
Computing min P test - a gene region-level testing
procedure - with the minPtest function using the

example of simulated SNP data

Stefanie Hieke

November 26, 2012

1 Introduction

This vignette documents the use of the minPtest function to compute the min P
test, a gene region-level testing procedure using simulated single nucleotide poly-
morphisms (SNP) data with known structure, generated by the generateSNPs

function.

2 The minPtest package

The minPtest package was written to provide a gene region-level summary for
each candidate gene using the min P test for genetic case-control studies. The min
P test is a permutation-based method that can be based on different univariate
tests per SNPs. The package brings together three different kinds of tests that are
scattered over several R packages. Calculations of the p-values from permutation-
based methods can be time-consuming for large data sets, therefore, the minPtest

package integrates two different parallel computing packages to improve compu-
tation speed by parallel computing. The use of minPtest is illustrated through
two simulated data sets generated by the function generateSNPs of the minPtest
package.

3 Generation of the simulated data sets

To illustrate the computation of the gene region-level summary, min P test, for
different scenarios and settings, we generate SNP data with the generateSNPs

1

function, which is included in the minPtest package. We start by loading the
minPtest package.

> library(minPtest)

The function generateSNPs simulates a matrix consisting of n subjects and
snp.no SNPs, two automatically generated covariates and matchset numbers.
Note that n has to be specified as an argument in the generateSNPs function
and the number of SNPs snp.no is derived from the specified arguments gene.no,
block.no and block.size in the generateSNPs function. SNPs with genotypes
coded by 0, 1 and 2 are simulated using the probability for neighborhood SNPs
within a block p.same, the probability for neighborhood blocks within a gene
p.different and the allele frequency p.minor. The argument p.same can either
be a numeric value, see example 3.1 or a vector of length block.size where the
first item is fixed as the value which would be selected for the probability for
neighborhood blocks. In the latter case the argument p.different is ignored.
The remaining items in the p.same vector specify the probability for each neigh-
borhood SNP within the blocks, see example 3.2. The response is determined by a
logistic regression model given the SNPs and the two covariates. The parameters
(effect size) of the SNPs for the generation of case-control status are specified in
the SNPtoBETA matrix, see 3.1 and 3.2.

3.1 First simulated data set scenario

We simulated a (rather) small genetic case-control data set. The example below
illustrates the generation of a data set consisting of 100 observations, 200 SNPs
with genotypes coded by 0, 1 and 2, two clinical covariates (continuous and binary)
for adjustment or matching and the matchset numbers. The SNPs are located on
5 genes with 4 blocks per gene and block size 10, i.e. 10 SNPs per block yielding
40 SNPs per gene. First we will define the SNPtoBETA matrix in order to specify
the SNPs and their effect size (offsets) which are explanatory for the response
(case-control status). In this scenario, we select two SNPs located on G1 in two
blocks with allele frequency 0.1 and moderate effect size, one SNPs located on G2
in one block with allele frequency 0.4 and high effect size, two SNPs located on
G4 in two blocks with allele frequency 0.4 and moderate effect size and one SNP
located on G5 in one block with allele frequency 0.1 and moderate effect size.

> SNP <- c(6,26,54,135,156,186)

> BETA <- c(0.9,0.7,1.5,0.5,0.6,0.8)

> SNPtoBETA <- matrix(c(SNP,BETA),ncol=2,nrow=6)

> colnames(SNPtoBETA) <- c("SNP.item","SNP.beta")

2

We simulate the data set with equal neighborhood probability (0.9) for each
SNP within each block and equal probabilities for the neighborhood blocks (0.75)
within a gene. We set a seed for reproducibility.

> set.seed(1007)

> sim.ex1 <- generateSNPs(n=100,gene.no=5,block.no=4,block.size=10,

p.same=0.9,p.different=0.75,

p.minor=c(0.1,0.4,0.1,0.4),

n.sample=80,SNPtoBETA=SNPtoBETA)

One output of this function is the simulated data matrix sim.data with one
row for each observation containing response values, simulated SNP values (coded
by 0, 1 and 2.), a continuous and a binary covariate and a matchset number. The
following command returns an excerpt of the data set and should not be called if
the data set is to large.

