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Abstract This vignette illustrates the application of variance estimation procedures to indicators
on social exclusion and poverty using the R package laeken. To be more precise, it describes a
general framework for estimating variance and confidence intervals of indicators under complex
sampling designs. Currently, the package is focused on bootstrap approaches. While the naive
bootstrap does not modify the weights of the bootstrap samples, a calibrated version allows to
calibrate each bootstrap sample on auxiliary information before deriving the bootstrap replicate
estimate.

1 Introduction

When point estimates of indicators are computed from samples, it is important to also obtain
variance estimates and confidence intervals in order to account for variability due to sampling.
Other sources of variability such as data editing or imputation may need to be considered as well,
but this is not further discussed in this paper. While this vignette targets the topic of variance
and confidence interval estimation for the indicators on social exclusion and poverty according
to Eurostat (2004, 2009), the aim is not to describe and evaluate the different approaches that
have been proposed to date. Instead, the aim is to present the functionality for the statistical
environment R (R Development Core Team 2013) implemented in the add-on package laeken
(Alfons et al. 2013).

It should be noted that the basic design of the package, as well as standard point estimation of
the indicators on social exclusion and poverty, is discussed in detail in vignette laeken-standard

(Templ and Alfons 2011). In addition, vignette laeken-pareto (Alfons et al. 2011b) presents more
sophisticated methods for point estimation of the indicators, which are less influenced by outliers.
Those documents can be viewed from within R with the following commands:

R> vignette("laeken-standard")

R> vignette("laeken-pareto")

The data basis for the estimation of the indicators on social exclusion and poverty is the European
Union Statistics on Income and Living Conditions (EU-SILC), which is an annual panel survey
conducted in EU member states and other European countries. Package laeken provides the syn-
thetic example data eusilc consisting of 14 827 observations from 6 000 households. Furthermore,
the data were generated from Austrian EU-SILC survey data from 2006 using the data simulation
methodology proposed by Alfons et al. (2011a) and implemented in the R package simPopulation
(Alfons and Kraft 2012). The data set eusilc is used in the code examples throughout the paper.
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R> library("laeken")

R> data("eusilc")

The rest of the paper is organized as follows. Section 2 presents the general wrapper function
for estimating variance and confidence intervals of indicators in package laeken. The naive and
calibrated bootstrap approaches are discussed in Sections 3 and 4, respectively. Section 5 concludes.

2 General wrapper function for variance estimation

The function variance() provides a flexible framework for estimating the variance and confidence
intervals of indicators such as the at-risk-of-poverty rate, the Gini coefficient, the quintile share
ratio and the relative median at-risk-of-poverty gap. For a mathematical description and details
on the implementation of these indicators in the R package laeken, the reader is referred to
vignette laeken-standard (Templ and Alfons 2011). In any case, variance() acts as a general
wrapper function for computing variance and confidence interval estimates of indicators on social
exclusion and poverty with package laeken. The arguments of function variance() are shown in
the following:

R> args(variance)

function (inc, weights = NULL, years = NULL, breakdown = NULL,

design = NULL, cluster = NULL, data = NULL, indicator, alpha = 0.05,

na.rm = FALSE, type = "bootstrap", gender = NULL, method = NULL,

...)

NULL

All these arguments are fully described in the R help page of function variance(). The most
important arguments are:

inc: the income vector.

weights: an optional vector of sample weights.

breakdown: an optional vector giving different domains in which variances and confidence intervals
should be computed.

design: an optional vector or factor giving different strata for stratified sampling designs.

data: an optional data.frame. If supplied, each of the above arguments should be specified as a
character string or an integer or logical vector specifying the corresponding column.

indicator: an object inheriting from the class "indicator" that contains the point estimates of the
indicator, such as "arpr" for the at-risk-of-poverty rate, "qsr" for the quintile share ratio,
"rmpg" for the relative median at-risk-of-poverty gap, or "gini" for the Gini coefficient.

type: a character string specifying the type of variance estimation to be used. Currently, only
"bootstrap" is implemented for variance estimation based on bootstrap resampling.

In the following sections, two bootstrap methods for estimating the variance and confidence
intervals of point estimates for complex survey data are described. Furthermore, their application
using the function variance() from package laeken is demonstrated.

