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Abstract

mlogit is a package for R which enables the estimation of the multinomial logit
models with individual and/or alternative specific variables. The main extensions of
the basic multinomial model (heteroscedastic, nested and random parameter models)
are implemented.
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An introductory example

The logit model is useful when one tries to explain discrete choices, i.e. choices of one
among several mutually exclusive alternatives1. There are many useful applications of
discrete choice modelling in different fields of applied econometrics, using individual
data, which may be :

• revealed preferences data which means that the data are observed choices of indi-
viduals for, say, a transport mode (car, plane and train for example),

• stated preferences data ; in this case, individuals face a virtual situation of choice,
for example the choice between three train tickets with different characteristics :

– A : a train ticket which costs 10 euros, for a trip of 30 minutes and one change,

– B : a train ticket which costs 20 euros, for a trip of 20 minutes and no change,

– C : a train ticket which costs 22 euros, for a trip of 22 minutes and one change.

Suppose that, in a transport mode situation, we can define an index of satisfaction Vj
for each alternative which depends linearly on cost (x) and time (z) :

V1 = α1 + βx1 + γz1

V2 = α2 + βx2 + γz2

V3 = α3 + βx3 + γz3

1For an extensive presentation of the logit model, see Train (2003) and Louiviere, Hensher, and Swait
(2000). The theoretical parts of this paper draw heavily on Kenneth Train’s book.
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In this case, the probability of choosing the alternative j is increasing with Vj . For sake
of estimation, one has to transform the satisfaction index, which can take any real value
so that it is restricted to the unit interval and can be interpreted as a probability. The
multinomial logit model is obtained by applying such a transformation to the Vjs. More
specifically, we have : 

P1 = eV1
eV1+eV2+eV3

P2 = eV2
eV1+eV2+eV3

P3 = eV3
eV1+eV2+eV3

The two characteristics of probabilities are satisfied :

• 0 ≤ Pj ≤ 1 ∀i = 1, 2, 3,

•
∑3
j=1 Pj = 1

Once fitted, a logit model is useful for predictions :

• enter new values for the explanatory variables,

• get

– at an individual level the probabilities of choice,

– at an aggregate level the market shares.

Consider, as an example, interurban trips between two towns (Lyon and Paris). Suppose
that there are three modes (car, plane and train) and that the characteristics of the modes
and the market shares are as follow :

price time share

car 50 4 20%
plane 150 1 25%
train 80 2 55%

With a sample of travellers, one can estimate the coefficients of the logit model, i.e. the
coefficients of time and price in the utility function.

The fitted model can then be used to predict the impact of some changes of the explana-
tory variables on the market shares, for example :

• the influence of train trips length on modal shares,

• the influence of the arrival of low cost companies.
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To get the predictions, one just has to change the values of train time or plane price
and compute the new probabilities, which can be interpreted at the aggregate level as
predicted market shares.

1. Data management and model description

1.1. Data management

mlogit is loaded using :

R> library("mlogit")

It comes with several data sets that we’ll use to illustrate the features of the library. Data
sets used for multinomial logit estimation deals with some individuals, that make one or a
sequential choice of one alternative among a set of several alternatives. The determinants
of these choices are variables that can be alternative specific or purely individual specific.
Such data have therefore a specific structure that can be characterised by three indexes
:

• the alternative,

• the choice situation,

• the individual.

the last one being only relevant if we have repeated observations for the same individual.

Data sets can have two different shapes :

• a wide shape : in this case, there is one row for each choice situation,

• a long shape : in this case, there is one row for each alternative and, therefore, as
many rows as there are alternatives for each choice situation.

This can be illustrated with three data sets.

• Fishing is a revealed preferences data sets that deals with the choice of a fishing
mode,

• TravelMode (from the AER package) is also a revealed preferences data sets which
presents the choice of individuals for a transport mode for inter-urban trips in
Australia,

• Train is a stated preferences data sets for which individuals faces repeated virtual
situations of choice for train tickets.
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R> data("Fishing", package = "mlogit")

R> head(Fishing, 3)

mode price.beach price.pier price.boat price.charter catch.beach

1 charter 157.930 157.930 157.930 182.930 0.0678

2 charter 15.114 15.114 10.534 34.534 0.1049

3 boat 161.874 161.874 24.334 59.334 0.5333

catch.pier catch.boat catch.charter income

1 0.0503 0.2601 0.5391 7083.332

2 0.0451 0.1574 0.4671 1250.000

3 0.4522 0.2413 1.0266 3750.000

There are four fishing modes (beach, pier, boat, charter), two alternative specific variables
(price and catch) and one choice/individual specific variable (income)2. This “wide”
format is suitable to store individual specific variables. Otherwise, it is cumbersome for
alternative specific variables because there are as many columns for such variables that
there are alternatives.

R> data("TravelMode", package="AER")

R> head(TravelMode)

individual mode choice wait vcost travel gcost income size

1 1 air no 69 59 100 70 35 1

2 1 train no 34 31 372 71 35 1

3 1 bus no 35 25 417 70 35 1

4 1 car yes 0 10 180 30 35 1

5 2 air no 64 58 68 68 30 2

6 2 train no 44 31 354 84 30 2

There are four transport modes (air, train, bus and car)and most of the variable are
alternative specific (wait, vcost, travel, gcost). The only individual specific variables are
income and size. The advantage of this shape is that there are much fewer columns than
in the wide format, the caveat being that values of income and size are repeated four
times.

mlogit deals with both format. It provides a mlogit.data function that take as first argu-
ment a data.frame and returns a data.frame in “long” format with some information
about the structure of the data.