> # head(sim.ex1$sim.data)

The function also returns a list of outputs which can be directly used as input
for the minPtest function where y is a numeric response vector coded with 0
(coding for controls) and 1 (coding for cases), x is a numeric matrix containing the
simulated SNP data with genotypes coded by 0, 1 and 2, SNPtoGene is a matrix
comprising the SNP names and the names of the genes on which the SNPs are
located, cov is a matrix containing a continuous and a binary clinical covariate
and matchset is a numeric vector containing the matching numbers. The print

function displays brief information on the simulated data set and the number of
SNPs.

> sim.ex1

Call: generateSNPs(n = 100, gene.no = 5, block.no = 4,

block.size = 10, p.same = 0.9, p.different = 0.75,

p.minor = c(0.1, 0.4, 0.1, 0.4), n.sample = 80, SNPtoBETA = SNPtoBETA)

Simulated data set containing 200 SNPs, two matching covariates and

a matchset column (containing the matchset numbers).

Output y, x, SNPtoGene, cov and matchset can directly be used

for the minPtest function.

3.2 Second simulated data set scenario

The example below uses a data set as in 3.1 except for the probability for the
neighborhood SNPs within the blocks, the SNP positions and their effect sizes for

3

the generation of the case-control status. A break within the first block is specified
in each gene. Therefore, we change the probability for the neighborhood SNPs of
the SNP-position 6 from 0.9 to 0.5 and retain equal neighborhood probability
for each block as in 3.1 by fixing the value 0.75 as in 3.1 at the first entry of the
p.same vector and retaining the default value NULL of p.different. Furthermore,
we have to define the SNPtoBETA matrix in order to specify the SNPs and their
effect size (offsets) which are explanatory for the response (case-control status). In
this scenario, we select two SNPs located on G1 in two blocks with allele frequency
0.1 or 0.4 and high effect size, one SNPs located on G3 in one block with allele
frequency 0.4 and moderate effect size, two SNPs located on G4 in two blocks
with allele frequency 0.1 or 0.4, respectively, and moderate effect size and two
SNPs located on G5 in two blocks with allele frequency 0.1 and moderate effect
size.

> p.same <- rep(c(0.75,rep(0.9,9)),4)

> p.same[6] <- 0.5

> SNP <- c(7,15,96,145,157,164,185)

> BETA <- c(1.5,1.0,0.5,0.8,0.4,0.6,0.8)

> SNPtoBETA <- matrix(c(SNP,BETA),ncol=2,nrow=7)

> colnames(SNPtoBETA) <- c("SNP.item","SNP.beta")

> set.seed(2006)

> sim.ex2 <- generateSNPs(n=100,gene.no=5,block.no=4,block.size=10,

p.same=p.same,p.minor=c(0.1,0.4,0.1,0.4),

n.sample=80,SNPtoBETA=SNPtoBETA)

This function returns a similar list as described in 3.1. The following command
returns an excerpt of the data set and should not be called if the data set is to
large.

> # head(sim.ex2$sim.data)

4 Candidate gene analysis using the min P test

The main focus of the minPtest package is the computation of the permutation
based p-values for candidate genes using the min P test. The gene region-level
summary, as the min P test, assesses the statistical significance of the smallest
p-trend within each gene region comparing cases and controls. Inference is based
on the permutation distribution of the minimum of the ordered p-values from
the marginal test of each SNP. The permutation method can be based on different
univariate tests per SNP and the minPtest function brings together three different

4

kinds of tests to compute such p-values.
In order to illustrate the computation of the gene region-level testing procedure
using unconditional and conditional logistic regression, respectively, to compute
marginal and permuted trend p-values, we use the simulated data sets of 3.1 and
3.2. An example to compute the gene region-level summary using an Cochran
Armitage Trend Test is given at the help page of the minPtest function. As
the computation of the p-values from permutation-based methods can be time-
consuming, we use the multicore and the snowfall package to obtain acceleration
by parallel computing in the examples 4.1 or 4.2. An example for a sequential
application is given on the help page of the minPtest function.

