
Using the lsmeans Package

Russell V. Lenth
The University of Iowa

russell-lenth@uiowa.edu

November 2, 2012

1 Introduction

Least-squares means (or LS means), popularized by SAS, are predictions from a linear model at combina-
tions of specified factors. SAS’s documentation describes them as “predicted population margins—that is,
they estimate the marginal means over a balanced population” (SAS Institute 2012). Unspecified factors
and covariates are handled by summarizing the predictions over those factors and variables. This vignette
gives some examples of LS means and the lsmeans package. Some of the finer points of LS means are
explained in the context of these examples.

Like most statistical calculations, it is possible to use least-squares means inappropriately; however,
they are in fact simply predictions from the model. When used with due care, they can provide useful
summaries of a linear model that includes factors.

2 Analysis-of-covariance example

Oehlert (2000), p.456 gives a dataset concerning repetitive-motion pain due to typing on three types of er-
gonomic keyboards. Twelve subjects having repetitive-motion disorders were randomized to the keyboard
types, and reported the severity of their pain on a subjective scale of 0–100 after two weeks of using the
keyboard. We also recorded the time spent typing, in hours. Here are the data, and a plot.

R> typing = data.frame(

R> type = rep(c("A","B","C"), each=4),

R> hours = c(60,72,61,50, 54,68,66,59, 56,56,55,51),

R> pain = c(85,95,69,58, 41,74,71,52, 41,34,50,40))

R> library(lattice)

R> xyplot(pain ~ hours | type, data = typing, layout = c(3,1))

hours

pa
in

40

50

60

70

80

90

50 55 60 65 70

●

●

●

●

A

50 55 60 65 70

●

●

●

●

B

50 55 60 65 70

●

●

●

●

C

1

mailto:russell-lenth@uiowa.edu

It appears that hours and pain are linearly related (though it’s hard to know for type C keyboards), and
that the trend line for type A is higher than for the other two. To test this, consider a simple covariate model
that fits parallel lines to the three panels:

R> typing.lm = lm(pain ~ hours + type, data = typing)

The least-squares means resulting from this model are easily obtained by calling lsmeans with the fitted
model and a formula specifying the factor of interest:

R> library(lsmeans)

R> lsmeans(typing.lm, ~ type)

$‘type lsmeans‘

type lsmean SE df lower.CL upper.CL

A 73.56518 3.640583 8 65.16998 81.96038

B 54.49529 3.722251 8 45.91176 63.07881

C 49.43953 3.943413 8 40.34600 58.53306

These results are the same as what are often called “adjusted means” in the analysis of covariance—
predicted values for each keyboard type, when the covariate is set to its overall average value, as we now
verify:

R> predict(typing.lm, newdata = data.frame(type = c("A","B","C"),

R> hours = mean(typing$hours)))

1 2 3

73.56518 54.49529 49.43953

The lsmeans function allows us to make predictions at other hours values. We may also obtain comparisons
or contrasts among the means by specifying a keyword in the left-hand side of the formula. For example,

R> lsmeans(typing.lm, pairwise ~ type, at = list(hours = 55))

$‘type lsmeans‘

type lsmean SE df lower.CL upper.CL

A 66.28560 4.154824 8 56.70456 75.86664

B 47.21570 4.351192 8 37.18184 57.24957

C 42.15995 3.588596 8 33.88463 50.43527

$‘type pairwise differences‘

estimate SE df t.ratio p.value

A - B 19.069896 5.081620 8 3.75272 0.01378

A - C 24.125650 5.559580 8 4.33947 0.00621

B - C 5.055754 5.719515 8 0.88395 0.66470

p values are adjusted using the tukey method for 3 means

The resulting least-squares means are each about 7.3 less than the previous results, but their standard errors
don’t all change the same way: the first two SEs increase but the third decreases because the prediction is
closer to the data in that group.

The results for the pairwise differences are the same regardless of the hours value we specify, because
the hours effect cancels out when we take the differences. We confirm that the mean pain with keyboard A
is significantly greater than it is with either of the other keyboards.