For the Fishing data, we would use :

R> Fish <- mlogit.data(Fishing, shape="wide", varying=2:9, choice="mode")

2Note that the distinction between choice situation and individual is not relevant here as these data
are not panel data.



Yves Croissant 5

The mandatory arguments are choice, which is the variable that indicates the choice
made, the shape of the original data.frame and, if there are some alternative specific
variables, varying which is a numeric vector that indicates which columns contains
alternative specific variables. This argument is then passed to reshape that coerced the
original data.frame in “long” format. Further arguments may be passed to reshape. For
example, if the names of the variables are of the form var:alt, one can add sep = ’:’.

R> head(Fish, 5)

mode income alt price catch chid

1.beach FALSE 7083.332 beach 157.930 0.0678 1

1.boat FALSE 7083.332 boat 157.930 0.2601 1

1.charter TRUE 7083.332 charter 182.930 0.5391 1

1.pier FALSE 7083.332 pier 157.930 0.0503 1

2.beach FALSE 1250.000 beach 15.114 0.1049 2

The result is a data.frame in “long format” with one line for each alternative. The
“choice” variable is now a logical variable and the individual specific variable (income)
is repeated 4 times. An index attribute is added to the data, which contains the two
relevant index : chid is the choice index and alt index. This attribute is a data.frame

that can be extracted using the index function, which returns this data.frame.

R> head(index(Fish))

chid alt

1.beach 1 beach

1.boat 1 boat

1.charter 1 charter

1.pier 1 pier

2.beach 2 beach

2.boat 2 boat

For data in “long” format like TravelMode, the shape (here equal to long) and the choice
arguments are still mandatory.

The information about the structure of the data can be explicitly indicated or, in part,
guessed by the mlogit.data function. Here, we have 210 choice situations which are
indicated by a variable called individual. The information about choice situations can
also be guessed from the fact that the data frame is balanced (every individual face
4 alternatives) and that the rows are ordered first by choice situations and then by
alternative.

Concerning the alternative, there are indicated by the mode variable and they can also be
guessed thanks to the ordering of the rows and the fact that the data frame is balanced.
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The first way to read correctly this data frame is to ignore completely the two index
variables. In this case, the only supplementary argument to provide is the alt.levels

argument which is a character vector that contains the name of the alternatives :

R> TM <- mlogit.data(TravelMode,

+ choice = "choice", shape = "long", alt.levels = c("air", "train",

+ "bus", "car"))

It is also possible to provide an argument alt.var which indicates the name of the
variable that contains the alternatives

R> TM <- mlogit.data(TravelMode ,choice = "choice", shape = "long",

+ alt.var = "mode")

The name of the variable that contains the information about the choice situations can
be indicated using the chid.var argument :

R> TM <- mlogit.data(TravelMode, choice = "choice",

+ shape = "long", chid.var = "individual",

+ alt.levels = c("air", "train", "bus", "car"))

Both alternative and choice variable can be provided :

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ chid.var = "individual", alt.var = "mode")

and dropped from the data frame using the drop.index argument :

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ chid.var = "individual", alt.var = "mode", drop.index = TRUE)

R> head(TM)

choice wait vcost travel gcost income size

1.air FALSE 69 59 100 70 35 1

1.train FALSE 34 31 372 71 35 1

1.bus FALSE 35 25 417 70 35 1

1.car TRUE 0 10 180 30 35 1

2.air FALSE 64 58 68 68 30 2

2.train FALSE 44 31 354 84 30 2

The final example (Train) is in a “wide” format and contains panel data.

R> data("Train", package="mlogit")

R> head(Train, 3)
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id choiceid choice price1 time1 change1 comfort1 price2 time2 change2

1 1 1 choice1 2400 150 0 1 4000 150 0

2 1 2 choice1 2400 150 0 1 3200 130 0

3 1 3 choice1 2400 115 0 1 4000 115 0

comfort2

1 1

2 1

3 0

Each individual has responded to several (up to 16) scenario. To take this panel dimen-
sion into account, one has to add an argument id which contains the individual variable.
The index attribute has now a supplementary column, the individual index.

R> Tr <- mlogit.data(Train, shape = 'wide', choice="choice",

+ varying=4:11, sep="", alt.levels=c(1, 2), id = "id")

R> head(Tr, 3)

id choiceid choice alt price time change comfort chid

1.1 1 1 TRUE 1 2400 150 0 1 1

1.2 1 1 FALSE 2 4000 150 0 1 1

2.1 1 2 TRUE 1 2400 150 0 1 2

R> head(index(Tr), 3)

chid alt id

1.1 1 1 1

1.2 1 2 1

2.1 2 1 1

1.2. Model description

mlogit use the standard formula, data interface to describe the model to be estimated.
However, standard formulas are not very practical for such models. More precisely, while
working with multinomial logit models, one has to consider three kinds of variables :

• alternative specific variables xij with a generic coefficient β,

• individual specific variables zi with an alternative specific coefficients γj ,

• alternative specific variables wij with an alternative specific coefficient δj .

The satisfaction index for the alternative j is then :
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Vij = αj + βxij + γjzi + δjwij

Satisfaction being ordinal, only differences are relevant to modelize the choice for one
alternative. This means that we’ll be interested in the difference between the satisfaction
index of two different alternatives j and k :

Vij − Vik = (αj − αk) + β(xij − xik) + (γj − γk)zi + (δjwij − δkwik)

It is clear from the previous expression that coefficients for individual specific variables
(the intercept being one of those) should be alternative specific, otherwise they would
disappear in the differentiation. Moreover, only differences of these coefficients are rel-
evant and may be identified. For example, with three alternatives 1, 2 and 3, the three
coefficients γ1, γ2, γ3 associated to an individual specific variable cannot be identified,
but only two linear combinations of them. Therefore, one has to make a choice of nor-
malization and the most simple one is just to set γ1 = 0.

