
1

Linked Micromaps

Quinn Payton, Marc Weber,
Michael McManus, Tom Kincaid

October 16, 2012

Contents Page
1 An initial linked micromap

o Example 1. National Linked Micromap of Education and 1
Poverty: Statistical

summary in flat file format and geographic data from a shapefile.
2 Quick plotting tips

o Playing with panel margins and window size 5
o Transforming a dot plot into ―bullets‖
o Rearranging panels

3 Preparing data for use with the library 8
o Example 2. Texas ecoregions: Steps for simplifying spatial polygons
o Steps for simplifying very large spatial data

4 Full list of adjustable attributes 11
5 Creating a new panel type 15

o Example 3. National Linked Micromap of Lung Cancer Data with
Confidence Intervals and Creating a New Graph for Comparing
Time Periods: Statistical summary and geographic data are both in
flat file formats.

6 Group-categorized micromaps (lmgroupedplot function) 21
o Example 4. Vegetation Coverage from the National Wadeable

Streams Assessment: Statistical summary in flat file format and
geographic data from a shapefile.

2

state ed pov region StateAb

Illinois 26.1 10.7 MW IL

Indiana 19.4 9.5 MW IN

Iowa 21.2 9.1 MW IA

Kansas 25.8 9.9 MW KS

Michigan 21.8 10.5 MW MI

Minnesota 27.4 7.9 MW MN

1 An initial linked micromap
First, we load the library and data:
library(micromaps)

lmplot (stat.data, map.data, panel.types, panel.data, map.link, ord.by, grouping, …)

The first key to using either of these functions is to
have your data set up correctly. For this first
example, we would like to display the state names, a
graph illustrating its poverty level, a graph
illustrating its percentage of college graduates, and a
micromap indicating which states are being
referenced. In order to do this, all we need is a table
with state names and estimates of each of the two
metrics we‘re interested in. The dataset ―edPov‖
included in the micromap library is in this form:

data("edPov")
head(edPov)

Next, we need a table of polygons to map. We can
use the create_map_table function to take a spatial
object file and create a small efficient table in the
form that the lmplot function can use or we can
construct our table directly. In order to do this
successfully our table must end up with 4 essential
columns that must be named as follows: ID; coordsx; coordsy; and poly. The ID column is what links to the table of
statistics. The poly column is used to identify state polygons for the same ID (otherwise R will connect all the
vertices with some odd looking results). For this first example we will use the ―states‖ shapefile included with the
library and use create_map_table in order to get the data in the right format.

Some preliminary steps are usually required to use the create_map_table function. First, many spatial objects are
quite detailed, far more detailed than what is needed for a micromap. The size and complexity of these files will
drastically reduce the speed at which plots can be produced and, in some cases, overwhelm R with the amount of
data being handled causing it to crash. One option for reducing shapefile complexity is to use a ―thinning‖ function
from the maptools library which can be used to reduce the size and complexity of a spatial object. See section 3,
―Preparing data for use with the library‖, for more details and an example. The statesShapefile data is very simple
and therefore we will hold off discussion of the thinning function until later.

The second (and much simpler) step in successfully using the create_map_table function is assigning an explicit ID
to each polygon. The data table associated with the spatial object must have an ID column (literally called ―ID‖) to
name each polygon. This is the column that will be used to link the information from the stat table to this built map

3

ST ST_NAME AREA_KM PERIM_KM

0 AK Alaska 1506038 60260.64

1 AL Alabama 133761 2354.6

2 AR Arkansas 137733.7 2172.208

3 AZ Arizona 295267.5 2395.409

4 CA California 409603.3 5682.304

5 CO Colorado 269599.9 2100.092

ID region poly coordsx coordsy hole plug

1 AK 1 1 2 5 0 0

2 AK 1 1 7 10 0 0

3 AK 1 1 4 12 0 0

4 AK 1 1 7 15 0 0

5 AK 1 1 4 15 0 0

6 AK 1 1 4 17 0 0

table. With this in mind we can check the data table from our statesShapefile file by using the following @data
syntax. The ―@‖ syntax refers to grabbing the data object stored in this ―slot‖ of a shapefile object. To examine the
other slots of this shapefile one would use the slotNames() function.

data("statesShapefile")
head(statesShapefile@data)

Since there is no ID column in this table we can insert a second argument into
create_map_table identifying which column we would like to use as our ID. The
―ST‖ column will be very useful in linking to our stats table so that will be used:

statePolys <- create_map_table(statesShapefile, IDcolumn='ST')
head(statePolys)

From here we can create the graph desired. To graph our
poverty and college degree metrics we must specify the
type of graph to be used. As of now, there are only 6 types
of graphs built in:

 Dot plots (with or without confidence limits)
 Bar plots (with or without confidence limits)
 Box summary (5 and 7 point)

Additional graph types will be built and included as needed. Users can create and include new graph types as is
explained in later in section 5, ―Creating a new panel/graph type‖.

The most basic version of an LM plot can be made with
this code:
lmplot (stat.data=edPov,
 map.data=statePolys,
 panel.types=c('labels', 'dot', 'dot','map'),
 panel.data=list('state','pov','ed', NA),
 ord.by='pov',
 grouping=5, median.row=T,
 map.link=c('StateAb','ID'))

A full explanation of all the function arguments is
provided below but 3 things should be made clear here.

 panel.data is list of lists to specify which
columns of the stat.data table to use in filling out
the panels. For a panel needing multiple columns
you would enter a sublist. There needs to be an
entry for every panel even when specific data
from the stat table isn‘t supplied by the user. As
you can see here, the map panel has an NA
entry. These entries cannot be left out.

o Note: The order of the entries in panel.data and panel.types must coincide. If we want to rearrange
the order of the panels, the entries of both panel.data and panel.types need to be rearranged.

 map.link is a vector specifying which column from the stat table matches which column for the map table
respectively. In this example the StatAb column from the stat table matches each data line to its associated
polygons in the map table labeled by matching entries in that table‘s ID column.

 Setting median.row=TRUE will insert a median row. As is noted below, this will override the default to
force the x and y axis coordinates to stay respective to each other which will probably cause distortion in
the maps being presented. The adjusting panel.width should be used to manually correct this

4

This initial call will rarely result in high quality, ―final‖ looking results. From here we can make notes on what
adjustments would make this look better. We are attempting to replicate what Dan Carr
(http://mason.gmu.edu/~dcarr/) created previously and so we must make some adjustments.

As with most R functions, a few plot wide adjustments can be made by simply adding in extra arguments in the
function call (such as plot.height, colors, and map.color2 in this example). To adjust the individual panels, however,
we must make a ―list of lists‖ specifying which panel we are adjusting and then which attributes we would like to
modify.