There are other choices besides pairwise. The other built-in options are revpairwise (same as pairwise
but the subraction is done the other way; trt.vs.ctrl for comparing one factor level (say, a control) with
each of the others, and the related trt.vs.ctrl1, and trt.vs.ctrlk for convenience in specifying which
group is the control group; and poly for estimating orthogonal-polynomial contrasts, assuming equal spac-
ing. It is possible to provide custom contrasts as well—see the documentation.

2

As seen in the previous output, lsmeans provides for adjusting the p values of contrasts to preserve a
familywise error rate. The default for pairwise comparisons is the Tukey (HSD) method. But in covariance
models, that method is only approximate. To get a more exact adjustment, we can pass the comparisons to
the glht function in the multcomp package (and also pass additional arguments—in this example, none):

R> typing.lsm = lsmeans(typing.lm, pairwise ~ type, glhargs=list())

R> print(typing.lsm, omit=1)

$‘type pairwise differences‘

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = pain ~ hours + type, data = typing)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

A - B == 0 19.070 5.082 3.753 0.01371 *

A - C == 0 24.126 5.560 4.339 0.00615 **

B - C == 0 5.056 5.720 0.884 0.66421

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Adjusted p values reported -- single-step method)

The p values are slightly different, as expected. We may of course use other methods available for glht

objects:

R> plot(typing.lsm[[2]])

−10 0 10 20 30 40

B − C

A − C

A − B (

(

(

)

)

)

●

●

●

95% family−wise confidence level

Linear Function

Besides being able to call glht from lsmeans, we have also provided an lsm function and an associated
glht method so that we can call lsmeans from withing glht. We use lsm in much the same way as mcp in
the multcomp package. Here we display simultaneous confidence intervals for the lsmeans:

R> typing.glht = glht(typing.lm, linfct = lsm(~ type))

R> plot(typing.glht)

40 50 60 70 80

C

B

A (

(

(

)

)

)

●

●

●

95% family−wise confidence level

Linear Function

3

Unlike lsmeans which returns a list, the design of lsm is to create just one set of linear functions to hand
to glht. In the illustration above, there is no left-hand side of the formula, so the linear functions of the
lsmeans themselves are used. If we had instead specified lsm(pairwise ~ type), then the results would
have been the same as shown earlier for the pairwise differences.

3 Two-factor example

Now consider the R-provided dataset warpbreaks, relating to a weaving-process experiment. This dataset
(from Tukey 1977, p.82) has two factors: wool (two types of wool), and tension (low, medium, and high);
and the response variable is breaks, the nuumber of breaks in a fixed length of yarn.

R> with(warpbreaks, table(wool, tension))

tension

wool L M H

A 9 9 9

B 9 9 9

An interaction plot clearly indicates that we shouldn’t consider an additive model.

R> with(warpbreaks, interaction.plot(tension, wool, breaks, type="b"))

1

1 1

20
25

30
35

40
45

tension

m
ea

n
of

 b
re

ak
s

2 2

2

L M H

 wool

1
2

A
B

So let us fit a model with interaction

R> warp.lm = lm(breaks ~ wool * tension, data = warpbreaks)

R> anova(warp.lm)

Analysis of Variance Table

Response: breaks

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 450.7 450.67 3.7653 0.0582130 .

tension 2 2034.3 1017.13 8.4980 0.0006926 ***

wool:tension 2 1002.8 501.39 4.1891 0.0210442 *

Residuals 48 5745.1 119.69

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Now we can obtain the least-squares means for the wool×tension combinations. We could request pair-
wise comparisons as well by specifying pairwise ~ wool:tension, but this will yield quite a few com-
parisons (15 to be exact). Often, people are satisfied with a smaller number of comparisons (or contrasts)
obtained by restricting them to be at the same level of one of the factors. This can be done using the |

symbol for conditioning. In the code below, we request comparisons of the wools at each tension, and
polynomial contrasts for each wool.