Coefficients for alternative specific variables may (or may not) be alternative specific.
For example, transport time is alternative specific, but 10 mn in public transport may
not have the same impact on utility than 10 mn in a car. In this case, alternative specific
coefficients are relevant. Monetary time is also alternative specific, but in this case, one
can consider than 1 euro is 1 euro whatever it is spent in car or in public transports3.
In this case, a generic coefficient is relevant.

A model with only individual specific variables is sometimes called a multinomial logit
model, one with only alternative specific variables a conditional logit model and one with
both kind of variables a mixed logit model. This is seriously misleading : conditional logit
model is also a logit model for longitudinal data in the statistical literature and mixed
logit is one of the names of a logit model with random parameters. Therefore, in what
follow, we’ll use the name multinomial logit model for the model we’ve just described
whatever the nature of the explanatory variables included in the model.

mlogit package provides objects of class mFormula which are extended model formulas
and which are build upon Formula objects provided by the Formula package4.

To illustrate the use of mFormula objects, let’s use again the TravelMode data set. income
and size (the size of the household) are individual specific variables. vcost (monetary cost)
and travel (travel time) are alternative specific. We want to use a generic coefficient for
the former and alternative specific coefficients for the latter. This is done using the
mFormula function that build a three-parts formula :

R> f <- mFormula(choice ~ vcost | income + size | travel)

By default, an intercept is added to the model, it can be removed by using +0 or -1 in
the second part. Some parts may be omitted when there are no ambiguity. For example,
the following couples of formulas are identical :

3At least if the monetary cost of using car is correctly calculated.
4See Zeileis and Croissant (2010) for a description of the Formula package.
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R> f2 <- mFormula(choice ~ vcost + travel | income + size)

R> f2 <- mFormula(choice ~ vcost + travel | income + size | 0)

R> f3 <- mFormula(choice ~ 0 | income | 0)

R> f3 <- mFormula(choice ~ 0 | income)

R> f4 <- mFormula(choice ~ vcost + travel)

R> f4 <- mFormula(choice ~ vcost + travel | 1)

R> f4 <- mFormula(choice ~ vcost + travel | 1 | 0)

Finally, we show below some formulas that describe models without intercepts (which
is generally hardly relevant)

R> f5 <- mFormula(choice ~ vcost | 0 | travel)

R> f6 <- mFormula(choice ~ vcost | income + 0 | travel)

R> f6 <- mFormula(choice ~ vcost | income -1 | travel)

R> f7 <- mFormula(choice ~ 0 | income -1 | travel)

model.matrix and model.frame methods are provided for mFormula objects. The for-
mer is of particular interest, as illustrated in the following example :

R> f <- mFormula(choice ~ vcost | income | travel)

R> head(model.matrix(f, TM))

train:(intercept) bus:(intercept) car:(intercept) vcost train:income

1.air 0 0 0 59 0

1.train 1 0 0 31 35

1.bus 0 1 0 25 0

1.car 0 0 1 10 0

2.air 0 0 0 58 0

2.train 1 0 0 31 30

bus:income car:income air:travel train:travel bus:travel car:travel

1.air 0 0 100 0 0 0

1.train 0 0 0 372 0 0

1.bus 35 0 0 0 417 0

1.car 0 35 0 0 0 180

2.air 0 0 68 0 0 0

2.train 0 0 0 354 0 0

The model matrix contains J − 1 columns for every individual specific variables (income
and the intercept), which means that the coefficient associated to the first alternative
(air) is fixed to 0.
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It contains only one column for vcost because we want a generic coefficient for this
variable.

It contains J columns for travel, because it is an alternative specific variable for which
we want an alternative specific coefficient.

2. Random utility model and the multinomial logit model

2.1. Random utility model

The individual must choose one alternative among J different and exclusive alternatives.
A level of utility may be defined for each alternative and the individual is supposed to
choose the alternative with the highest level of utility. Utility is supposed to be the sum
of two components5:

• a systematic component, denoted Vj , which is a function of different observed
variables xj . For sake of simplicity, it will be supposed that this component is a
linear combination of the observed explanatory variables : Vj = β>j xj ,

• an unobserved component εj which, from the researcher point of view, can be
represented as a random variable. This error term includes the impact of all the
unobserved variables which have an impact on the utility of choosing a specific
alternative.

It is very important to understand that the utility and therefore the choice is purely
deterministic from the decision maker’s point of view. It is random form the searcher’s
point of view, because some of the determinants of the utility are unobserved, which
implies that the choice can only be analyzed in terms of probabilities.

We have, for each alternative, the following utility levels :
U1 = β>1 x1 + ε1 = V1 + ε1
U2 = β>2 x2 + ε2 = V2 + ε2

...
...

UJ = β>J xJ + εJ = VJ + εJ

alternative l will be chosen if and only if ∀ j 6= l Ul > Uj which leads to the following
J − 1 conditions : 

Ul − U1 = (Vl − V1) + (εl − ε1) > 0
Ul − U2 = (Vl − V2) + (εl − ε2) > 0

...
Ul − UJ = (Vl − VJ) + (εl − εJ) > 0

5when possible, we’ll omit the individual index to simplify the notations.
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As εj are not observed, choices can only be modeled in terms of probabilities from the
researcher point of view. The J − 1 conditions can be rewritten in terms of upper bonds
for the J − 1 remaining error terms :

ε1 < (Vl − V1) + εl
ε2 < (Vl − V2) + εl

...
εJ < (Vl − VJ) + εl

The general expression of the probability of choosing alternative l is then :

(Pl | εl) = P(Ul > U1, . . . , Ul > UJ)

(Pl | εl) = F−l(ε1 < (Vl − V1) + εl, . . . , εJ < (Vl − VJ) + εl) (1)

where F−l is the multivariate distribution of J − 1 error terms (all the ε’s except εl).
Note that this probability is conditional on the value of εl.