To make this more intuitive here is a quick and simple example. Suppose we just want to change the text alignment
in panel 1 and the graph background colors in panels 2 and 3. First we make a list for each of these panels specifying
the changes we would like to make with the first entry of each list specifying which panel is to be altered:

list(1, align=‘left)
list(2, graph.bgcolor=‘lightgray‘)
list(3, graph.bgcolor=‘lightgray‘)

Now we compile these lists into a ―list of lists‖:
list(list(1, align=‘left), list(2, graph.bgcolor=‘lightgray‘), list(3, graph.bgcolor=‘lightgray‘))

Now we can just add “panel.att= list(list(1, align=’left), list(2, graph.bgcolor=’lightgray’), list(3,
graph.bgcolor=’lightgray’))” to our lmplot function call and see the changes. We have a lot more changes to
make, though, so we might as well implement all of them at once. The following code was used to make the graph
seen at the beginning of this document:

lmplot (stat.data=edPov, map.data=statePolys,
 panel.types=c('labels', 'dot', 'dot','map'),
 panel.data=list('state','pov','ed', NA),
 ord.by='pov', grouping=5,

median.row=T,
 map.link=c('StateAb','ID'),

 plot.height=9,
 colors=c('red','orange','green','blue','purple'),

map.color2='lightgray',

 panel.att=list(list(1, header='States', panel.width=.8, align='left', text.size=.9),
 list(2, header='Percent Living Below \n Poverty Level',
 graph.bgcolor='lightgray', point.size=1.5,
 xaxis.ticks=list(10,15,20), xaxis.labels=list(10,15,20),
 xaxis.title='Percent'),
 list(3, header='Percent Adults With\n4+ Years of College',
 graph.bgcolor='lightgray', point.size=1.5,
 xaxis.ticks=list(20,30,40), xaxis.labels=list(20,30,40),
 xaxis.title='Percent'),
 list(4, header='Light Gray Means\nHighlighted Above',
 inactive.border.color=gray(.7), inactive.border.size=2,

panel.width=.8)))

This seems pretty good. We have two options for storing this final figure. In the lmplot function call we can add a
line the final list of panel attributes specifying a filename (and resolution if desired) as follows:

lmplot (stat.data=edPov, … , print.f ile=’myFigure.tiff’, print.res=300)

Note さ\ﾐざ iﾐserts a carriage returﾐ iﾐ the header. Actual

carriage returns have the same effect but should not

be used as this will result in lmPlot being unable to

properly align panels.

e.g. use:

さ… header='Percent Living Below \n Poverty Level' …ざ

 not:

さ… header='Percent Living Below

Poverty Level' …ざ

http://mason.gmu.edu/~dcarr/

5

state ed pov region StateAb points

IL Illinois 26.1 10.7 MW IL 0

IN Indiana 19.4 9.5 MW IN 0

IA Iowa 21.2 9.1 MW IA 0

KS Kansas 25.8 9.9 MW KS 0

MI Michigan 21.8 10.5 MW MI 0

The ‖.tiff‖ tells the lmplot function that a tiff file is requested. Pdf, jpeg, and png files may also be produced in a
similar manner. The other option is to store our function output in an R object as we build it. When we have results
we are satisfied with we can use the printLMplot function to print it out:

myPlot <- lmplot(stat.data=edPov, …)

printLMPlot(myPlot, name=‘myFigure.tiff‘, res=300)

2 Quick Plotting Tips

Quick tips for making higher quality figures with the lmplot function:

 Panel widths will almost certainly need to be adjusted in order to have the text correctly fit across the panel.
Text in the labels and ranks panels are defaulted to fit vertically correctly. If text is overlapping vertically,
it may be because enough vertical space isn‘t being provided on the plot. Adjusting plot.height (defaults to
7) and plot.pGrp.spacing (defaults to 1) can, and should, be used to correct this.

 Adjusting right and left panel margins are perhaps the most useful tool in making a plot look nice. Panels
are printed out from left to right and many times a plot will overlap its preceding neighbor; therefore
bringing in the left margin by setting left.margin=-.5 or even left.margin=-1 can be very helpful in clearing
out white space. For neighboring graphs (such as those in the states graphic example above) adjusting the
left panel‘s right margin and the right panel‘s left margin can cause them to share a border thus appearing
attached.

 As is noted elsewhere, the micromaps are set to have the x and y axis coordinates set respective to each
other. This causes quite a few unintended consequences one of which is micromap ―shrinkage‖ if the
panel.width is not wide enough. If your maps look too small at first, expanding the panel width will
probably enlarge your graph quite a bit.

 Also, due to an artifact (some might call it a bug) in ggplot2, this coordinate ―respectivity‖ in the
micromaps goes away when adding a median row. Therefore, one should be careful in such situations and
take care in setting the panel width of the map panel to correct any distortion that may present itself.

We can use a quick example to further illustrate the power of these options. Suppose we wish to add a series of color
coded bullets in front of our state names in the original graphic we began with. Essentially this is just a dot with all
the data points at the same value (note: we must insert a dummy column in our stat table).
edPov$points <- 0

Now this dot plot just needs a white background, without axis
lines, axis text, and the border set to ―white‖ to blend in with the
background color. If we then drastically reduce the panel width
and bring in the margins it will seamlessly blend with its
neighboring labels panel.

lmplot (stat.data=edPov, map.data=statePolys,

6

 panel.types=c('dot', 'labels', 'dot', 'dot', 'map'),
 panel.data=list('points' , 'state', 'pov', 'ed', NA),

map.link=c('StateAb','ID'),
ord.by='pov',
grouping=5,
median.row=T,

plot.height=9,

colors=c('red','orange','green','blue','purple'),

 map.color2='lightgray',

 panel.att=list(list(1, panel.width=.15, point.type=20,

graph.border.color='white',
xaxis.text.display=F, xaxis.line.display=F,
graph.grid.major=F),

list(2, header='States', panel.width=.8,
 align='left', text.size=.9),

 list(3, header='Percent Living Below\nPoverty Level',
 graph.bgcolor='lightgray', point.size=1.5,

xaxis.ticks=list(10,15,20), xaxis.labels=list(10,15,20),
xaxis.title='Percent'),

 list(4, header='Percent Adults With\n4+ Years of College',
 graph.bgcolor='lightgray', point.size=1.5,

xaxis.ticks=list(20,30,40), xaxis.labels=list(20,30,40),
xaxis.title='Percent'),

list(5, header='Light Gray Means\nHighlighted Above',
inactive.border.color=gray(.7), inactive.border.size=2,
panel.width=.8)))

A final note, we can easily rearrange panels by changing the order of the panel.types and panel.data, then simply re-
number the panel attributes section. Let‘s move the maps to the first panel:

lmplot (stat.data=edPov, map.data=statePolys,

 panel.types=c('map', 'dot', 'labels', 'dot', 'dot'),
 panel.data=list(NA, 'points', 'state', 'pov', 'ed'),

map.link=c('StateAb','ID'),
 ord.by='pov',

grouping=5,
median.row=T,

plot.height=9,

colors=c('red','orange','green','blue','purple'),

 map.color2='lightgray',

 panel.att=list(list(2, panel.width=.15, point.type=20,
graph.border.color='white',
xaxis.text.display=F, xaxis.line.display=F,
graph.grid.major=F),

list(3, header='States', panel.width=.8,
 align='left', text.size=.9),

 list(4, header='Percent Living Below\nPoverty Level',
 graph.bgcolor='lightgray', point.size=1.5,