4

R> print(lsmeans(warp.lm, list(pairwise ~ wool | tension, poly ~ tension | wool)), omit=3)

$‘wool:tension lsmeans‘

wool tension lsmean SE df lower.CL upper.CL

A L 44.55556 3.646761 48 37.22325 51.88786

B L 28.22222 3.646761 48 20.88992 35.55453

A M 24.00000 3.646761 48 16.66769 31.33231

B M 28.77778 3.646761 48 21.44547 36.11008

A H 24.55556 3.646761 48 17.22325 31.88786

B H 18.77778 3.646761 48 11.44547 26.11008

$‘wool:tension pairwise differences‘

estimate SE df t.ratio p.value

A - B | L 16.333333 5.157299 48 3.16703 0.00268

A - B | M -4.777778 5.157299 48 -0.92641 0.35887

A - B | H 5.777778 5.157299 48 1.12031 0.26816

p values are adjusted using the tukey method for 2 means

$‘tension:wool polynomial contrasts‘

estimate SE df t.ratio p.value

linear | A -20.000000 5.157299 48 -3.87800 0.00032

quadratic | A 21.111111 8.932705 48 2.36335 0.02221

linear | B -9.444444 5.157299 48 -1.83128 0.07327

quadratic | B -10.555556 8.932705 48 -1.18168 0.24315

p values are not adjusted

(We suppressed the third element of the results because it is the same as the first, with rows rearranged.)
With these data, the least-squares means are exactly equal to the cell means of the data. The main result
(visually clear in the interaction plot) is that the wools differ the most when the tension is low. The signs of
the polynomial contrasts indicate decrasing trends for both wools, but opposite concavities.

It is also possible to abuse lsmeans with a call like this:

R> lsmeans(warp.lm, ~ wool) ### NOT a good idea!

$‘wool lsmeans‘

wool lsmean SE df lower.CL upper.CL

A 31.03704 2.105459 48 26.80373 35.27035

B 25.25926 2.105459 48 21.02595 29.49257

Warning message:

In lsmeans(warp.lm, ~wool) :

lsmeans of wool may be misleading due to interaction with other predictor(s)

Each lsmean is the average of the three tension lsmeans at the given wool. As the warning indicates, the
presence of the strong interaction indicates that these results are pretty meaningless. In another dataset
wher an additive model would explain the data, these marginal averages, and comparisons or contrasts
thereof, can nicely summarize the main effects in an interpretable way.

4 Split-plot example

The nlme package includes a famous dataset Oats that was used in Yates (1935) as an example of a split-plot
experiment. Here is a summary of the dataset.

R> library(nlme)

R> summary(Oats)

5

Block Variety nitro yield

VI :12 Golden Rain:24 Min. :0.00 Min. : 53.0

V :12 Marvellous :24 1st Qu.:0.15 1st Qu.: 86.0

III:12 Victory :24 Median :0.30 Median :102.5

IV :12 Mean :0.30 Mean :104.0

II :12 3rd Qu.:0.45 3rd Qu.:121.2

I :12 Max. :0.60 Max. :174.0

The experiment was conducted in six blocks, and each block was divided into three plots, which were
randomly assigned to varieties of oats. With just Variety as a factor, it is a randomized complete-block ex-
periment. However, each plot was subdivided into 4 subplots and the subplots were treated with different
amounts of nitrogen. Thus, Block is a blocking factor, Variety is the whole-plot factor, and nitro is the
split-plot factor. The response variable is yield, the yield of each subplot in bushels per acre. Below is an
interaction plot of the data, and also an interaction pl;ot of the least-squares means, which will be described
later.

R> with(Oats, interaction.plot(nitro, Variety, yield, type="b"))

1

1

1

1

70
80

90
10

0
11

0
12

0

nitro

m
ea

n
of

 y
ie

ld

2

2

2

2

3

3

3

3

0 0.2 0.4 0.6

 Variety

2
1
3

Marvellous
Golden Rain
Victory

1

1

1

1

80
90

10
0

11
0

12
0

13
0

nitro

Le
as

t−
S

qu
ar

es
 m

ea
ns

2

2

2

2

3

3

3

3

0 0.2 0.4 0.6

 Variety

2
1
3

Marvellous
Golden Rain
Victory

There is not much evidence of an interaction. In this dataset, we have random factors Block and Block:Variety

(which identifies the plots). So we will fit a linear mixed-effects model that accounts for these. Another tech-
nicality is that nitro is a numeric variable, and initially we will model it as a factor. We will use lmer in the
lme4 package to fit a model.