The unconditional probability (which depends only on β and on the value of the observed
explanatory variables is :

Pl =

∫
(Pl | εl)fl(εl)dεl

Pl =

∫
F−l((Vl − V1) + εl, . . . , (Vl − VJ) + εl)fl(εl)dεl (2)

where fl is the marginal density function of εl.

2.2. The distribution of the error terms

The multinomial logit model (McFadden 1974) is a special case of the model developed
in the previous section. It relies on three hypothesis :

H1 : independence of errors

If the hypothesis of independence of errors is made, the univariate distribution of the
errors can be used : 

P(Ul > U1) = F1(Vl − V1 + εl)
P(Ul > U2) = F2(Vl − V2 + εl)

...
P(Ul > UJ) = FJ(Vl − VJ + εl)

where Fj is the cumulative density of εj .

The conditional (1) and unconditional (2) probabilities are then :
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(Pl | εl) =
∏
j 6=l

Fj(Vl − Vj + εl) (3)

Pl =

∫ ∏
j 6=l

Fj(Vl − Vj + εl) fl(εl) dεl (4)

which means that the evaluation of only a one-dimensional integral is required to compute
the probabilities.

H2 : Gumbel distribution

Each ε follows a Gumbel distribution :

f(z) =
1

θ
e−

z−µ
θ e−e

− z−µ
θ

where µ is the location parameter and θ the scale parameter.

P (z < t) = F (t) =

∫ t

−∞

1

θ
e−

z−µ
θ e−e

− z−µ
θ dz = e−e

− t−µ
θ

The first two moments of the Gumbel distribution are E(z) = µ + θγ, where γ is the

Euler-Mascheroni constant (0.577) and V(z) = π2

6 θ
2.

The mean of εjs is not identified if Vj contains an intercept. We can then, without
loss of generality suppose that µj = 0 ∀j. Moreover, the overall scale of utility is not
identified. Therefore, only J−1 scale parameters may be identified, and a natural choice
of normalisation is to impose that one of the θj is equal to 1.

H3 identically distributed errors

As the location parameter is not identified for any error term, this hypothesis is essen-
tially an homoscedasticity hypothesis, which means that the scale parameter of Gumbel
distribution is the same for all the alternatives. As one of them has been previously fixed
to 1, we can therefore suppose that, without loss of generality, θj = 1 ∀j ∈ 1 . . . J in case
of homoscedasticity.

In this case, the conditional (3) and unconditional (4) probabilities further simplify to :

(Pl | εl) =
∏
j 6=l

F (Vl − Vj + εl) (5)

Pl =

∫ ∏
j 6=l

F (Vl − Vj + εl) f(εl) dεl (6)

with F and f respectively the cumulative and the density of the standard Gumbel
distribution (i.e. with position and scale parameters equal to 0 and 1).

2.3. Computation of the probabilities
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With these hypothesis on the distribution of the error terms, we can now show that the
probabilities have very simple, closed forms, which correspond to the logit transformation
of the deterministic part of the utility.

Let’s start with the probability that the alternative l is better than one other alternative
j. With hypothesis 2 and 3, it can be written :

P (εj < Vl − Vj + εl) = e−e
−(Vl−Vj+εl)

(7)

With hypothesis 1, the probability of choosing l is then simply the product of probabil-
ities (7) for all the alternatives except l :

(Pl | εl) =
∏
j 6=l

e−e
−(Vl−Vj+εl)

(8)

The unconditional probability is the expected value of the previous expression with
respect to εl.

Pl =

∫ +∞

−∞
(Pl | εl) e−εle−e

−εldεl =

∫ +∞

−∞

∏
j 6=l

e−e
−(Vl−Vj+εl)

 e−εle−e−εldεl (9)

We first begin by writing the preceding expression for all alternatives, including the l
alternative.

Pl =

∫ +∞

−∞

∏
j

e−e
−(Vl−Vj+εl)

 e−εldεl
Pl =

∫ +∞

−∞
e
−
∑

j
e−(Vl−Vj+εl)

e−εldεl =

∫ +∞

−∞
e
−e−εl

∑
j
e−(Vl−Vj)

e−εldεl

We then use the following change of variable

t = e−εl ⇒ dt = −e−εldεl

The unconditional probability is therefore the following integral :

Pl =

∫ +∞

0
e
−t
∑

j
e−(Vl−Vj)

dt

which has a closed form :

Pl =

−e−t
∑

j
e−(Vl−Vj)∑

j e
−(Vl−Vj)

+∞

0

=
1∑

j e
−(Vl−Vj)

and can be rewritten as the usual logit probability :
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Pl =
eVl∑
j e

Vj
(10)

2.4. IIA hypothesis

If we consider the probabilities of choice for two alternatives l and m, we have :

Pl =
eVl∑
j e

Vj

Pm =
eVm∑
j e

Vj

The ration of these two probabilities is :

Pl
Pm

=
eVl

eVm

This probability ratio for the two alternatives depends only on the characteristics of
these two alternatives and not on those of other alternatives. This is called the IIA
hypothesis (for independence of irrelevant alternatives).