Note the

numbers have

all been

increased to

adjust for the

addition of a

new panel

Note the

correspondence

between the

number of

arguments for

panel.types and

panel.data

7

xaxis.ticks=list(10,15,20), xaxis.labels=list(10,15,20),
xaxis.title='Percent'),

 list(5, header='Percent Adults With\n4+ Years of College',
 graph.bgcolor='lightgray', point.size=1.5,

xaxis.ticks=list(20,30,40), xaxis.labels=list(20,30,40),
xaxis.title='Percent'),

list(1, header='Light Gray Means\nHighlighted Above',
inactive.border.color=gray(.7), inactive.border.size=2,
panel.width=.8)))

8

3 Preparing Data for use with the library

Example Steps for simplifying spatial polygons in spatial data set for the lmplot function:
Download an example shapefile – we‘ll use level 3 ecoregions of Texas as an example:

ftp://ftp.epa.gov/wed/ecoregions/tx/tx_eco_l3.zip

Method for simplifying polygons using simplification in GIS software such as ArcMap Add the shapefile to an ArcMap session

File > Add Data > navigate to where you downloaded file
 Open the Simplify Polygon tool in ArcToolbox
 Generalization > Simplify Polygon
 Choose simplification algorithm, maximum allowable offset, and minimum area. Point remove is quick,

bend simplify can take longer but gives more ascetically pleasing results
Simplification Algorithm: POINT_REMOVE
Maximum Allowable Offset: 1000 Meters
Minimum Area: .001
Handling Topological Errors: RESOLVE_ERRORS
 Read resulting shapefile into R using readOGR (uses readOGR from rgdal, loaded with the micromaps

library):
 txeco <- readOGR(".","tx_eco_l3")
 Create an ID column in your spatialdataframe for the create_map_table function
txeco@data$ID <- txeco@data$US_L3CODE

Method two is to simplify polygons within R, and this can be done in two ways. One way is to use the
thinnedSpatialPoly function in maptools library. The other way is to use the gSimplify method in rgeos, which
includes the step of converting a SpatialPolygon object in R into a SpatialPolygonDataFrame. The
create_map_table function in the micromap library only works on a SpatialPolygonDataFrame. Read the shapefile into R from your working directory

txeco <- readOGR(".","tx_eco_l3")
 Create an ID column in your spatial dataframe for the create_map_table function
txeco@data$ID <- txeco@data$US_L3CODE
 Load the maptools library
library(maptools))
 Plot the spatial object in R to see how it looks by default
plot(txeco)
 Run the thinnedSpatialPoly function in maptools. You‘ll have to play with values that work best for the

two parameters ‗tolerance‘ and ‗minarea‘. If you have rgeos loaded it‘s advisable to set avoidGEOS=T but
users can explore options and functionality for thinning using rgeos. Read function notes for more details.

myPolys1<-thinnedSpatialPoly(txeco,tolerance=1000, minarea=0.001, topologyPreserve = F,
avoidGEOS = T)
plot(myPolys1)

 Alternatively, load the rgeos library
library(rgeos)
txeco2<-gsimplify(txeco, 10000, topologyPreserve=T)
txeco2<-SpatialPolygonsDataFrame(txeco2, txeco@data)

9

Notice the difference in resolution, particularly along the southeastern coastline, before and after thinning using
rgeos.

In the introductory code, we show code to make a basic and publication lmpot of the Texas ecoregions.

With either method, the function ‗create_map_table‘ will result in a less memory-intensive map table being built for
linked micromaps. The function deletes polygons that are smaller than a certain fraction of the total area of the full
map when building the table (default is .001, users can play with but will need to be careful in adjusting levels if
using function so that they don‘t delete any areas that should be represented in the linked micromap plot). We‘ll run the create_map_table.r function with the default threshold

txeco <- create_map_table(txeco, poly.thresh=.001)

Steps for simplifying very large spatial data:
For very large data you need to take extra steps to get manageable spatial data for use in linked micromaps. We‘ll
use level 3 ecoregions for the conterminous US as an example. Note that these are one example of steps that work,
other combinations of steps could possibly work better for other data – the point is to get rid of very small features
and simplify line work as much as possible.

10

ftp://ftp.epa.gov/wed/ecoregions/us/Eco_Level_III_US.zip

In ArcMap: Get rid of the state boundaries:

o Open Dissolve tool in toolbox
Generalization > Dissolve

o Choose US_L3CODE as the field to dissolve on Simplify newly created feature
o Open Simplify Polygon tool
o Choose simplification algorithm ‗Bend Simplify‘, Reference Baseline 100 kilometers, minimum

area 100 square kilometers, and handling toplogical errors ‗resolve errors‘ Now simplify features you just created again, but using a different simplification algorithm
o Open Simplify Polygon tool
o Choose simplification algorithm ‗Point Remove‘, Maximum allowable offset 10,000 meters,

minimum area 10,000 square meters, and handling toplogical errors ‗resolve errors‘

This will create a sufficiently simplified shapefile to use with the lmplot function.

In R:
The best option for getting a sufficiently simplified spatial object that still looks reasonable is to use ArcMap. We
have found it difficult to use existing simplification algorithms available through R packages to create visually
acceptable, as well as simple enough, spatial objects for the lmplot function. However, methods to try in R are
available in both maptools and rgeos library, such as:

eco3 <- thinnedSpatialPoly(eco3, tolerance=50000, topologyPreserve=TRUE, avoidGEOS=FALSE)
eco3 <- thinnedSpatialPoly(eco, tolerance=50000, minarea=100,avoidGEOS = TRUE)
eco3 <- gSimplify(eco3, tol=50000, topologyPreserve=TRUE)

Note that if using rgeos package you will want to check the validity of your shapefile topology , i.e.

gIsValid(eco3)

If you don‘t have valid topology, you will need to fix topology errors in your shapefile
If you try gSimplify method, you‘ll need to promote the object to a SpatialPolygonsDataFrame in R like:

df <- eco@data # your original SpatialPolygonsDataFrame prior to thinning
eco3 <- SpatialPolygonsDataFrame(eco2, df)

Using freely available online tool MapShaper:

Available here: http://mapshaper.com/test/MapShaper.swf
Note ‗alpha version‘ on tool, contact tool authors with questions, we simply point out the resource as an available
method for shapefile simplification outside of proprietary GIS software

For further reading on polygon simplification, we refer users to the following papers:
Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature. The Canadian Cartographer 10(2). 112-122.

Harrower, M. and Bloch, M. (2006). MapShaper.org: A Map Generalization Web Service. IEE Computer Graphics
and Applications 26(4). 22-27.

Mansouryar, M. and Hedayati, A. (2012). Smoothing Via Iterative Averaging (SIA) A Basic Techniqu for Line
Smoothing. International Journal of Computer and Electrical Engineering 4(3), 307-311.