R> library(lme4, quietly = TRUE, warn.conflicts = FALSE)

R> Oats.lmer = lmer(yield ~ Variety + factor(nitro) + (1 | Block/Variety), data=Oats)

R> lsmeans(Oats.lmer, list(revpairwise ~ Variety, poly ~ nitro, ~ Variety:nitro))

$‘Variety lsmeans‘

Variety lsmean SE df lower.CL upper.CL

Golden Rain 104.5000 7.797418 8.869823 86.82147 122.1785

Marvellous 109.7917 7.797418 8.869823 92.11314 127.4702

Victory 97.6250 7.797418 8.869823 79.94647 115.3035

$‘Variety pairwise differences‘

estimate SE df t.ratio p.value

Marvellous - Golden Rain 5.291667 7.078899 10 0.74753 0.74187

Victory - Golden Rain -6.875000 7.078899 10 -0.97120 0.61035

Victory - Marvellous -12.166667 7.078899 10 -1.71872 0.24583

p values are adjusted using the tukey method for 3 means

6

$‘nitro lsmeans‘

nitro lsmean SE df lower.CL upper.CL

0 79.38889 7.132279 6.639194 62.33614 96.44164

0.2 98.88889 7.132279 6.639194 81.83614 115.94164

0.4 114.22222 7.132279 6.639194 97.16947 131.27497

0.6 123.38889 7.132279 6.639194 106.33614 140.44164

$‘nitro polynomial contrasts‘

estimate SE df t.ratio p.value

linear 147.33333 13.439530 51 10.96268 0.00000

quadratic -10.33333 6.010341 51 -1.71926 0.09163

cubic -2.00000 13.439530 51 -0.14881 0.88229

p values are not adjusted

$‘Variety:nitro lsmeans‘

Variety nitro lsmean SE df lower.CL upper.CL

Golden Rain 0 79.91667 8.220281 10.93256 61.81032 98.02301

Marvellous 0 85.20833 8.220281 10.93256 67.10199 103.31468

Victory 0 73.04167 8.220281 10.93256 54.93532 91.14801

Golden Rain 0.2 99.41667 8.220281 10.93256 81.31032 117.52301

Marvellous 0.2 104.70833 8.220281 10.93256 86.60199 122.81468

Victory 0.2 92.54167 8.220281 10.93256 74.43532 110.64801

Golden Rain 0.4 114.75000 8.220281 10.93256 96.64366 132.85634

Marvellous 0.4 120.04167 8.220281 10.93256 101.93532 138.14801

Victory 0.4 107.87500 8.220281 10.93256 89.76866 125.98134

Golden Rain 0.6 123.91667 8.220281 10.93256 105.81032 142.02301

Marvellous 0.6 129.20833 8.220281 10.93256 111.10199 147.31468

Victory 0.6 117.04167 8.220281 10.93256 98.93532 135.14801

Unlike the warpbreaks example, the additive model makes it reasonable to look at the marginal lsmeans,
which are equally-weighted marginal averages of the cell predictions in the fifth table of the output.1 The
right-hand interaction plot above was obtained using the statement

R> with(Oats.lsms[[5]], interaction.plot(nitro, Variety, lsmean, type="b",

R> ylab="Least-Squares means"))

While the default for obtaining marginal lsmeans is to weight the predictions equally, we may override
this via the fac.reduce argument. For example, suppose that we want the Variety predictions when nitro

is 0.25. We can obtain these by interpolation as follows:

R> lsmeans(Oats.lmer, ~ Variety, fac.reduce = function(X, lev) .75 * X[2,] + .25 * X[3,])