4.1 Computing the min P test using unconditional logistic
regression and multicore

We start by accessing the simulated data set of 3.1. A short explanation might
be useful before calling the minPtest function. The minPtest package brings
together three different kinds of tests which are scattered over several R packages,
and the minPtest function automatically selects the most appropriate test for
the study design at hand. Trend p-values are computed using Cochran Armitage
Trend Test including only a response vector, a SNP matrix and a matrix com-
prising the SNP names and the corresponding gene names on which the SNPs are
located, see the help page of the minPtest function. In the example below, addi-
tional to the response vector, the SNP matrix and the matrix comprising SNP and
the corresponding gene names generated in sim.ex1 (3.1), we specify a formula
to compute the trend p-values using the unconditional logistic regression. Note
that no matchset vector is needed. There are two possibilities to specify the for-
mula. First, if no covariates are used for adjustment in the unconditional logistic
regression, the formula has to be written as y∼1 without specifying the covariate
matrix cov. Second, if covariates other than SNPs are used for adjustment in the
unconditional logistic regression, the formula has to be written by the response
vector y on the left of a ∼ operator and the clinical covariates on the right. In
addition, a covariate matrix has to be specified. In the example below we use a
continuous and a binary covariate simulated in 3.1 for adjustment. We run the
call of the minPtest function on a multicore computer with 4 cores, in order to
obtain acceleration by parallel computing, by setting option multicore=4 which
requires the installation of the multicore package, as the minPtest call can take
some time. Note, multicore is currently not available on Microsoft Windows.
An alternative to multicore for Microsoft Windows system users is the snow-
fall package, see 4.2. We set a seed to generate seed1 of length permutation to
guarantee reproducibility of the results even if running in parallel and for different

5

numbers of parallel processes.

> set.seed(10)

> seed1 <- sample(1:1e7,size=1000)

> minPtest.object1 <- minPtest(y=sim.ex1$y, x=sim.ex1$x,

SNPtoGene=sim.ex1$SNPtoGene,

formula=y~cov.continuous+cov.binary,

cov=sim.ex1$cov, multicore=4, seed=seed1)

> minPtest.object1

Used method: unconditional logistic regression (glm) for 100 subjects

Call: minPtest(y = sim.ex1$y, x = sim.ex1$x,

SNPtoGene = sim.ex1$SNPtoGene, formula = y ~ cov.continuous + cov.binary,

cov = sim.ex1$cov, seed = seed1, multicore = 4)

Number of genes: 5

Number of SNPs: 200

Number of missings in the SNP matrix: 0

Number of permutations: 1000

Above, the display returned by the print function can be seen. The method
used for the computation of the marginal and the permuted trend p-values, the
number of the subjects, the number of the genes, the number of the SNPs used for
the computation, the number of the missings in the SNPs and the number of the
permutations used to compute the the permuted distribution of the minimum of
the ordered p-values from the marginal test of each SNP are printed.
The minPtest function returns a list including a matrix of permutation-based p-
values from min P test for each candidate gene, a matrix of corrected permutation-
based p-values via Bonferroni correction method (default) for each candidate gene,
a matrix of marginal trend p-values for each SNP from the original data set,
a matrix of corrected marginal trend p-values via Bonferroni correction method
(default) for each SNP from the original data set, a matrix of permuted trend
p-values for each SNP in each permutation step, etc.
The main output of the minPtest call is the matrix of permutation-based p-values
of the min P test for each candidate gene.

6

> minPtest.object1$minp

minP

G1 0.301

G2 0.001

G3 0.328

G4 0.228

G5 0.244

More detailed information is provided by a summary function.