Technical paper, ESRI, "Automation of Map Generalization: The Cutting-Edge Technology," 1996. It can be found
in the White Papers section of ArcOnline at this Internet
address:http://downloads.esri.com/support/whitepapers/ao_/mapgen.pdf

http://mapshaper.com/test/MapShaper.swf

11

4 Full list of adjustable attributes

Attribute arguments recognized by the lmplot function:
cat – category column within stats table for a categorization type linked micromap.
colors – The color palette used within each perceptual group. (e.g. brewer.pal(5, "Spectral"))
grouping (required)– The number of lines per perceptual group. E.g. simply entering ―5‖ will put 5 lines in each
perceptual group or you can enter c(5,6,5,4) to have disproportionate numbers of lines in each group.
map.all – By default, the lmplot function will only plot the polygons associated with data in the stats table. Setting
map.all=T will tell it to show all the polygons in your polygon table regardless of whether they are actively referred
to.
map.color—The color to be used to fill in current region being described in a grouped plot
map.color2—The color to be used to fill in previously referenced polygons in the map panel
map.data (required) – Data table (probably created by ―create_map_table‖ of polygon data
map.link (required) – A vector specifying which column from the stat table matches which column for the map table
repectively (e.g. "c('StateAb', ‗ID')")
median.row – Specifies whether a median row should be included. If an odd number of data lines are supplied a
data line itself will be used as the median otherwise median entries will be calculated from the supplied data. Note
that without a median row maps are forced into proper size. However, an artifact in ggplot2 removes this feature
when a median row is added and so a user must use the panel.width (and left.margin/right.margin panel attribute)
specifications in order to make map coordinates not distorted. (defaults to FALSE)

ord.by, grp.by (required) – ord.by specifies the stats.data column to be ranked for the ordering of the figure. grp.by is
used for grouped plots in order to specify which data table column to sort the figure by.
panel.att – a list of panel specific attributes to be altered (described in more detail below)
panel.data (required) – A list of lists to specify which columns of the stat.data table to use in filling out the panels.
For a panel needing multiple columns you enter a sublist. There needs to be an entry for every panel even when
specific data from the stat table isn‘t supplied by the user. That is to say map and rank panels (as well as user created
panel types) should have NAs.

e.g. panel.data=list('State', list('Estimate', 'Lower.Bound', 'Upper.Bound'), NA)

panel.types (required) – A vector specifying the panels of the plot. Note: each ―panel.type‖ (e.g. 'map', 'labels',
'dot_cl', etc.) is the name of a function that will be called to create that panel. Therefore a user can create a new
panel type (e.g. ―new.graph.type‖) and the lmplot function will automatically go look for and call that function just
by changing the entry here. Page down for more on this…
plot.footer – Not implemented yet

plot.footer.size – Not implemented yet
plot.footer.color – Not implemented yet

plot.grp.spacing – The verticle spacing between groups measured in lines. Defaults to 1.
plot.pGrp.spacing – The spacing between perceptual groups. ―1‖ (the default) implies standard spacing.
plot.header – Not implemented yet

plot.header.size – Not implemented yet
plot.header.color – Not implemented yet

plot.height – The height of the plot window. (Defaults to 7) NOTE: I‘m not sure what units width and height are
measured in but the defaults of 7 & 7 make a rectangle so they are certainly not relative to each other!
plot.width – The width of the plot window. (Defaults to 7)
print.file – The full file name (i.e. including extension) to save the resulting figure to if one wishes. The extension
tells the lmplot function which type of printing function to run. Pdf, tiff, png or jpeg are all recognized
print.res – The resolution desired for the resulting file
rev.ord – reverse the order for ranking the plot.
stat.data (required) – Data table of statistic
two.ended.maps – The resulting micromaps will highlight previously referenced polygons (see map.color2) up to
the median perceptual group and then switch to highlighting all polygons that are still to be referenced later.

12

panel.att is a list object (simply referred to as ―a‖ throughout the function) which contains a sublist of
specifications for each panel. Some attributes are standard for all panel types (e.g. header, graph color, etc.), while
other options are only available to alter for certain panels (bar size, point type, etc.). If a user tries to alter a panel
specific attribute that isn‘t recognized (e.g. bar size on a dot plot), it is ignored and a warning is printed.

Standard attributes
graph.bgcolor –The background color within any graphs being drawn
graph.border.color – (Defaults to “Black” on graphs, no borders are shown on maps, labels and ranks)Alters the
border color on graphs. Note this can be used to hide borders on graphs by setting it equal to white or whatever the
specified panel background color is.
graph.grid.major – A boolean variable stating whether major grid lines should appear in the graph. (T/F or 0/1
should both work) (Defaults to “TRUE” for graphs, “FALSE” for all others)
graph.grid.minor – (see above)

panel.att – A list of panel specific attributes. These are to be entered as a list of lists, with the first entry of each
sublist specifying with panel‘s attributes are being altered:
 E.g. panel.att=list(list(1, …),
 list(2, …),
 …
 list(n, …)

)
The following attributes can be specified:
left.margin, right.margin – set panel specific panel margins individually.
panel.bgcolor – The back ground color in each panel
panel.footer - ! panel footer not implemented yet !
 panel.footer.size
 panel.footer.color
panel.header – A title for the whole panel

panel.header.size – Size relative to default. All panels should have the same size header to keep proper
alignment between panels. If a user has specified unequal header sizes between panels, the function will
return a warning.

 panel.header.color
panel.width - This is the relative panel width compared to the other panels
xaxis.color – The color of the x axis line
xaxis.labels – This is a list or vector of text to be written at each tick mark. Note: if these are being explicitly
specified then xaxis.ticks must be explicitly specified as well.

e.g. xaxis.ticks=c(―500‖,‖1000‖,‖1500‖,‖2000‖)
xaxis.line.display – A boolean variable stating whether the line of the x axis should appear on the graph. (T/F or 0/1
should both work) (Defaults to “FALSE” on maps, labels and ranks panel types)
xaxis.text.display – A boolean variable… Note: this is the text associated with each tick, not the axis title! (Defaults
to “FALSE” on maps, labels and ranks panel types)
xaxis.ticks – This is a list or vector of points at which ticks should be drawn on the x axis.

e.g. xaxis.ticks=c(500,1000,1500,2000)
xaxis.ticks.display – A boolean variable stating whether the axis ticks should appear on the x axis. (T/F or 0/1
should both work) (Defaults to “FALSE” on all graphs)
xaxis.title – Specifies what the x axis should be labeled. Note: this defaults to no axis label
yaxis.labels – This is a list or vector of text to be written at each tick mark. Note: if these are being explicitly
specified then yaxis.ticks must be explicitly specified as well.

e.g. xaxis.ticks=list(―A‖,‖B‖,‖C‖,‖D‖)
yaxis.line.display – A boolean variable stating whether the axis ticks should appear on the y axis. (T/F or 0/1 should
both work)
yaxis.text.display – A boolean variable… Note: this is the text associated with each tick, not the axis title!
yaxis.ticks – This is a list or vector of points at which ticks should be drawn on the y axis.

e.g. yaxis.ticks=list(-1,-2,-3,-4,-5)
yaxis.ticks.display – A boolean variable stating whether the axis ticks should appear on the y axis. (T/F or 0/1
should both work) (Defaults to “FALSE” on all graph types)
yaxis.title – Specifies what the y axis should be labeled. (Defaults to no axis label on all graph types)