$‘Variety lsmeans‘

Variety lsmean SE df lower.CL upper.CL

Golden Rain 103.2500 8.01164 9.880139 85.36956 121.1304

Marvellous 108.5417 8.01164 9.880139 90.66122 126.4221

Victory 96.3750 8.01164 9.880139 78.49456 114.2554

(There is also a cov.reduce argument to change the default handling of covariates.) The polynomial con-
trasts for nitro suggest that we could substitute a quadratic trend for nitro; and if we do that, then there
is another (probably better) way to make the above predictions:

R> OatsPoly.lmer = lmer(yield ~ Variety + poly(nitro, 2) + (1 | Block/Variety), data=Oats)

R> lsmeans(OatsPoly.lmer, ~ Variety, at = list(nitro = .25))

1Interestingly, SAS’s implementation of least-squares means will refuse to output these cell predictions unless the interaction term
is in the model.

7

$‘Variety lsmeans‘

Variety lsmean SE df lower.CL upper.CL

Golden Rain 103.88437 8.002143 9.834068 86.01363 121.7551

Marvellous 109.17604 8.002143 9.834068 91.30529 127.0468

Victory 97.00937 8.002143 9.834068 79.13863 114.8801

These predictions are slightly higher than the interpolations mostly because they account for the downward
concavity of the fitted quadratics.

5 Messy data

To illustrate some more issues, and related lsmeans capabilities, consider the dataset named nutrition that
is provided with the lsmeans package. These data come from Milliken and Johnson (1984), and contain the
results of an observational study on nutrition education. Low-income mothers are classified by race, age
category, and whether or not they received food stamps (the group factor); and the response variable is a
gain score (post minus pre scores) after completing a nutrition training program. The graph below displays
the data.

R> xyplot(gain ~ age | race*group, data=nutrition)

age

ga
in

−20

−10

0

10

1 2 3 4

●●

●

●

●

●

●

Black
FoodStamps

●

Hispanic
FoodStamps

1 2 3 4

●

●

●

●

●

●●

●●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●
●

●

●
●

White
FoodStamps

●
●
●●

●

●

●
●

●●

●

●
●

●

Black
NoAid

1 2 3 4

●

●

Hispanic
NoAid

−20

−10

0

10

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

White
NoAid

Consider the model that includes all main effects and two-way interactions; and let us look at the group
by race lsmeans:

R> nutr.lm = lm(gain ~ (age + group + race)^2, data = nutrition)

R> lsmeans(nutr.lm, ~ group*race)

$‘group:race lsmeans‘

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 4.708257 2.368117 92 0.004971359 9.411542

NoAid Black -2.190399 2.490576 92 -7.136898097 2.756099

FoodStamps Hispanic NA NA NA NA NA

NoAid Hispanic NA NA NA NA NA

FoodStamps White 3.607680 1.155619 92 1.312521470 5.902838

NoAid White 2.256336 2.389273 92 -2.488966678 7.001638

One thing that this illustrates is that lsmeans incorporates an estimability check, and returns a missing
value when a prediction cannot be made uniquely. In this example, we have very few Hispanic mothers in

8

the dataset, resulting in empty cells. This creates a rank deficiency in the fitted model and some predictors
are thrown out.

One capability of lsmeans is that if a factor is included in the at argument, computations of lsmeans are
restricted to the specified level(s). So if we confine ourselves to age group 3, we don’t have an estimability
issue:

R> lsmeans(nutr.lm, ~ group*race, at = list(age = "3"))

$‘group:race lsmeans‘

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 7.500000e+00 2.672054 92 2.193071 12.8069292

NoAid Black -3.666667e+00 2.181723 92 -7.999756 0.6664229

FoodStamps Hispanic 2.131628e-14 5.344107 92 -10.613858 10.6138584

NoAid Hispanic 2.500000e+00 3.778855 92 -5.005131 10.0051312

FoodStamps White 5.419355e+00 0.959830 92 3.513050 7.3256601

NoAid White -2.000000e-01 1.194979 92 -2.573331 2.1733309

Nonetheless, the standard errors for the Hispanic mothers are enormous due to very small counts. One
useful summary of the results is to narrow the scope to two races and the two middle age groups, where
most of the data lie. Here are the lsmeans and comparisons within rows and columns