> summary(minPtest.object1,sign.SNP=TRUE)

p-values:

Gene minP gene.p.adjust SNP snp.p.value snp.p.adjust

1 G2 0.001 0.005 SNP54 0.0001362140 0.02724279

Above the display provided by the summary function can be seen. The table
shows the gene with the adjusted permutation-based p-value smaller than or equal
to a threshold (default 0.05), the corresponding permutation-based p-value, the ad-
justed permutation-based p-value as well as the SNP located on this gene with ad-
justed marginal p-value smaller than or equal to the threshold, as sign.SNP=TRUE,
with marginal p-value and adjusted marginal p-value. The summary function is
used to obtain a brief overview of the significant genes, after the correction for
multiple hypothesis testing (default Bonferroni correction), and the SNPs located
on these genes. If sign.SNP=TRUE, the summary shows the SNPs located on the
genes selected according to the threshold, with adjusted marginal p-values smaller
or equal to the threshold. Otherwise all SNPs located on the genes chosen by the
threshold are shown in the summary.
The summary function returns a list of the same length as the number of the se-
lected genes by a threshold. Each item characterizes a gene selected according to
a threshold i.e. if level=1, the length of the list equals to the number of genes
included in the fit. Each gene item contains a list of data frames, a data frame for
the permutation-based p-values and adjusted permutation-based p-values for this
gene and a data frame for the marginal p-values and adjusted marginal p-values
for the SNPs located on this gene, either SNPs selected by a threshold or all SNPs
on this gene.

4.2 Computing the min P test using conditional logistic
regression and snowfall

We start by accessing the simulated data set of 3.2. We sampled 100 subjects
(50 cases and 50 controls) and 200 SNPs on 5 genes in sim.ex2 (3.2) as in 3.1

7

except for the probability for the neighborhood SNPs within the blocks as we
generated a break within the first block at SNP position 6 in each gene, see 3.2. In
this example, we illustrate the computation of the trend p-values using conditional
logistic regression which requires the installation of package Epi. The computation
of the trend p-values using conditional logistic regression is automatically selected
by the minPtest function investigating the following input from sim.ex2 (3.2). As
in 4.1, we include the response vector, the SNP matrix and a matrix comprising
the SNP names and the gene names on which the SNPs are located, generated
in sim.ex2. Compared to 4.1, we use the continuous and the binary covariate
simulated in 3.2 as matching variables through the matchset vector matchset and
do not include them in the covariate matrix cov for adjustment. Therefore, as no
covariates are used for adjustment, the formula has to be written as y ∼ 1 without
specifying a covariate matrix. However, a matchset vector has to be specified. We
set a seed to guarantee reproducibility of the results, even for different numbers of
parallel processes, see 3.1. We run the call of the minPtest function on a compute
cluster using 4 CPUs, to obtain acceleration by parallel computing by setting
option parallel=TRUE which requires the installation of the snowfall package, as
the minPtest call can take some time. Concerning parallelization on a compute
cluster, i.e. with argument parallel=TRUE, there are two possibilities to run the
minPtest call:

� Start R on a commandline with sfCluster and preferred options, e.g. number
of cpus. The initialization function of package snowfall, sfInit(), has to
be called before calling the minPtest function.
sfCluster is a Unix tool for convenient management of R parallel processes.
It is available at www.imbi.uni-freiburg.de/parallel, with detailed in-
formation.

> sfInit()

> minPtest.object2 <- minPtest(y=sim.ex2$y, x=sim.ex2$x,

SNPtoGene=sim.ex2$SNPtoGene,

formula=y~1, matchset=sim.ex2$matchset,

parallel=TRUE, seed=seed1)

� Use any other solutions supported by snowfall. Argument parallel has to
be set to TRUE and number of cpus can be chosen in the sfInit() function.

> sfInit(parallel=TRUE,cpus=4)

> minPtest.object2 <- minPtest(y=sim.ex2$y, x=sim.ex2$x,

SNPtoGene=sim.ex2$SNPtoGene,

formula=y~1, matchset=sim.ex2$matchset,

parallel=TRUE,seed=seed1)

8

The latter is an alternative to the parallelization on a multicore computer with
multicore for Microsoft Windows system users.
Independent of the chosen initialization function, the following display is provided
by the print function.

> minPtest.object2

Used method: conditional logistic regression for 100 subjects

Call: minPtest(y = sim.ex2$y, x = sim.ex2$x,

SNPtoGene = sim.ex2$SNPtoGene, formula = y ~ 1,

matchset = sim.ex2$matchset, seed = seed1, parallel = TRUE)

Number of genes: 5

Number of SNPs: 200

Number of missings in the SNP matrix: 0

Number of permutations: 1000

The next command extracts the matrix of permutation-based p-values of the
min P test for each candidate gene.