13

Panel specific attributes
labels: align – Horizontal alignment. I.E. ‗center‘, ‗right‘, ‗left‘ text.size – relative to default size

ranks: align – Horizontal alignment. I.E. ‗center‘, ‗right‘, ‗left‘ text.size – relative to default size

dot: add.line – add a line at some specified x coordinate

o add.line.col – specify color
o add.line.typ – specify type** median.line – add a line at the calculated median
o median.line.col – specify line color
o median.line.typ – specify type** point.border – By default a black border will be placed around dots. To correct this, set this option to

FALSE point.size – Size relative to default. point.type – The pch specification for points contained in a graph

dot_cl: add.line – add a line at some specified x coordinate

o add.line.col – specify color
o add.line.typ – specify type** line.width – Thickness of confidence bands relative to default median.line – add a line at the calculated median
o median.line.col – specify line color
o median.line.typ – specify type** point.border – By default a black border will be placed around dots. To correct this, set this option to

FALSE point.size – Size relative to default. point.type – The pch specification for points contained in a graph

bar: add.line – add a line at some specified x coordinate

o add.line.col – specify color
o add.line.typ – specify type** graph.bar.size – relative to default size median.line – add a line at the calculated median
o median.line.col – specify line color
o median.line.typ – specify type**

bar_cl: add.line – add a line at some specified x coordinate

o add.line.col – specify color
o add.line.typ – specify type** graph.bar.size – relative to default size median.line – add a line at the calculated median
o median.line.col – specify line color
o median.line.typ – specify type**

14

 box_summary: add.line – add a line at some specified x coordinate
o add.line.col – specify color
o add.line.typ – specify type** graph.bar.size – relative to default size median.line – add a line at the calculated median
o median.line.col – specify line color
o median.line.typ – specify type

** Here is a helpful site for a list of line types--
http://wiki.stdout.org/rcookbook/Graphs/Shapes%20and%20line%20types/

A user defined panel should be accompanied by an attribute list which a user can specify other attributes to be
altered with by the function call. See the user created panel functions section for details on how this is done.

http://wiki.stdout.org/rcookbook/Graphs/Shapes%20and%20line%20types/

15

StateAb Rate_95 Count_95 Lower_95 Upper_95 Pop_95 StdErr_95 Rate_00 Count_00 Lower_00 Upper_00 Pop_00 StdErr_00 State

AK AK 50 298 44.2 56.3 1089123 3.1 46.8 350 41.8 52.2 1122525 2.6 Alaska

AL AL 40.2 4095 39 41.4 8124753 0.6 43.4 4630 42.2 44.7 8245919 0.6 Alabama

AR AR 43.8 3079 42.3 45.4 5479988 0.8 48.3 3568 46.7 49.9 5661547 0.8 Arkansas

AZ AZ 38.4 4794 37.3 39.5 10557561 0.6 38.5 5482 37.4 39.5 12066024 0.5 Arizona

CA CA 41.5 26931 41 42 64354973 0.3 39.2 27406 38.7 39.6 68478617 0.2 California

CO CO 31.5 2723 30.3 32.7 9245273 0.6 33.9 3265 32.7 35.1 10159130 0.6 Colorado

StateAb Rate_95 Count_95 Lower_95 Upper_95 Pop_95 StdErr_95 Rate_00 Count_00 Lower_00 Upper_00 Pop_00 StdErr_00 State rank median pGrp pGrpOrd color

UT UT 17.6 685 16.3 18.9 5036638 0.7 16.9 738 15.7 18.2 5488475 0.6 Utah 1 FALSE 1 1 1

ND ND 30.6 574 28.1 33.3 1527853 1.3 31.4 608 28.9 34.1 1480915 1.3 North Dakota 2 FALSE 1 2 2

NM NM 31.8 1293 30.1 33.6 3899455 0.9 31.5 1420 29.9 33.2 4038163 0.8 New Mexico 3 FALSE 1 3 3

SD SD 30.5 659 28.2 33.1 1710003 1.2 32.9 736 30.5 35.5 1716683 1.2 South Dakota 4 FALSE 1 4 4

CO CO 31.5 2723 30.3 32.7 9245273 0.6 33.9 3265 32.7 35.1 10159130 0.6 Colorado 5 FALSE 1 5 5

ID ID 33 981 31 35.2 2976963 1.1 35 1158 33 37.1 3230513 1 Idaho 6 FALSE 2 1 1

5 Creating a new panel type

 Note: A general understanding of ggplot2 is needed and assumed throughout this section

Now let‘s say we would like to illustrate the change in lung cancer rates using arrows on a graph. We can build our
own graph type by creating our own graphing function; we‘ll call it ‗arrow.plot.build‘. The lmplot function sends all
graphing functions the same arguments (in this order): the panel ggplot2 object being worked on; the number of the
panel; the stats data table; and the attributes list (this is a little involved so we won‘t get into it until a little later).
(Note: the panel number tells you which sublist in the attribute list to work with). To start, let‘s get our data and
store it in a new object:

myStats <- lungMort
head(myStats)

For the time being, we‘ll also remove Washington D.C. so that we have nice even grouping numbers and can
momentarily avoid the median row topic.

myStats <- subset(myStats, !StateAb=='DC')

The data table that will actually be passed into our graphing function once we implement it into the function is not
exactly like our stats table. Before constructing the panels, the lmplot function adds the extra columns ―rank‖,
―median‖, ‖color‖, ―pGrp‖ and ―pGrpOrd‖ that specify, respectively, the overall order to plot the information,
whether the row should be seperated as a median, the color from the color list to use, the perceptual group each table
entry belongs to and the order in each perceptual group of each entry. These columns are added using a built-in
function called ―create_DF_rank‖ --the syntax for this function is: create_DF_rank (data, ord.by, grouping)--. We
need these columns to know the nature of what we are working with in order to build our new graph type.

For now, we can assume groups of 5 will look good and we will want our table ordered by the rate from 2000. To
create a new table with these columns file we run:

myNewStats <- create_DF_rank(myStats, ord.by="Rate_00", grouping=5)

Now, to build our new graphing function, we have 4 basic steps to go through:

1. create the general graph‘s structure
2. generalize the inputs
3. integrate it with the lmplot function
4. enable user customization if desired

Step 1: First we use ggplot2 to create the general structure of the graphs as we would like to see them. We can use
geom_segment function in ggplot2 to make arrows. On our graph we would like an arrow starting at the 1995 rate
extending to the 2000 rate so these columns will obviously be used for our ―x‖ and ―xend‖ parameters. The y
coordinates can be inferred from the ‗pGrpOrd‘ column which has been created for just this purpose. Setting both

16

the ―y‖ and ―yend‖ parameters equal to ―-pGrpOrd‖ should result in a flat arrow for each state, descending down
our graph in an order which will match our label column as well as any other graphs being presented.