R> nutr.lsm = lsmeans(nutr.lm, list(pairwise~group|race, pairwise~race|group),

R> at = list(age=c("2","3"), race=c("Black","White")))

R> nutr.lsm[-3]

$‘group:race lsmeans‘

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 8.916513 3.423757 92 2.116637 15.7163895

NoAid Black -2.190476 1.486593 92 -5.142979 0.7620266

FoodStamps White 5.147177 1.059624 92 3.042673 7.2516814

NoAid White -0.412500 1.117800 92 -2.632548 1.8075478

$‘group:race pairwise differences‘

estimate SE df t.ratio p.value

FoodStamps - NoAid | Black 11.106989 3.777839 92 2.94004 0.00415

FoodStamps - NoAid | White 5.559677 1.540221 92 3.60966 0.00050

p values are adjusted using the tukey method for 2 means

$‘race:group pairwise differences‘

estimate SE df t.ratio p.value

Black - White | FoodStamps 3.769336 3.394198 92 1.11052 0.26967

Black - White | NoAid -1.777976 1.859956 92 -0.95592 0.34162

p values are adjusted using the tukey method for 2 means

An interaction plot of the results follows:

R> with(nutr.lsm[[1]], interaction.plot(group, race, lsmean, type = "b",

R> ylab = "Least-squares mean"))

9

1

1−
2

0
2

4
6

8

group

Le
as

t−
sq

ua
re

s
m

ea
n

2

2

FoodStamps NoAid

 race

2
1

White
Black

The general conclusion from both is that the expected gains from the training are higher among families
receiving food stamps Note that this analysis is somewhat different than the results we would obtain by
subsetting the data, as we are borrowing information from the other observations in estimating and testing
these lsmeans.

6 GLMM example

The dataset cbpp in the lme4 package, originally from Lesnoff et al. (1964), provides data on the incidence
of contagious bovine pleuropneumonia in 15 herds of zebu cattle in Ethiopia, collected over four time
periods. These data are used as the primary example for the glmer function, and it is found that a model
that accounts for overdisperion is advantageous; hence the addition of the (1|obs) in the model fitted
below.

lsmeans may be used as in linear models to obtain marginal linear predictions for a generalized linear
model or, in this case, a generalized linear mixed model. Here, we use the trt.vs.ctrl1 contrast family
to compare each period with the first, as the primary goal was to track the spread or decline of CBPP over
time. We will save the results from lsmean, then add the inverse logits of the predictions and the estimated
odds ratios for the comparisons as an aid in interpretation.

R> cbpp$obs = 1:nrow(cbpp)

R> cbpp.glmer = glmer(cbind(incidence, size - incidence)

R> ~ period + (1 | herd) + (1 | obs), family = binomial, data = cbpp)

Number of levels of a grouping factor for the random effects

is *equal* to n, the number of observations

R> cbpp.lsm = lsmeans(cbpp.glmer, trt.vs.ctrl1 ~ period)

R> cbpp.lsm[[1]]$pred.incidence = 1 - 1 / (1 + exp(cbpp.lsm[[1]]$lsmean))

R> cbpp.lsm[[2]]$odds.ratio = exp(cbpp.lsm[[2]]$estimate)

R> cbpp.lsm

$‘period lsmeans‘

period lsmean SE df asymp.LCL asymp.UCL pred.incidence

1 -1.500292 0.2887610 NA -2.066253 -0.9343304 0.18238203

2 -2.726800 0.3809740 NA -3.473496 -1.9801052 0.06141032

3 -2.829133 0.3994052 NA -3.611953 -2.0463133 0.05577003

4 -3.366631 0.5193989 NA -4.384634 -2.3486279 0.03335476

$‘period differences from control‘

estimate SE df z.ratio p.value odds.ratio

2 - 1 -1.226509 0.4734567 NA -2.59054 0.02851 0.2933148

3 - 1 -1.328841 0.4883951 NA -2.72083 0.01944 0.2647839

10

4 - 1 -1.866339 0.5905702 NA -3.16023 0.00474 0.1546889

p values are adjusted using the sidak method for 3 tests

When degrees of freedom are not available, as in this case, lsmeans emphasizes that fact by displaying NA

for degrees of freedom and in the column headings.