If we use again the introductory example of urban trips between Lyon and Paris :

price time share

car 50 4 20%
plane 150 1 20%
train 80 2 60%

Suppose that, because of low cost companies arrival, the price of plane is now 100$. The
market share of plane will increase (for example up to 60%). With a logit model, share
for train / share for car is 3 before the price change, and will remain the same after the
price change. Therefore, the new predicted probabilities for car and train are 10 and
30%.

The IIA hypothesis relies on the hypothesis of independence of the error terms. It is not
a problem by itself and may even be considered as a useful feature for a well specified
model. However, this hypothesis may be in practice violated if some important variables
are unobserved.

To see that, suppose that the utilities for two alternatives are :

Ui1 = α1 + β1zi + γxi1 + εi1

Ui2 = α2 + β2zi + γxi2 + εi2
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with εi1 and εi2 uncorrelated. In this case, the logit model can be safely used, as the
hypothesis of independence of the errors is satisfied.

If zi is unobserved, the estimated model is :

Ui1 = α1 + γxi1 + ηi1

Ui2 = α2 + γxi2 + ηi2

ηi1 = εi1 + β1zi

ηi2 = εi2 + β2zi

The error terms are now correlated because of the common influence of omitted variables.

2.5. Estimation

The coefficients of the multinomial logit model are estimated by full information maxi-
mum likelihood.

The likelihood function

Let’s start with a very simple example. Suppose there are four individuals. For given
parameters and explanatory variables, we can calculate the probabilities. The likelihood
for the sample is the probability associated to the sample :

choice Pi1 Pi2 Pi3 li
1 1 0.5 0.2 0.3 0.5
2 3 0.2 0.4 0.4 0.4
3 2 0.6 0.1 0.3 0.1
4 2 0.3 0.6 0.1 0.6

With random sample the joint probability for the sample is simply the product of the
probabilities associated with every observation.

L = 0.5× 0.4× 0.1× 0.6

A compact expression of the probabilities that enter the likelihood function is obtained
by denoting yij a dummy variable which is equal to 1 if individual i made choice j and
0 otherwise.

The probability of the choice made for one individual is then :

Pi =
∏
j

P
yij
ij

Or in log :
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ln Pi =
∑
j

yij ln Pij

which leads to the log-likelihood function :

lnL =
∑
i

ln Pi =
∑
i

∑
j

yij ln Pij

Properties of the maximum likelihood estimator

Under regularity conditions, the maximum likelihood estimator is consistent and has an
asymptotic normal distribution. The variance of the estimator is :

V(θ̂) =

(
E

(
−∂

2 lnL

∂θ∂θ>
(θ)

))−1

This expression can not be computed because it depends on the thrue values of the
parameters. Three estimators have been proposed :

• V̂1(θ̂) =
(
E
(
−∂2 lnL
∂θ∂θ>

(θ̂)
))−1

: this expression can be computed if the expected

value is computable,

• V̂2(θ̂) =
(
−∂2 lnL
∂θ∂θ>

(θ̂)
)−1

• V̂3(θ̂) =
∑n
i=1

(
∂ ln li
∂θ (θ̂)

) (
∂ ln li
∂θ (θ̂)

)>
: this expression is called the bhhh expres-

sion and doesn’t require the computation of the hessian.

Numerical optimization

We seek to calculate the maximum of a function f(x). This first order condition for a
maximum is f ′(xo) = 0, but in general, there is no explicit solution for xo, which then
must be numerically approximated. In this case, the following algorithm can be used :

1. Start with a value x called xt,

2. Approximate the function around xt using a second order Taylor series : l(x) =
f(xt) + (x−xt)g(xt) + 0.5(x−xt)2h(xt) where g and h are the first two derivatives
of f ,

3. find the maximum of l(x). The first order condition is : ∂l(x)
∂x = g(xt) + (x −

xt)h(xt) = 0. The solution is : xt − g(xt)
h(xt)

4. call this value xt+1 and iterate until you get as close as required to the maximum.
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x1

x1 x2

x1 x2 x3

x1 x2 x3x4

Figure 1: Numerical optimization

This algorithm is illustrated on figure˜1.

Consider now a function of several variables f(x). The vector of first derivatives (called
the gradient) is denoted g and the matrix of second derivatives (called the hessian) is
denoted H. The second order approximation is :

l(x) = f(xt) + (x− xt)g(xt) + 0.5(x− xt)>H(xt)(x− xt)

The vector of first derivatives is :

∂l(x)

∂x
= g(xt) +H(xt)(x− xt)

x = xt −H(xt)
−1g(xt)

Two kinds of routines are currently used for maximum likelihood estimation. The first
one can be called “Newton-like” methods. In this case, at each iteration, an estimation of
the hessian is calculated, whether using the second derivatives of the function (Newton-
Ralphson method) or using the outer product of the gradient (bhhh). This approach is
very powerful if the function is well-behaved, but it may perform poorly otherwise and
fail after a few iterations.
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The second one, called bfgs, updates at each iteration the estimation of the hessian. It
is often more robust and may performs well in cases where the first one doesn’t work.

Two optimization functions are included in core R: nlm which use the Newton-Ralphson
method and optim which use bfgs (among other methods). Recently, the maxLik package
(Toomet and Henningsen 2010) provides a unified approach. With a unique interface,
all the previously described methods are available.

The behavior of maxLik can be controlled by the user using in the estimation function
arguments like print.level (from 0-silent to 2-verbal), iterlim (the maximum number
of iterations), methods (the method used, one of nr, bhhh or bfgs) that are passed to
maxLik.

Gradient and Hessian for the logit model

For the multinomial logit model, the gradient and the hessian have very simple expres-
sions.