First, we can use the ―color‖ column (which is calculated in create.DF.rank based on the pGrpOrd column) to vary
the color of arrows within each perceptual group. Second, for various portions of the lmplot function code, we must
use facet_grid instead of facet_wrap.

ggplot2 code:
ggplot(myNewStats) +
geom_segment(aes(x=Rate_95, y=-pGrpOrd,
 xend=Rate_00, yend=-pGrpOrd, colour=factor(color)),
 arrow=arrow(length=unit(0.1,"cm"))) +
facet_grid(pGrp~., scales="free_y") +
scale_colour_manual(values=c('red','orange','green','blue','purple'),

guide=‖none‖)

Step 2: This graph looks like it is in the basic form we need. Good
initial start but we need to change our x coordinate columns and
color palette from being hard coded to being user specified. As was
noted earlier, the lmplot function provides the panel object, the
panel number, the stats data table and the attribute list. It is this
attributes list through which the color and data specifications are
going to be provided to our function. Without delving too far into
the details of this list just yet, we can take for granted that the user
specified color palette will be stored in the ―colors‖ slot in the plot
section of the object and the names of our data columns will be stored in the ―panel.data‖ slot of one of the panel
sections; the panel number tells us which panel section to look in.

In writing our function we can refer to the panel object, the panel number, stats table and the attribute list however
we like. We‘ve already been referring to the data table as myNewStats so, along those same lines, let‘s call the other
items myPanel, myNumber, and myAtts respectively. In the next section we will start referring to the myAtts and
myNumber so it is helpful to set up a fake list and fake number to work with while we build our function that we can
work with to test our code as we go along. The sample.att function will provide this list for us and we will simply
set myNumber equal to 1.

myAtts <- sample_att()
myNumber <- 1

This is just a dummy attribute list for now so we need to overwrite its entries with our specifications from above so
that we can continue to test and have everything work as expected:

myAtts$colors <- c('red','orange','green','blue','purple')
myAtts[[myNumber]]$panel.data <- c('Rate_95','Rate_00')

We will pull out our color list and panel column list into variables called myColors and myColumns. This means
myColumns will be a vector with the myColumns[1] referring to the start points and myColumns[2] referring to the
end points of our arrows. The code to pull these items out of the attributes list will look like this:

myColors <- myAtts$colors # pulls color out of the plot level section of the ―myAtts‖ attributes list
myColumns <- myAtts[[myNumber]]$panel.data # looks in the panel level section numbered ―myNumber‖ of the ―myAtts‖ attributes list

We need to work around ggplot a bit in order for it to understand where to find our data. Telling ggplot
―x=myColumns[1], xend=myColumns[2]‖ will just confuse it. Instead, we have to hard code the column names to
look for (i.e. ―x=data1, xend=data2‖) and add those columns to myNewStats. This is illustrated with the following
code:

myColors <- myAtts$colors # pulls the ―colors‖ attribute out of the plot level section of the ―myAtts‖ attributes list
myColumns <- myAtts[[myNumber]]$panel.data # looks in the panel level section numbered ―myNumber‖ of the ―myAtts‖ attributes list

myNewStats$data1 <- myNewStats[, myColumns[1]]

17

myNewStats$data2 <- myNewStats[, myColumns[2]]

myPanel <- ggplot(myNewStats) +

 geom_segment(aes(x=data1, y=-pGrpOrd,
 xend= data2, yend=-pGrpOrd, colour=factor(color)),
 arrow=arrow(length=unit(0.1,"cm"))) +

 facet_grid(pGrp~.) +
 scale_colour_manual(values=myColors,

guide=―none‖)

myPanel

Note that we have also gone ahead and stored this graph in the myPanel object as we will eventually be returning
this back to the lmplot function anyways. This means the last line of code (simply ―myPanel‖) has the dual purpose
of telling R to show us our graph but will also return the panel object back to the lmplot function when we‘re finally
ready to compile this into function form.

Step 3: We are getting close to being able to implement our graph but we still have to clean it up a bit in order for it
to seamlessly match the rest of our linked micromap. There are several built in functions that work to this end. We
have stored our plot in a variable called myPanel that we can send out to the assimilatePlot function to do all the
needed work for us.

assimilatePlot(myPanel, myNumber, myAtts)

Our graph looks like it will probably fit right in with the rest of the
linked micromap plot. Now, we just need to put our code in proper
function form:

arrow_plot_build <- function(myPanel, myNumber, myNewStats, myAtts){

myColors <- myAtts$colors
myColumns <- myAtts[[myNumber]]$panel.data

myNewStats$data1 <- myNewStats[, myColumns[1]]
myNewStats$data2 <- myNewStats[, myColumns[2]]

myPanel <- ggplot(myNewStats) +

 geom_segment(aes(x=data1, y=-pGrpOrd,
xend= data2, yend=-pGrpOrd,
colour=factor(color)),

arrow=arrow(length=unit(0.1,"cm"))) +
 facet_grid(pGrp~.) +
 scale_colour_manual(values=myColors, guide=―none‖)

myPanel <- assimilatePlot(myPanel, myNumber, myAtts)

myPanel

 }

Dealing with a median row:
We have one final piece of difficulty to overcome and that is dealing with inserting a median row. There is a built in
function that should handle this fairly we called alterForMedian . If, after we‘ve added our new columns, we simply
hand that function our stats table and the attributes list, it should give us back one that has been altered as needed.
We also need to slightly alter the ―facet_grid‖ line to allow for the median to be a different size.

arrow_plot_build <- function(myPanel, myNumber, myNewStats, myAtts){

myColors <- myAtts$colors
myColumns <- myAtts[[myNumber]]$panel.data

myNewStats$data1 <- myNewStats[, myColumns[1]]

18

myNewStats$data2 <- myNewStats[, myColumns[2]]

myNewStats <- alterForMedian(myNewStats, myAtts)

myPanel <- ggplot(myNewStats) +

 geom_segment(aes(x=data1, y=-pGrpOrd,
xend= data2, yend=-pGrpOrd,
colour=factor(color)),
arrow=arrow(length=unit(0.1,"cm"))) +

 facet_grid(pGrp~., space="free", scales="free_y") +
 scale_colour_manual(values=myColors, guide=―none‖)

myPanel <- assimilatePlot(myPanel, myNumber, myAtts)

myPanel

 }

After we run this function, or saving it to a file and then sourcing that file, we‘ll be able to tell the lmplot function to
build this graph simply entering a panel type of ―arrow.plot‖.

Optional Step 4 – specializing user controlled attributes:
If we run the line of code:
print(myAtts)

We can see a full list of attributes available for alteration/specification by a user. All of these attributes (e.g. axis
labels, background color, grid lines, etc.) are applied to the graph through the assimilatePlot function so if we like
how our graph looks and don‘t feel the need to give the user any more control on its features we can stop here.
However, there might be some changes that users would like to make such as the width of the arrows and lengths of
the arrow heads. In order to allow these changes by users we need to: a) create extra slots in our panel level of the
attributes list and b) alter our code to recognize these options.