7 Contrasts

You may occasionally want to know exactly what contrast coefficients are being used, especially in the
polynomial case. Contrasts are implemented in functions having names of the form name.lsmc (“lsmc” for
“least-squares means contrasts”), and you can simply call that function to see the contrasts; for example,

R> poly.lsmc(1:4)

linear quadratic cubic

1 -3 1 -1

2 -1 -1 3

3 1 -1 -3

4 3 1 1

poly.lsmc uses the base function poly plus an ad hoc algorithm that tries (and usually succeeds) to make
integer coefficients, copmparable to what you find in published tables of orthogonal polynomial contrasts.

You may supply your own custom contrasts in two ways. One is to supply a contr argument in the
lsmeans call, like this:

R> print(lsmeans(typing.lm, custom.comp ~ type,

R> contr = list(custom.comp = list(A.vs.others=c(1, -.5, -.5)))),

R> omit=1)

$‘type custom.comp‘

estimate SE df t.ratio p.value

A.vs.others 21.59777 4.49307 8 4.80691 0.00134

p values are not adjusted

Each contrast family is potentially a list of several contrasts, and there are potentially more than one contrast
family; so we must provide a list of lists.

The other way is to create your own .lsmc function, and use its base name in a formula:

R> inward.lsmc = function(levs, ...) {

R> n = length(levs)

R> result = data.frame(‘grand mean‘ = rep(1/n, n))

R> for (i in 1 : floor(n/2)) {

R> x = rep(0, n)

R> x[1:i] = 1/i

R> x[(n-i+1):n] = -1/i

R> result[[paste("first", i, "vs last", i)]] = x

R> }

R> attr(result, "desc") = "grand mean and inward contrasts"

R> attr(result, "adjust") = "none"

R> result

R> }

Testing it, we have

R> inward.lsmc(1:5)

11

grand.mean first 1 vs last 1 first 2 vs last 2

1 0.2 1 0.5

2 0.2 0 0.5

3 0.2 0 0.0

4 0.2 0 -0.5

5 0.2 -1 -0.5

. . . and an application:

R> print(lsmeans(Oats.lmer, inward ~ nitro), omit=1)

$‘nitro grand mean and inward contrasts‘

estimate SE df t.ratio p.value

grand.mean 103.97222 6.640491 5.000417 15.65731 2e-05

first 1 vs last 1 -44.00000 4.249953 51.000000 -10.35306 0e+00

first 2 vs last 2 -29.66667 3.005170 51.000000 -9.87188 0e+00

p values are not adjusted

References

Lesnoff, M., Laval, G., Bonnet, P., et al. (2004) Within-herd spread of contagious bovine pleuropneumo-
nia in Ethiopian highlands, Preventive Veterinary Medicine, 64, 27–40.

Milliken, G. A. and Johnson, D. E. (1984) Analysis of Messy Data – Volume I: Designed Experiments. Van
Nostrand, ISBN 0-534-02713-7.

Oehlert, G. (2000) A First Course in Design and Analysis of Experiments, W. H. Freeman. This is out-of-print,
but now available under a Creative Commons license via http://users.stat.umn.edu/~gary/Book.
html (accessed August 23, 2012).

SAS Institute Inc. (2012) Online documentation, SAS/STAT version 9.3: Shared concepts: LSMEANS state-
ment. http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#
statug_introcom_a0000003362.htm (accessed August 14, 2012).

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

Yates, F. (1935) Complex experiments, Journal of the Royal Statistical Society (Supplement), 2, 181–247.

12

http://users.stat.umn.edu/~gary/Book.html
http://users.stat.umn.edu/~gary/Book.html
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introcom_a0000003362.htm
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introcom_a0000003362.htm

	Introduction
	Analysis-of-covariance example
	Two-factor example
	Split-plot example
	Messy data
	GLMM example
	Contrasts

