1.32

C00036

1.1.2.7

4.1.1.49

Propanoate metabolism

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 9: The new graph after changing some setting of visualization

40

pathway graph: the KEGG layout style and layout provided in the function plot.igraph of the igraph
package. The default layout is the KEGG layout style, for which the coordinates of nodes in KEGG
pathway maps is used to determine the placement of the nodes for drawing a graph. Therefore, the
returned figure by the function can be very similar to the KEGG pathway graph. Figure 8 displays a
pathway graph with the KEGG layout style.

The layout styles provided in igraph include layout.random, layout.circle, layout.sphere, lay-

out.sphere, layout.fruchterman.reingold, layout.kamada.kawai, layout.spring, layout.lgl, layout.fruchterman.reingold.grid,
layout.graphopt, layout.mds, layout.svd, layout.norm, layout.drl, and layout.reingold.tilford. For
example, as shown in Figure 10, the layout.random places the nodes randomly. The layout.circle (e.g.,
Figure 11) places the nodes on an unit circle.

The following command displays a pathway graph using layout.random style.

> plotGraph(gm[[1]],layout=layout.random)

The result is shown in Figure 10.
The following command displays a pathway graph using layout.circle style.

> plotGraph(gm[[1]],layout=layout.circle)

The result is shown in Figure 11.

4.4 Visualize the result graph of pathway analyses

We can use the function plotAnnGraph to visualize the result graph of a pathway analysis (e.g., most
of result graphs in the section 3). We take an example of visualizing a metabolic pathway, which is
obtained from the annotation and identification method of entire pathways based on gene sets.

The following commands annotate a gene set to metabolic pathways and identify significantly en-
riched metabolic pathways.

> ##Convert all metabolic pathways to graphs.

> metabolicEC<-get("metabolicEC",envir=k2ri)

> graphList<-getMetabolicGraph(metabolicEC)

> ##get a set of genes

> geneList<-getExample(geneNumber=1000)

> #annotate gene sets to pathway graphs

> #and identify significant pathway graphs

> ann<-identifyGraph(geneList,graphList)

The following command displays the Glycolysis / Gluconeogenesis pathway (path:00010). Users need
to input pathway identifier, a list of pathway graphs, and the result variable ann of pathway analysis.

> #visualize

> plotAnnGraph("path:00010",graphList,ann)

The result graph is shown in Figure 12. The red nodes in the result graph represent the enzymes which
include the submitted genes. In fact, the function plotAnnGraph can obtain the annotated genes from
the variable ann , match the genes to the given pathway, and display the pathway with the annotated
genes colored red.

We can also use the function plotAnnGraph to visualize pathways not only in R but also in KEGG
web site. The annotated genes are also colored red in KEGG maps.

> #visualize

> plotAnnGraph("path:00010",graphList,ann,gotoKEGG=TRUE)

41

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5

C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.2

1.1.1.1
4.1.1.1

1.2.4.1

1.2.4.1

2.3.1.12

1.1.1.27

Pyruvate metabolism

2.7.1.40

Citrate cycle (TCA cycle)

4.2.1.11

5.4.2.1

1.2.1.12

Carbon fixation in photosynthetic organisms

5.3.1.1

2.7.1.11

3.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9

2.7.1.1

2.7.1.2

5.3.1.9

5.1.3.15

5.1.3.3

2.7.1.2

2.7.1.1

3.1.3.9

3.1.3.10

2.7.1.41

TITLE:Glycolysis / Gluconeogenesis
1.8.1.4

2.7.2.3

2.7.1.63
2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86
3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022

C05125
C00024

C00084

C16255

C15973

C05378

C06186

C06187

C06188

C01451

C00068

4.1.1.32

C00036

1.1.2.7

4.1.1.49

Propanoate metabolism

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146 2.7.1.147

2.7.1.147

1.1.2.8

Figure 10: The pathway graph with the layout.random style

42

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●● ●

●

●

4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5

C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.2

1.1.1.1
4.1.1.1

1.2.4.1
1.2.4.1

2.3.1.12
1.1.1.27

Pyruvate metabolism
2.7.1.40

Citrate cycle (TCA cycle)4.2.1.115.4.2.11.2.1.12Carbon fixation in photosynthetic organisms5.3.1.12.7.1.113.1.3.112.7.1.695.3.1.95.4.2.25.3.1.92.7.1.1
2.7.1.2