> minPtest.object2$minp

minP

G1 0.004

G2 0.345

G3 0.792

G4 0.270

G5 0.312

More information is provided by a summary function which returns a list of
data frames for each candidate gene selected according to a threshold, see 4.1.
The following display shows the list items for G1 containing two data frames, a
data frame for the permutation-based p-value and the adjusted permutation-based
p-value for G1 and a data frame for the marginal p-values and adjusted marginal
p-values for the SNPs located on G1.

> summary(minPtest.object2)$G1

$gene.p.values

Gene minP gene.p.adjust

1 G1 0.004 0.02

$snp.p.values

SNP snp.p_value snp.p.adjust

9

1 SNP15 0.002070020 0.4140041

2 SNP16 0.002526884 0.5053769

3 SNP19 0.003429856 0.6859712

4 SNP17 0.003728256 0.7456512

5 SNP1 0.371943971 1.0000000

6 SNP2 0.409689081 1.0000000

7 SNP3 0.409689081 1.0000000

8 SNP4 0.326128617 1.0000000

9 SNP5 0.211861133 1.0000000

10 SNP6 0.039743515 1.0000000

11 SNP7 0.020706071 1.0000000

12 SNP8 0.022520147 1.0000000

13 SNP9 0.037072000 1.0000000

14 SNP10 0.052586757 1.0000000

15 SNP11 0.006508902 1.0000000

16 SNP12 0.016151701 1.0000000

17 SNP13 0.029085604 1.0000000

18 SNP14 0.018493517 1.0000000

19 SNP18 0.006899747 1.0000000

20 SNP20 0.005824611 1.0000000

21 SNP21 0.009517110 1.0000000

22 SNP22 0.007810166 1.0000000

23 SNP23 0.041817448 1.0000000

24 SNP24 0.036156703 1.0000000

25 SNP25 0.028889167 1.0000000

26 SNP26 0.107261909 1.0000000

27 SNP27 0.082974190 1.0000000

28 SNP28 0.057018754 1.0000000

29 SNP29 0.031694448 1.0000000

30 SNP30 0.115757602 1.0000000

31 SNP31 0.724040250 1.0000000

32 SNP32 0.869453258 1.0000000

33 SNP33 0.872810958 1.0000000

34 SNP34 0.865809068 1.0000000

35 SNP35 1.000000000 1.0000000

36 SNP36 1.000000000 1.0000000

37 SNP37 0.647879273 1.0000000

38 SNP38 0.869443031 1.0000000

39 SNP39 0.875918977 1.0000000

40 SNP40 0.731854289 1.0000000

10

4.3 Plotting permutation-based p-values for each candi-
date gene and marginal p-values for the SNPs located
on these genes

The plot function is used to present the information provided by summary graph-
ically, i.e. to display the permutation-based p-values for each candidate gene and
the marginal p-values for each SNP located on these genes in a graphical way.
The function plots either (− log10) transformed permutation-based p-values for
each gene or (− log10) transformed marginal p-values for each SNP in a basic
scatterplot using the argument type="gene" (default) or "SNP". The y-axis is
(− log10) transformed to obtain a disposition as a Manhattan plot for the points
of the marginal p-values of the SNPs. Furthermore, an alternative given by the
plot function is to display the marginal p-values for each SNP and the trans-
formed permutation-based p-values for each gene in a combined plot using the
argument type="both". Accordingly, (− log10) transformed marginal p-values for
each SNP are plotted as points. In addition, horizontal lines of (−lambda ∗ log10)
transformed permutation-based p-values of each gene, covering all SNPs located
on that gene, are plotted. The composed plot is indicated by two separated y-
axes (− log10(psnp)) at left hand side and (−lambda ∗ log10(minp)) at the right
hand side). psnp is a matrix of marginal trend p-values and minp is a matrix
of permutation-based p-values from minPtest object, see 4.1 and 4.2. lambda is
used to scale the y-axis for the log-transformed permutation-based p-values. Af-
ter the correction for multiple hypothesis testing (default Bonferroni correction)
depending on the level (default 0.05) significant genes and SNPs are by default
highlighted in red. I.e. not depending on the used type of plot, each gene or/and
each SNP with permutation-based p-value or/and marginal p-value smaller than
or equal to the level is highlighted in red.