3 Naive bootstrap

Let X := (x1, . . . ,xn)′ denote a survey sample with n observations and p variables. Then the
naive bootstrap algorithm for estimating the variance and confidence interval of an indicator can
be summarized as follows:

1. Draw R independent bootstrap samples X∗1, . . . ,X
∗
R from X.
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2. Compute the bootstrap replicate estimates θ̂∗r := θ̂(X∗r) for each bootstrap sample X∗r ,

r = 1, . . . , R, where θ̂ denotes an estimator for a certain indicator of interest. Of course the
sample weights always need to be considered for the computation of the bootstrap replicate
estimates.

3. Estimate the variance V (θ̂) by the variance of the R bootstrap replicate estimates:

V̂ (θ̂) :=
1

R− 1

R∑
r=1

(
θ̂∗r −

1

R

R∑
s=1

θ̂∗s

)2

. (1)

4. Estimate the confidence interval at confidence level 1 − α by one of the following methods
(for details, see Davison and Hinkley 1997):

Percentile method:
[
θ̂∗((R+1)α2 ), θ̂

∗
((R+1)(1−α2 ))

]
, as suggested by Efron and Tibshirani (1993).

Normal approximation: θ̂ ± z1−α2 · V̂ (θ̂)1/2 with z1−α2 = Φ−1(1 − α
2 ).

Basic bootstrap method:
[
2θ̂ − θ̂∗((R+1)(1−α2 )), 2θ̂ − θ̂∗((R+1)α2 )

]
.

For the percentile and the basic bootstrap method, θ̂∗(1) ≤ . . . ≤ θ̂∗(R) denote the order
statistics of the bootstrap replicate estimates.

In the following example, the variance and confidence interval of the at-risk-of-poverty rate are
estimated with the naive bootstrap procedure. The output of function variance() is an object
of the same class as the point estimate supplied as the indicator argument, but with additional
components for the variance and confidence interval. In addition to the point estimate, the income
and the sample weights need to be supplied. Furthermore, a stratified sampling design can be
considered by specifying the design argument, in which case observations are resampled separately
within the strata. To ensure reproducibility of the results, the seed of the random number generator
is set.

R> a <- arpr("eqIncome", weights = "rb050", data = eusilc)

R> variance("eqIncome", weights = "rb050", design = "db040",

+ data = eusilc, indicator = a, bootType = "naive", seed = 123)

Value:

[1] 14.44422

Variance:

[1] 0.0920564

Confidence interval:

lower upper

13.87663 15.19417

Threshold:

[1] 10859.24

One of the most convenient features of package laeken is that indicators can be evaluated for
different subdomains using a single command. This also holds for variance estimation. Using the
breakdown argument, the example below produces variance and confidence interval estimates for
each NUTS2 region in addition to the overall values.

R> b <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc)

R> variance("eqIncome", weights = "rb050", breakdown = "db040", design = "db040",

+ data = eusilc, indicator = b, bootType = "naive", seed = 123)
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Value:

[1] 14.44422

Variance:

[1] 0.0920564

Confidence interval:

lower upper

13.87663 15.19417

Value by domain:

stratum value

1 Burgenland 19.53984

2 Carinthia 13.08627

3 Lower Austria 13.84362

4 Salzburg 13.78734

5 Styria 14.37464

6 Tyrol 15.30819

7 Upper Austria 10.88977

8 Vienna 17.23468

9 Vorarlberg 16.53731

Variance by domain:

stratum var

1 Burgenland 3.5105237

2 Carinthia 1.4133369

3 Lower Austria 0.4456053

4 Salzburg 1.2937926

5 Styria 0.4615967

6 Tyrol 1.0299617

7 Upper Austria 0.3785766

8 Vienna 0.6384621

9 Vorarlberg 1.7601223

Confidence interval by domain:

stratum lower upper

1 Burgenland 16.072806 23.63099

2 Carinthia 10.640776 15.23716

3 Lower Austria 12.196265 15.17182

4 Salzburg 11.913708 16.13315

5 Styria 13.020339 15.89730

6 Tyrol 13.084487 17.51124

7 Upper Austria 9.960467 12.54200

8 Vienna 15.712609 18.96003

9 Vorarlberg 13.604720 19.23431

Threshold:

[1] 10859.24

It should be noted that the workhorse function bootVar() is called internally by variance()

for bootstrap variance and confidence interval estimation. The function bootVar() could also
be called directly by the user in exactly the same manner. Moreover, variance and confidence
interval estimation for any other indicator implemented in package laeken is straightforward—the
application using function variance() or bootVar() remains the same.
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4 Calibrated bootstrap

Rao and Wu (1988) showed that the naive bootstrap is biased when used in the complex survey
context. They propose to increase the variance estimate in the h-th stratum by a factor of nh−1

nh
(if the bootstrap sample is of the same size). In addition, they describe extensions to sampling
without replacement, unequal probability sampling, and two-stage cluster sampling with equal
probabilities and without replacement.