5.3.1.9
5.1.3.15

5.1.3.3
2.7.1.2

2.7.1.1
3.1.3.9

3.1.3.10
2.7.1.41

TITLE:Glycolysis / Gluconeogenesis

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345
C00074

C00197
C00236

C00186
C15972

C00469
C00022

C05125
C00024C00084C16255C15973C05378C06186C06187C06188C01451C000684.1.1.32C00036

1.1.2.7
4.1.1.49

Propanoate metabolism
1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1
1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 11: The pathway graph with the layout.circle style

43

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●● ●
●●

●

●

●

●
4.1.2.13

1.2.1.3

6.2.1.13

1.2.1.5
C00033

Pentose phosphate pathway

Starch and sucrose metabolism

4.1.1.1

1.1.1.21.1.1.1

4.1.1.1
1.2.4.1

1.2.4.12.3.1.12 1.1.1.27

Pyruvate metabolism 2.7.1.40

Citrate cycle (TCA cycle)

4.2.1.11

5.4.2.1

1.2.1.12

Carbon fixation in photosynthetic organisms

5.3.1.1

2.7.1.113.1.3.11

2.7.1.69

5.3.1.9

5.4.2.2

5.3.1.9
2.7.1.1
2.7.1.2

5.3.1.95.1.3.155.1.3.3
2.7.1.2
2.7.1.1

3.1.3.9

3.1.3.10
2.7.1.41

TITLE:Glycolysis / Gluconeogenesis

1.8.1.4

2.7.2.3

2.7.1.63

2.7.1.63

2.7.1.69

2.7.1.69

3.2.1.86

3.2.1.86

C00031

C00103

C00631

C00267

C00221

C00111

C01172

C00668

C05345

C00074

C00197

C00236

C00186

C15972

C00469

C00022C05125C00024

C00084

C16255

C15973

C05378
C06186 C06187

C06188C01451

C00068

4.1.1.32C00036

1.1.2.7

4.1.1.49

Propanoate metabolism

1.2.1.59

1.2.7.6
1.2.1.9

1.2.7.1

1.2.7.5

C01159

3.1.3.13

5.4.2.4

C00118

6.2.1.1

2.7.1.146

2.7.1.147

2.7.1.147

1.1.2.8

Figure 12: The Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

44

4.5 Export a pathway graph

The function write.graph can export a pathway graph to foreign file formats. The following command
exports a metabolic pathway graph to the GML format http://www.infosun.fim.uni-passau.de/

Graphlet/GML/. The format is supported by Cytoscape software [Shannon et al., 2003] that provides
more advanced visualization facilities http://www.cytoscape.org.

> write.graph(gm[[1]], "ec00010.txt", "gml")

5 Data management

The environment variable k2ri, which is used as the database of the system, stores many data relative
to pathway analyses. We can use the function ls to see the environment variable and use ls(k2ri)

to see data in it. These data include gene2ec, gene2ko, metabolicEC, metabolicKO, nonMetabolicKO, etc.
For example, the variable gene2ec stores relation betweeen genes and enzymes in the current organism
(e.g., relation between human genes and enzymes). The variable metabolicEC stores reference metabolic
pathways linked to EC identifiers. The variable metabolicKO stores reference metabolic pathways linked
to KO identifiers. The variable nonMetabolicKO stores reference non-metabolic pathways linked to KO
identifiers.

> ##data in environment variable k2ri

> ls(k2ri)

[1] "compbackground" "compound" "gene2ec" "gene2ko"

[5] "gene2path" "gene2symbol" "genebackground" "keggGene2gene"

[9] "metabolicEC" "metabolicKO" "nonMetabolicKO" "orgAndIdType"

[13] "taxonomy"

We can obtain these data in the environment variable k2ri using the function get. The following
command gets reference metabolic pathways linked to EC identifiers in the variable metabolicEC in R.

> #get all metabolic pathway data

> metabolicEC<-get("metabolicEC",envir=k2ri)

The section will introduce the functions relative to the data management of the environment variable
k2ri.

5.1 Set or update the current organism and the type of gene identifier

When using the pathway analysis functions of iSubpathwayMiner, users need to know the type of
organism and identifier in the current study. Users can check the type of organism and identifier in the
current study through the function getOrgAndIdType:

> getOrgAndIdType()

[1] "hsa" "ncbi-geneid"

The result means that the type of organism and identifier in the current study are Homo sapiens and
Entrez gene identifiers, which is the default value of the system. Users should ensure that the organism
and gene identifiers in the expected study accord with the return value of the function getOrgAndIdType.
If the result is different from the type of your genes, you need to change them through some functions,
e.g., updateOrgAndIdType and loadK2ri.