∂ lnPij
∂β

= xij −
∑
l

Pilxil

∂ lnL

∂β
=
∑
i

∑
j

(yij − Pij)xij

∂2 lnL

∂β∂β′
=
∑
i

∑
j

Pij

(
xij −

∑
l

Pilxil

)(
xij −

∑
l

Pilxil

)>

Moreover, the log-likelihood function is globally concave, which mean that there is a
unique optimum which is the global maximum. In this case, the Newton-Ralphson
method is very efficient and the convergence is achieved after just a few iterations.

2.6. Interpretation

In a linear model, the coefficients can be directly considered as marginal effects of the
explanatory variables on the explained variable. This is not the case for the multinomial
models. However, meaningful results can be obtained using relevant transformations of
the coefficients.

Marginal effects

The marginal effects are the derivatives of the probabilities with respect to the explana-
tory variables, which can be be individual-specific (zi) or alternative specific (xij) :

∂Pij
∂zi

= Pij

(
βj −

∑
l

Pilβl

)
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∂Pij
∂xij

= γPij(1− Pij)

∂Pij
∂xil

= −γPijPil

• For an alternative-specific variable, the sign of the coefficient is directly inter-
pretable. The marginal effect is obtained by multiplying the coefficient by the
product of two probabilities which is at most 0.25. The rule of thumb is therefore
to divide the coefficient by 4 in order to have an upper bound of the marginal
effect.

• For an individual specific variable, the sign of the coefficient is not necessarily
the sign of the coefficient. Actually, the sign of the marginal effect is given by
(βj −

∑
l Pilβl), which is positive if the coefficient for the j alternative is greater

than a weighted average of the coefficients for all the alternatives, the weights
being the probabilities of choosing the alternatives. In this case, the sign of the
marginal effect can be established with no ambiguity only for the alternatives with
the lowest and the greatest coefficients.

Marginal rates of substitution

Coefficients are marginal utilities, which are not interpretable because utility is ordinal.
However, ratios of coefficients are marginal rates of substitution, which are interpretable.
For example, if the observable part of utility is : V = βo+β1x1+βx2+βx3, join variations
of x1 and x2 which ensure the same level of utility are such that : dV = β1dx1+β2dx2 = 0
so that :

−dx2

dx1
|dV=0=

β1

β2

For example, if x2 is transport cost (in euros), x1 transport time (in hours), β1 = 1.5
and β2 = 0.2, β1

β2
= 30 is the marginal rate of substitution of time in terms of euros and

the value of 30 means that to reduce the travel time of one hour, the individual is willing
to pay at most 30 euros more.

Consumer’s surplus

Consumer’s surplus has a very simple expression with multinomial logit models. It was
first derived by Small and Rosen (1981).

The level of utility attained by an individual is Uj = Vj + εj , j being the alternative
chosen. The expected utility, from the searcher’s point of view is then :

E(max
j
Uj)
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where the expectation is taken on the values of all the error terms. If the marginal utility
of income (α) is known and constant, the expected surplus is simply E(maxj Uj)/α.

This expected surplus is a very simple expression in the context of the logit model, which
is called the “log-sum”. We’ll demonstrate this fact in the context of two alternatives.

With two alternatives, the values of ε1 and ε2 can be depicted in a plane. This plane
contains all the possible combinations of (ε1, ε2). Some of them leads to the choice of
alternative 1 and the other to the choice of alternative 2. More precisely, alternative 1
is chosen if ε2 ≤ V1 − V2 + ε1 and alternative 2 is chosen if ε1 ≤ V2 − V1 + ε2. The first
expression is the equation of a straight line in the plan which delimits the choice for the
two alternatives.

We can then write the expected utility as the sum of two terms E1 and E2, with :

E1 =

∫ ∞
ε1=−∞

∫ V1−V2+ε1

−∞
(V1 + ε1)f(ε1)f(ε2)dε1dε2

and

E2 =

∫ ∞
ε2=−∞

∫ V2−V1+ε1

−∞
(V2 + ε2)f(ε1)f(ε2)dε1dε2

with f(z) = exp (−e−z) the density of the Gumbell distribution.

We’ll derive the expression for E1, by symmetry we’ll guess the expression for E2 and
we’ll then obtain the expected utility by summing E1 and E2.

E1 =

∫ ∞
ε1=−∞

(V1 + ε1)

(∫ V1−V2+ε1

−∞
f(ε2)dε2

)
f(ε1)dε1

The expression in brackets is the cumulative density of ε2. We then have :

E1 =

∫ ∞
ε1=−∞

(V1 + ε1)e−e
−(V1−V2)−ε1

f(ε1)dε1

E1 =

∫ ∞
ε1=−∞

(V1 + ε1)e−ε1e−ae
−ε1
dε1

with a = 1 + e−(V1−V2) = eV1+eV2
eV1

= 1
P1

Let defines z | e−z = ae−ε1 ⇔ z = ε1 − ln a

We then have :

E1 =

∫ ∞
ε1=−∞

(V1 + z + ln a)/ae−ze−e
−z
dz

E1 = (V1 + ln a)/a+ µ/a
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where µ is the expected value of a random variable which follows a standard Gumbell
distribution, i.e. the Euler-Mascheroni constant.

E1 =
ln(eV1 + eV2) + µ

(eV1 + eV2)/eV1
=
eV1 ln(eV1 + eV2) + eV1µ

eV1 + eV2

By symmetry,

E2 =
eV2 ln(eV1 + eV2) + eV2µ

eV1 + eV2

And then :

E(U) = E1 + E2 = ln(eV1 + eV2) + µ

More generally, in presence of J alternatives, we have :

E(U) = ln
J∑
j=1

eVj + µ

and the expected surplus is, with α the constant marginal utility of income˜:

E(U) =
ln
∑J
j=1 e

Vj + µ

α

2.7. Application

Train contains data about a stated preference survey in Netherlands. Users are asked to
choose between two train trips characterized by four attributes :

• price : the price in cents of guilders,

• time : travel time in minutes,

• change : the number of changes,

• comfort : the class of comfort, 0, 1 or 2, 0 being the most comfortable class.