Creating the extra slots in the attribute list is actually not a terribly difficult process. This is done for every graph
that has already been built in to the micromaps library. What these built in graphs have that ours is still lacking is a
personalized ―attribute function‖. When the lmplot function sees a panel type of ―arrow.plot‖, it‘s already looking
for an attribute function called arrow.plot.att to supply the panel level list for our all encompassing attribute list that
is being passed around but we haven‘t created this yet; so it settles on a built in function called standard.att. We‘ll
use standard.att to build our new arrow.plot.att function.

In the code below we first start with standard.att to get our very useful base list and then well just append on the
new attributes we‘d like to control. We‘ll call these new attributes ―line.width‖ and ―tip.length‖.

myPanelAtts <- standard_att()
myPanelAtts <- append(myPanelAtts,

list(line.width=1, tip.length=1))
myPanelAtts

Note that the ―=1‖ is setting our defaults for these 2 entries at ―1‖. We can control what ―1‖ actually implies later.
Now let‘s put this into function form. Note that the lmplot function ―sends‖ nothing to this function. It only wants a
list of attributes back. Which makes our function simply look like:

arrow_plot_att <- function(){

myPanelAtts <- standard_att()
myPanelAtts <- append(myPanelAtts,

list(line.width=1, tip.length=1))
myPanelAtts

}

Simple enough. Now let‘s revisit our arrow.plot function and insert lines to pull these attribute specifications out of
the attribute list and implement them in our graphing code:

19

arrow_plot_build <- function(myPanel, myNumber, myNewStats, myAtts){

myColors <- myAtts$colors
myColumns <- myAtts[[myNumber]]$panel.data
myLineWidth <- myAtts[[myNumber]]$line.width # Again, note that these are stored in the panel level section of the
myTipLength <- myAtts[[myNumber]]$tip.length # attributes object

myNewStats$data1 <- myNewStats[, myColumns[1]]
myNewStats$data2 <- myNewStats[, myColumns[2]]

 myNewStats <- alterForMedian(myNewStats, myAtts)

myPanel <- ggplot(myNewStats) +
 geom_segment(aes(x=data1, y=-pGrpOrd,
 xend= data2, yend=-pGrpOrd,

colour=factor(color)),
arrow=arrow(length=unit(0.1*myTipLength ,"cm")), # Here, you’ll notice the “1” default above

is specifying length in tenths of a cm
size=myLineWidth) +

 facet_grid(pGrp~., space="free", scales="free_y") +
 scale_colour_manual(values=myColors, guide=―none‖)

myPanel <- assimilatePlot(myPanel, myNumber, myAtts)

myPanel

 }

Pretty painless, very useful.

Step Last: Now let‘s try to implement this new panel
in a simple linked micromap (using the statePolys
map data from the initial example) and adjust the line
width and tip length while we‘re at it.

lmplot(stat.data=myStats,
 map.data=statePolys,
 panel.types=c('map','labels', 'arrow_plot'),
 panel.data=list(NA,'State', list('Rate_95','Rate_00')),
 ord.by='Rate_00',
 grouping=5,
 map.link=c('StateAb','ID'),

 panel.att=list(list(3, line.width=1.25, tip.length=1.5)))

It looks like our new graph has been implemented
nicely. We can obviously still clean this up a bit and
might as well add in some extra plots as well. Also,
we should bring Washington DC back into the picture
(ie use our original myStats table) and make sure our
median row is displaying correctly with the new
graph. Using our bullet points we created above and
tweeking the panel attributes section quite a bit, we
are ready to present the following:

20

data(lungMort)
myStats <- lungMort
myStats$points <- 0
lmplot(stat.data=myStats,
 map.data=statePolys,
 panel.types=c('map', 'dot', 'labels', 'dot_cl', 'arrow_plot'),
 panel.data=list(NA,

 'points',
 'State',
 list('Rate_00','Lower_00','Upper_00'),
 list('Rate_95','Rate_00')),

 ord.by='Rate_00', grouping=5,
median.row=T, two.ended=T,

 map.link=c('StateAb','ID'),

 plot.height=10,

colors=c('red','orange','green','blue','purple'),
map.color2='lightgray',

 panel.att=list(list(1, header='Light Gray Means\n Highlighted Above',

 panel.width=1,
inactive.border.color=gray(.7),
inactive.border.size=2),

 list(2, panel.width=.15,
 graph.border.color='white',
 xaxis.text.display=F,
 xaxis.line.display=F,
 graph.grid.major=F,
 point.type=20),

 list(3, header='U.S. \nStates ',

panel.width=.8,
 align='left', text.size=.9),

 list(4, header='State 2000\n Rate and 95% CI',
 graph.bgcolor='lightgray',
 xaxis.ticks=c(20,30,40,50),

xaxis.labels=c(20,30,40,50),
 xaxis.title='Deaths per 100,000'),

 list(5, header='State Rate Change\n 1995-99 to 2000-04',
 line.width=1.25, tip.length=1.5,
 graph.bgcolor='lightgray',
 xaxis.ticks=c(20,30,40,50),

xaxis.labels=c(20,30,40,50),
 xaxis.title='Deaths per 100,000')))

Note the さt┘o eﾐded
cuﾏulati┗e ﾏapざ type

21

Type SubpopulatioIndicator Category NResp Estimate.PStdError.P LCB95Pct.PUCB95Pct.PEstimate.UStdError.ULCB95Pct.UUCB95Pct.U

National National CondClassWg1:LEAST DIST 698 47.61908 1.511643 44.65632 50.58185 516807 18907.16 479749.6 553864.3

National National CondClassWg2:INTERMEDI 394 28.3188 1.533217 25.31375 31.32385 307342.2 17184.38 273661.4 341023

National National CondClassWg3:MOST DIST 291 19.33501 1.229759 16.92473 21.74529 209841.7 13516.94 183349 236334.4

ecowsa3 EHIGH CondClassWg1:LEAST DIST 129 42.16749 2.597053 37.07736 47.25762 187505.4 13383.58 161274 213736.7

ecowsa3 EHIGH CondClassWg2:INTERMEDI 92 30.70827 2.685939 25.44393 35.97261 136549.9 12402.81 112240.8 160858.9

ecowsa3 EHIGH CondClassWg3:MOST DIST 48 17.58212 1.990464 13.68088 21.48336 78182.07 8887.312 60763.26 95600.88

ecowsa3 PLNLOW CondClassWg1:LEAST DIST 155 47.53334 2.753267 42.13704 52.92965 186008.4 11785.39 162909.4 209107.3

ecowsa3 PLNLOW CondClassWg2:INTERMEDI 111 24.45491 2.544108 19.46855 29.44127 95697.4 10313.98 75482.37 115912.4

ecowsa3 PLNLOW CondClassWg3:MOST DIST 145 25.95537 2.341336 21.36644 30.5443 101569 9522.937 82904.42 120233.6

ecowsa3 WMTNS CondClassWg1:LEAST DIST 413 57.06422 2.060667 53.02539 61.10305 140481.6 5750.971 129209.9 151753.3

ecowsa3 WMTNS CondClassWg2:INTERMEDI 191 30.50387 2.025976 26.53303 34.47471 75094.92 5483.507 64347.45 85842.4

ecowsa3 WMTNS CondClassWg3:MOST DIST 98 12.22291 1.352445 9.57217 14.87366 30090.57 3381.678 23462.6 36718.54