4.3.1 Plotting permutation-based and marginal p-values from 4.1

The combined plot of the resulting (−0.5 · log10) transformed permutation-based p-
values for each candidate gene and the (− log10) transformed marginal p-values for
each SNP located on the genes from 4.1 with a scaled y-axis for the permutation-
based p-values is displayed using the plot function and argument type="both".

> plot(minPtest.object1, type="both", lambda=0.5, gene.name=TRUE)

Figure 1 shows horizontal lines for each (−0.5 · log10) transformed permutation-
based p-value of the candidate genes and dots for each (− log10) transformed
marginal p-value of the SNPs located on these genes. The horizontal line of gene
G2 and a dot of a SNP (SNP54, see summary in 4.1) are highlighted in red, as

11

●

●
0

1
2

3
4

SNP

−
lo

g 1
0(p

sn
p)

●

●

●

●●●

●

●●

●

●
●●
●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●●

●

●

●
●

●

●

●●●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●
●

●●

●●
●

●

●●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●
●●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

0
1

2
3

−
0.

5(
lo

g 1
0(m

in
p)

)

G1 G2 G3 G4 G5

Figure 1: (−0.5·log10) transformed permutation-based p-values for each candidate
gene and (− log10) transformed marginal p-values for each SNP located on these
genes for 4.1. Dots: (− log10) transformed marginal p-values, lines: (−0.5 · log10)
transformed permutation-based p-values

their p-values are smaller than or equal to level=0.05 after Bonferroni correction
(default).
The summary and the plot illustrate that the gene region-level summary is mostly
compatible with univariate statistical tests per SNP conducted separately over
multiple loci. In both functions, G2 and SNP54 are highlighted which could be
expected as we fixed an effect size of 1.5 for SNP54 which is located on G2.
It should be stressed that for real data the plot would usually contain a lot more
genes and SNPs located on these genes. This would rather lead to a disposition as
to a Manhattan plot for the points of the (− log10) transformed marginal p-values
compared to Figure 1.

12

●

●
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

SNP

−
lo

g 1
0(p

sn
p)

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●●

●

●●

●●

●

●●●

●●

●

●

●

●
●
●
●

●

●
●

●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
1

2

−
0.

5(
lo

g 1
0(m

in
p)

)

G1 G2 G3 G4 G5

Figure 2: (−0.5·log10) transformed permutation-based p-values for each candidate
gene and (− log10) transformed marginal p-values for each SNP located on these
genes for 4.2. Dots: (− log10) transformed marginal p-values, lines: (−0.5 · log10)
transformed permutation-based p-values

4.3.2 Plotting permutation-based and marginal p-values from 4.2 with
a break in the first block of each gene

The combined plot of the resulting (−0.5 · log10) transformed permutation-based p-
values for each candidate gene and the (− log10) transformed marginal p-values for
each SNP located on these genes from 4.2 with a scaled y-axis for the permutation-
based p-values is displayed using the plot function and argument type="both".
The difference to 4.1 is the break within the first block due to the modification of
the probability for the neighborhood SNPs of the SNP-position 6 from 0.9 to 0.5
in each gene, see 3.2.

> plot(minPtest.object2, type="both", lambda=0.5, gene.name=TRUE)

13

Figure 2 shows horizontal lines for each (−0.5 · log10) transformed permutation-
based p-value of the candidate genes, as well as dots for each (− log10) transformed
marginal p-value of the SNPs located on these genes. Compared to Figure 1, sim-
ply the horizontal line of gene G1 is highlighted in red as the Bonferroni corrected
(default) permutation-based p-values is smaller than the default level and no Bon-
ferroni corrected (default) marginal p-value is smaller or equal than the level, no
dots of the SNP are highlighted in red, see also the list items from the summary

function in 4.2.

14