R> data("Train", package="mlogit")

R> Tr <- mlogit.data(Train, shape = 'wide', choice="choice",

+ varying=4:11, sep="", alt.levels=c(1, 2), id = "id")

R>

We first convert price and time in more meaningful unities, hours and euros (1 guilder is
2.20371 euros) :
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R> Tr$price <- Tr$price / 100 * 2.20371

R> Tr$time <- Tr$time / 60

We then estimate the model : both alternatives being virtual train trips, it is relevant
to use only generic coefficients and to remove the intercept :

R> ml.Train <- mlogit(choice~price+time+change+comfort | -1, Tr)

R> summary(ml.Train)

Call:

mlogit(formula = choice ~ price + time + change + comfort | -1,

data = Tr, method = "nr", print.level = 0)

Frequencies of alternatives:

1 2

0.50324 0.49676

nr method

5 iterations, 0h:0m:0s

g'(-H)^-1g = 0.00014

successive function values within tolerance limits

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

price -0.0673580 0.0033933 -19.8506 < 2.2e-16 ***

time -1.7205514 0.1603517 -10.7299 < 2.2e-16 ***

change -0.3263409 0.0594892 -5.4857 4.118e-08 ***

comfort -0.9457256 0.0649455 -14.5618 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1724.2

All the coefficients are highly significant and have the predicted negative sign (remind
than an increase in the variable comfort implies using a less comfortable class). The
coefficients are not directly interpretable, but dividing them by the price coefficient, we
get monetary values :

R> coef(ml.Train)[-1]/coef(ml.Train)[1]

time change comfort

25.54337 4.84487 14.04028
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We obtain the value of 26 euros for an hour of traveling, 5 euros for a change and 14
euros to access a more comfortable class.

The second example use the Fishing data. It illustrates the multi-part formula interface
to describe the model, and the fact that it is not necessary to transform the data set
using mlogit.data before the estimation, i.e. instead of using :

R> Fish <- mlogit.data(Fishing, shape="wide", varying=2:9, choice="mode")

R> ml.Fish <- mlogit(mode~price | income | catch, Fish)

it is possible to use mlogit with the original data.frame and the relevant arguments that
will be internally passed to mlogit.data :

R> ml.Fish <- mlogit(mode~price | income | catch, Fishing, shape = "wide", varying = 2:9)

R> summary(ml.Fish)

Call:

mlogit(formula = mode ~ price | income | catch, data = Fishing,

shape = "wide", varying = 2:9, method = "nr", print.level = 0)

Frequencies of alternatives:

beach boat charter pier

0.11337 0.35364 0.38240 0.15059

nr method

7 iterations, 0h:0m:0s

g'(-H)^-1g = 2.54E-05

successive function values within tolerance limits

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

boat:(intercept) 8.4184e-01 2.9996e-01 2.8065 0.0050080 **

charter:(intercept) 2.1549e+00 2.9746e-01 7.2443 4.348e-13 ***

pier:(intercept) 1.0430e+00 2.9535e-01 3.5315 0.0004132 ***

price -2.5281e-02 1.7551e-03 -14.4046 < 2.2e-16 ***

boat:income 5.5428e-05 5.2130e-05 1.0633 0.2876612

charter:income -7.2337e-05 5.2557e-05 -1.3764 0.1687088

pier:income -1.3550e-04 5.1172e-05 -2.6480 0.0080977 **

beach:catch 3.1177e+00 7.1305e-01 4.3724 1.229e-05 ***

boat:catch 2.5425e+00 5.2274e-01 4.8638 1.152e-06 ***

charter:catch 7.5949e-01 1.5420e-01 4.9254 8.417e-07 ***

pier:catch 2.8512e+00 7.7464e-01 3.6807 0.0002326 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Log-Likelihood: -1199.1

McFadden R^2: 0.19936

Likelihood ratio test : chisq = 597.16 (p.value = < 2.22e-16)

Several methods can be used to extract some results from the estimated model. fitted
returns the predicted probabilities for the outcome or for all the alternatives if outcome = FALSE.

R> head(fitted(ml.Fish))

1.beach 2.beach 3.beach 4.beach 5.beach 6.beach

0.3114002 0.4537956 0.4567631 0.3701758 0.4763721 0.4216448

R> head(fitted(ml.Fish, outcome=FALSE))

beach boat charter pier

[1,] 0.09299769 0.5011740 0.3114002 0.09442817

[2,] 0.09151070 0.2749292 0.4537956 0.17976449

[3,] 0.01410358 0.4567631 0.5125571 0.01657625

[4,] 0.17065868 0.1947959 0.2643696 0.37017585

[5,] 0.02858215 0.4763721 0.4543225 0.04072324

[6,] 0.01029791 0.5572463 0.4216448 0.01081103

Finally, two further arguments can be usefully used while using mlogit

• reflevel indicates which alternative is the “reference” alternative, i.e. the one for
which the coefficients are 0,

• altsubset indicates a subset on which the estimation has to be performed ; in this
case, only the lines that correspond to the selected alternatives are used and all the
observations which correspond to choices for unselected alternatives are removed :

R> mlogit(mode~price | income | catch, Fish, reflevel='charter',
+ alt.subset=c('beach', 'pier', 'charter'))