WSA_3 WSA_3_NM area_mdmID area_mdmarea_mdm

1 EHIGH Eastern Highlands 1.2E+12 EHIGH 1.2E+12 1.2E+12

2 PLNLOW Plains and Lowlands 3.95E+12 PLNLOW 3.95E+12 3.95E+12

3 WMTNS West 2.64E+12 WMTNS 2.64E+12 2.64E+12

ID region poly coordsx coordsy hole plug

1 EHIGH 1 1 659712.9 -3636.47 0 0

2 EHIGH 1 1 659500.8 -11891.7 0 0

3 EHIGH 1 1 644443.4 5378.044 0 0

4 EHIGH 1 1 659712.9 -3636.47 0 0

5 EHIGH 1 2 672579.2 49281.8 0 1

6 EHIGH 1 2 692236.2 27743.74 0 1

ID region poly coordsx coordsy hole plug

1 National 4 1001 659712.9 -3636.47 0 0

2 National 4 1001 659500.8 -11891.7 0 0

3 National 4 1001 644443.4 5378.044 0 0

4 National 4 1001 659712.9 -3636.47 0 0

111 National 4 1004 1822280 563868.8 0 0

112 National 4 1004 1820338 549799 0 0

Type SubpopulatioIndicator Category NResp Estimate.PStdError.P LCB95Pct.PUCB95Pct.PEstimate.UStdError.ULCB95Pct.UUCB95Pct.U

National National CondClassWg1:LEAST DIST 698 47.61908 1.511643 44.65632 50.58185 516807 18907.16 479749.6 553864.3

National National CondClassWg2:INTERMEDI 394 28.3188 1.533217 25.31375 31.32385 307342.2 17184.38 273661.4 341023

National National CondClassWg3:MOST DIST 291 19.33501 1.229759 16.92473 21.74529 209841.7 13516.94 183349 236334.4

ecowsa3 EHIGH CondClassWg1:LEAST DIST 129 42.16749 2.597053 37.07736 47.25762 187505.4 13383.58 161274 213736.7

ecowsa3 EHIGH CondClassWg2:INTERMEDI 92 30.70827 2.685939 25.44393 35.97261 136549.9 12402.81 112240.8 160858.9

ecowsa3 EHIGH CondClassWg3:MOST DIST 48 17.58212 1.990464 13.68088 21.48336 78182.07 8887.312 60763.26 95600.88

ecowsa3 PLNLOW CondClassWg1:LEAST DIST 155 47.53334 2.753267 42.13704 52.92965 186008.4 11785.39 162909.4 209107.3

ecowsa3 PLNLOW CondClassWg2:INTERMEDI 111 24.45491 2.544108 19.46855 29.44127 95697.4 10313.98 75482.37 115912.4

ecowsa3 PLNLOW CondClassWg3:MOST DIST 145 25.95537 2.341336 21.36644 30.5443 101569 9522.937 82904.42 120233.6

ecowsa3 WMTNS CondClassWg1:LEAST DIST 413 57.06422 2.060667 53.02539 61.10305 140481.6 5750.971 129209.9 151753.3

ecowsa3 WMTNS CondClassWg2:INTERMEDI 191 30.50387 2.025976 26.53303 34.47471 75094.92 5483.507 64347.45 85842.4

ecowsa3 WMTNS CondClassWg3:MOST DIST 98 12.22291 1.352445 9.57217 14.87366 30090.57 3381.678 23462.6 36718.54

6 Group-categorized micromaps (lmgroupedplot function)

lmgroupedplot(stat.data, map.data, panel.types, panel.data, cat, map.link, …)

The lmgroupedplot function is very much similar to the lmplot function above. Previously we had multiple
polygons per perceptual group with one line of data per polygon. Here, we have a data table with multiple categories
of data per polygon and the perceptual groups are simply the region, or polygon, presently being referred to. Taking
a look at an example data table should make this a bit clearer:
data(vegCov)
head(vegCov)

Here we would like to list the 3 categories by ―subpopulation‖ and look at the metrics within each. The included
WSA3 shapefile has maps to link with this table. Note that this shapefile has already been thinned down and should
be quite manageable in size. As we look at this shapefile‘s data table to determine a good ID column we see that a
column has already been named as such. However, we also notice that there is no ―National‖ map (since it is just a
combination of the other 3).
data(WSA3)
print(WSA3@data)

We can remedy this problem after we create an initial map table using the create_map_table function:
wsa.polys <- create_map_table(WSA3)
head(wsa.polys)

Basically, we want almost all of these polys as our National map. ―Almost all‖ since, all we want is an outline, we
don‘t need the plugs or holes. We do need to be careful not to have our polygons numbered the same but this is
easily remedied as well by just combining them with region:
national.polys <-subset(wsa.polys, hole==0 & plug==0)
national.polys <- transform(national.polys, ID='National', region=4, poly=region*1000 + poly)
head(national.polys)

22

wsa.polys <- rbind(wsa.polys, national.polys)

Now that the data is set up we can move on to running our function. The structure of the lmgroupedplot function is
similar to that of lmplot . The bare bones code needed to generate an figure such as this example would look
something like this:
lmgroupedplot(stat.data=vegCov,
 map.data=wsa.polys,
 panel.types=c('map', 'labels', 'bar_cl', 'bar_cl'),
 panel.data=list(NA,'Category',

 list('Estimate.P','LCB95Pct.P','UCB95Pct.P'),

 list('Estimate.U','LCB95Pct.U','UCB95Pct.U')),
 grp.by='Subpopulation',
 cat='Category',
 map.link=c('Subpopulation', 'ID'))

We then can clean it up to a final state with code such as this:

lmgroupedplot(stat.data= vegCov,
 map.data= wsa.polys,
 panel.types=c('map', 'labels', 'bar_cl', 'bar_cl'),
 panel.data=list(NA,'Category',
 list('Estimate.P','LCB95Pct.P','UCB95Pct.P'),

list('Estimate.U','LCB95Pct.U','UCB95Pct.U')),
 grp.by='Subpopulation',
 cat='Category',
 colors=c('red3','green3','lightblue'),
 map.link=c('Subpopulation', 'ID'),
 map.color='orange3',
 plot.grp.spacing=2,
 plot.width=7,
 plot.height=4,

 panel.att=list(list(1, header='Region', header.size=1.5,

panel.width=.75),
 list(2, header='Category',

header.size=1.5,
panel.width=1.7),

 list(3, header='Percent', header.size=1.5,
 xaxis.ticks.display=T,

xaxis.text.display=T,
 graph.bgcolor='lightgray',
 xaxis.title='percent',
 xaxis.ticks=c(0,20,40,60),
 xaxis.labels=c(0,20,40,60)),
 list(4, header='Unit', header.size=1.5,
 xaxis.ticks.display=T,

xaxis.text.display=T,
 graph.bgcolor='lightgray',
 xaxis.title='thousands',
 xaxis.ticks=c(0,200000,350000,550000),
 xaxis.labels=c(0,200,350,550))))