The function updateOrgAndIdType can download data relative to organism and gene identifiers, and
then treat and store them in the environment variable k2ri. The following command can set the
type of organism and identifier in the current study as Saccharomyces cerevisiae and sgd identifier in
Saccharomyces Genome Database.

45

http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.cytoscape.org

> path<-paste(system.file(package="iSubpathwayMiner"),"/localdata",sep="")

> updateOrgAndIdType("sce","sgd-sce",path)

The function updateCompound is able to update the variable compound in the environment variable k2ri.
The function updateTaxonomy is able to update the variable taxonomy in the environment variable k2ri.
The variable stores information about organism name and the three- or four-letter KEGG organism
code.

Through these functions, iSubpathwayMiner can support multiple species in KEGG and different
gene identifiers (KEGG compound, Entrez Gene IDs, gene official symbol, NCBI-gi IDs, UniProt IDs,
PDB IDs, etc.). It can also provide the most up-to-date pathway analysis results for users.

5.2 Update pathway data

The function updatePathway can update pathways in the environment variable k2ri from KEGG ftp
site. The function importPathway can construct the pathway variable metabolicEC, metabolicKO, and
nonMetabolicKO from local system. Firstly, users need to download KGML pathway files from KEGG
ftp site.

5.3 Load and save the environment variable of the system

Through the above functions, data in the environment variable of the system can be updated. The
system provides two functions (saveK2ri and loadK2ri) to easily save and load the new environment
variable. The following command is used to save the environment variable of Saccharomyces cerevisiae.

> saveK2ri("sce_sgd-sce.rda")

When one needs to use the environment variables of Saccharomyces cerevisiae next time, one can
use the function loadK2ri to load the last environment variable. The following command is used to load
the environment variables of Saccharomyces cerevisiae.

> loadK2ri("sce_sgd-sce.rda")

46

6 Session Info

The script runs within the following session:

R version 2.14.1 (2011-12-22)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=Chinese_People's Republic of China.936

[3] LC_MONETARY=Chinese_People's Republic of China.936

[4] LC_NUMERIC=C

[5] LC_TIME=Chinese_People's Republic of China.936

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] iSubpathwayMiner_2.0 XML_3.4-0.2 igraph_0.5.5-4

[4] RBGL_1.30.1 graph_1.32.0

loaded via a namespace (and not attached):

[1] tools_2.14.1

References

[Antonov et al., 2008] Antonov, A.V., et al. (2008) Kegg Spider: Interpretation of Genomics Data in
the Context of the Global Gene Metabolic Network. Genome Biol, 9, R179.

[Barabasi and Oltvai, 2004] Barabasi, A.L. and Oltvai, Z.N. (2004) Network Biology: Understanding
the Cell’s Functional Organization. Nat Rev Genet, 5, 101-113.

[Csardi and Nepusz, 2006] Csardi, G. and Nepusz, T. (2006) The igraph software package for complex
network research. InterJournal, Complex Systems, 1695.

[Draghici et al., 2007] Draghici, S., et al. (2007) A Systems Biology Approach for Pathway Level Anal-
ysis. Genome Res, 17, 1537-1545.

[Gentleman et al., 2004] Gentleman, R.C., et al. (2004) Bioconductor: Open Software Development for
Computational Biology and Bioinformatics. Genome Biol, 5, R80.

[Goffard and Weiller, 2007] Goffard, N. and Weiller, G. (2007) Pathexpress: A Web-Based Tool to
Identify Relevant Pathways in Gene Expression Data. Nucleic Acids Res, 35, W176-181.

[Guimera and Nunes Amaral, 2005] Guimera, R. and Nunes Amaral, L.A. (2005) Functional Cartogra-
phy of Complex Metabolic Networks. Nature, 433, 895-900.

[Huber et al., 2007] Huber, W., et al. (2007) Graphs in Molecular Biology. BMC Bioinformatics, 8 Suppl
6, S8.

[Hung et al., 2010] Hung, J.H., et al. (2010) Identification of Functional Modules That Correlate with
Phenotypic Difference: The Influence of Network Topology. Genome Biol, 11, R23.

[Jeong et al., 2000] Jeong, H., et al. (2000) The Large-Scale Organization of Metabolic Networks. Na-
ture, 407, 651-654.