Deville and Särndal (1992) and Deville et al. (1993) provide a general description on how to
calibrate sample weights to account for known population totals. The naive bootstrap does not
include the recalibration of bootstrap samples in order to fit known population totals and therefore
is, strictly formulated, not suitable for many practical applications. However, even though a bias
might be introduced, the naive bootstrap works well in many situations and is faster to compute
than the calibrated version. Hence it is a popular method often used in practice.

In real-world data, the inclusion probabilities for observations in the population are in general
not all equal, resulting in different design weights for the observations in the sample. Furthermore,
the initial design weights are in practice often adjusted by calibration, e.g., to account for non-
response or so that certain known population totals can be precisely estimated from the survey
sample. To give a simplified example, if the population sizes in different regions are known, the
sample weights may be calibrated so that the Horvitz-Thompson estimates (Horvitz and Thompson
1952) of the population sizes equal the known true values. However, when bootstrap samples are
drawn from survey data, resampling observations has the effect that such known population totals
can no longer be precisely estimated. As a remedy, the sample weights of each bootstrap sample
should be calibrated.

The calibrated version of the bootstrap thus results in more precise variance and confidence
interval estimation, but comes with higher computational costs than the naive approach. In any
case, the calibrated bootstrap algorithm is obtained by adding the following step between Steps 1
and 2 of the naive bootstrap algorithm from Section 3:

1b. Calibrate the sample weights for each bootstrap sample X∗r , r = 1, . . . , R. Generalized raking
procedures are thereby used for calibration: either a multiplicative method known as raking,
an additive method or a logit method (see Deville and Särndal 1992, Deville et al. 1993).

The function call to variance() for the calibrated bootstrap is very similar to its counterpart
for the naive bootstrap. A matrix of auxiliary calibration variables needs to be supplied via the
argument X. In addition, the argument totals can be used to supply the corresponding population
totals. If the totals argument is omitted, as in the following example, the population totals are
computed from the sample weights of the original sample. This follows the assumption that those
weights are already calibrated on the supplied auxiliary variables.

R> variance("eqIncome", weights = "rb050", design = "db040",

+ data = eusilc, indicator = a, X = calibVars(eusilc$db040),

+ seed = 123)

Value:

[1] 14.44422

Variance:

[1] 0.09165169

Confidence interval:

lower upper

13.87817 15.19303

Threshold:

[1] 10859.24

Note that the function calibVars() transforms a factor into a matrix of binary variables, as
required by the calibration function calibWeights(), which is called internally. While the default
is to use raking for calibration, other methods can be specified via the method argument.

5



5 Conclusions

Both bootstrap procedures for variance and confidence interval estimation of indicators on social
exclusion and poverty currently implemented in the R package laeken have their strengths. While
the naive bootstrap is faster to compute, the calibrated bootstrap in general leads to more precise
results. The implementation of other procedures such as linearization techniques (Kovačević and
Binder 1997, Deville 1999, Hulliger and Münnich 2006, Osier 2009) or the delete-a-group jackknife
(Kott 2001) is future work.

Furthermore, Alfons et al. (2009) demonstrated how the variance of indicators computed from
data with imputed values may be underestimated in bootstrap procedures, depending on the
indicator itself and the imputation procedure used. They proposed to use the method described
in Little and Rubin (2002), which consists of drawing bootstrap samples from the original data
with missing values, and to impute the missing data for each bootstrap sample before computing
the corresponding bootstrap replicate estimate. Of course, this results in an additional increase of
the computation time. The implementation of this procedure in package laeken is future work.
It should also be noted that multiple imputation is a further possibility to consider the additional
uncertainty from imputation when estimating the variance of an indicator (see Little and Rubin
2002).
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