47

[Kanehisa et al., 2006] Kanehisa, M., et al. (2006) From Genomics to Chemical Genomics: New Devel-
opments in Kegg. Nucleic Acids Res, 34, D354-357.

[Klukas and Schreiber, 2007] Klukas, C. and Schreiber, F. (2007) Dynamic Exploration and Editing of
Kegg Pathway Diagrams. Bioinformatics, 23, 344-350.

[Koyuturk et al., 2004] Koyuturk, M., et al. (2004) An Efficient Algorithm for Detecting Frequent Sub-
graphs in Biological Networks. Bioinformatics, 20 Suppl 1, i200-207.

[Li et al., 2009] Li, C., et al. (2009) Subpathwayminer: A Software Package for Flexible Identification
of Pathways. Nucleic Acids Res, 37, e131.

[Ogata et al., 2000] Ogata, H., et al. (2000) A Heuristic Graph Comparison Algorithm and Its Appli-
cation to Detect Functionally Related Enzyme Clusters. Nucleic Acids Res, 28, 4021-4028.

[Schreiber et al., 2002] Schreiber, F. (2002) High Quality Visualization of Biochemical Pathways in
Biopath. In Silico Biol, 2, 59-73.

[Shannon et al., 2003] Shannon, P., et al. (2003) Cytoscape: A Software Environment for Integrated
Models of Biomolecular Interaction Networks. Genome Res, 13, 2498-2504.

[Smart et al., 2008] Smart, A.G., et al. (2008) Cascading Failure and Robustness in Metabolic Networks.
Proc Natl Acad Sci U S A, 105, 13223-13228.

[Strimmer, 2008] Strimmer, K. (2008) fdrtool: a versatile R package for estimating local and tail area-
based false discovery rates. Bioinformatics, 24, 1461-1462.

[Team , 2004] Team, R.D.C. (2008) R: A Language and Environment for Statistical Computing. R
Foundation Statistical Computing.

[Xia and Wishart, 2010] Xia, J. and Wishart, D.S. (2010) Metpa: A Web-Based Metabolomics Tool for
Pathway Analysis and Visualization. Bioinformatics, 26, 2342-2344.

[Zhang and Wiemann, 2009] Zhang, J.D. and Wiemann, S. (2009) Kegggraph: A Graph Approach to
Kegg Pathway in R and Bioconductor. Bioinformatics, 25, 1470-1471.

48

	Overview
	The methods of graph-based reconstruction of pathways
	Convert KGML files of KEGG pathways to a list in R
	Convert metabolic pathways to graphs
	The method to convert metabolic pathways to graphs
	Some simple examples of operating pathway graphs

	Convert non-metabolic pathways to graphs
	The default method to convert non-metabolic pathways to graphs
	The alternative method to convert non-metabolic pathways to graphs

	Convert pathway graphs to other derivative graphs
	Convert pathway graphs to undirected graphs
	Map current organism-specific gene identifiers to nodes in pathway graphs
	Filter nodes of pathway graphs
	Simplify pathway graphs as graphs with only gene products (or only compounds) as nodes
	Expand nodes of pathway graphs
	Get simple pathway graphs
	Merge nodes with the same names

	The integrated application of pathway reconstruct methods
	Example 1: enzyme-compound (KO-compound) pathway graphs
	Example 2: enzyme-enzyme (KO-KO) pathway graphs
	Example 3: compound-compound pathway graphs
	Example 4: organism-specific gene-gene pathway graphs

	Methods to analyze pathway graphs
	The basic analyses based on graph model
	Node methods: degree, betweenness, local clustering coefficient, etc.
	Edge method: shortest paths
	Graph method: degree distribution, diameter, global clustering coefficient, density, module, etc.

	Topology-based pathway analysis of cellular component sets
	Topology-based pathway analysis of gene sets

	Annotate cellular component sets and identify entire pathways
	Annotate gene sets and identify entire pathways
	Annotate compound sets and identify enire pathways
	Annotate compound and gene sets and identify entire pathways
	Other examples

	The k-cliques method to identify subpathways
	Annotate gene sets and identify subpathways

	Visualize a pathway graph
	Change node label of the pathway graph
	The basic commands to visualize a pathway graph with custom style
	The layout style of a pathway graph in R
	Visualize the result graph of pathway analyses
	Export a pathway graph

	Data management
	Set or update the current organism and the type of gene identifier
	Update pathway data
	Load and save the environment variable of the system

	Session Info