Call:

mlogit(formula = mode ~ price | income | catch, data = Fish, alt.subset = c("beach", "pier", "charter"), reflevel = "charter", method = "nr", print.level = 0)

Coefficients:

beach:(intercept) pier:(intercept) price beach:income

-1.9952e+00 -9.4859e-01 -2.8343e-02 2.7184e-05

pier:income charter:catch beach:catch pier:catch

-1.0359e-04 1.1719e+00 3.2090e+00 2.8101e+00
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2.8. The rank-ordered logit model

Sometimes, in stated-preference surveys, the respondents are asked to give the full rank of
their preference for all the alternative, and not only the prefered alternative. The relevant
model for this kind of data is the rank-ordered logit model, which can be estimated as
a standard multinomial logit model if the data is reshaped correctly6

The ranking can be decomposed in a series of choices of the best alternative within a
decreasing set of available alternatives. For example, with 4 alternatives, the probability
that the ranking would be 3-1-4-2 can be writen as follow :

• alternative 3 is in the first position, the probability is then eβ
>x3

eβ
>x1+eβ

>x2+eβ
>x3+eβ

>x4
,

• alternative 1 is in second position, the relevant probability is the logit probability

that 1 is the chosen alternative in the set of alternatives (1-2-4) : eβ
>x1

eβ
>x1+eβ

>x2+eβ
>x4

,

• alternative 4 is in third position, the relevant probability is the logit probability

that 4 is the chosen alternative in the set of alternatives (2-4) : eβ
>x4

eβ
>x2+eβ

>x4
,

• the probability of the full ranking is then simply the product of these 3 probabilities.

This model can therefore simply be fitted as a multinomial logit model ; the ranking for
one individual amoung J alternatives is writen as J − 1 choices among J, J − 1, . . . , 2
alternatives.

The estimation of the rank-ordered logit model is illustrated using the Game data
set˜Fok, Paap, and van Dijk (2010). Respondents are asked to rank 6 gaming plat-
forms. The covariates are a dummy own which indicates whether a specific platform
is curently owned, the age of the respondent (age) and the number of hours spent on
gaming per week (hours). The data set is available in wide (game) and long (game2)
format. In wide format, the consists on J columns which indicate the ranking of each
alternative.

R> data("Game", package = "mlogit")

R> data("Game2", package = "mlogit")

R> head(Game,2)

ch.Xbox ch.PlayStation ch.PSPortable ch.GameCube ch.GameBoy ch.PC own.Xbox

1 2 1 3 5 6 4 0

2 4 2 3 5 6 1 0

own.PlayStation own.PSPortable own.GameCube own.GameBoy own.PC age hours

1 1 0 0 0 1 33 2.00

2 1 0 0 0 1 19 3.25

6see for example Beggs, Cardell, and Hausman (1981), Chapman and Staelin (1982) and Hausman
and Ruud (1987).
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R> head(Game2, 7)

age hours platform ch own chid

1 33 2.00 GameBoy 6 0 1

2 33 2.00 GameCube 5 0 1

3 33 2.00 PC 4 1 1

4 33 2.00 PlayStation 1 1 1

5 33 2.00 PSPortable 3 0 1

6 33 2.00 Xbox 2 0 1

7 19 3.25 GameBoy 6 0 2

R> nrow(Game)

[1] 91

R> nrow(Game2)

[1] 546

Note that Game contains 91 rows (there are 91 individuals) and that Game2 contains
546 rows (91 individuals times 6 alternatives)

To use mlogit.data, the ranked should TRUE :

R> G <- mlogit.data(Game2, shape="long", choice="ch", alt.var='platform', ranked=TRUE)

R> G <- mlogit.data(Game, shape="wide", choice="ch", varying=1:12, ranked=TRUE)

R> head(G)

age hours alt own chid ch

1.GameBoy 33 2 GameBoy 0 1 FALSE

1.GameCube 33 2 GameCube 0 1 FALSE

1.PC 33 2 PC 1 1 FALSE

1.PSPortable 33 2 PSPortable 0 1 FALSE

1.PlayStation 33 2 PlayStation 1 1 TRUE

1.Xbox 33 2 Xbox 0 1 FALSE

R> nrow(G)

[1] 1820

Note that the choice variable is now a logical variable and that the number of row is
now 1820 (91 individuals ×(6 + 5 + 4 + 3 + 2) alternatives).

Using PC as the reference level, we can then reproduce the results of the original reference
:
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R> summary(mlogit(ch~own|hours+age, G, reflevel="PC"))

Call:

mlogit(formula = ch ~ own | hours + age, data = G, reflevel = "PC",

method = "nr", print.level = 0)

Frequencies of alternatives:

PC GameBoy GameCube PSPortable PlayStation Xbox

0.17363 0.13846 0.13407 0.17363 0.18462 0.19560

nr method

5 iterations, 0h:0m:0s

g'(-H)^-1g = 6.74E-06

successive function values within tolerance limits

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

GameBoy:(intercept) 1.570379 1.600251 0.9813 0.3264288

GameCube:(intercept) 1.404095 1.603483 0.8757 0.3812185

PSPortable:(intercept) 2.583563 1.620778 1.5940 0.1109302

PlayStation:(intercept) 2.278506 1.606986 1.4179 0.1562270

Xbox:(intercept) 2.733774 1.536098 1.7797 0.0751272 .

own 0.963367 0.190396 5.0598 4.197e-07 ***

GameBoy:hours -0.235611 0.052130 -4.5197 6.193e-06 ***

GameCube:hours -0.187070 0.051021 -3.6665 0.0002459 ***

PSPortable:hours -0.233688 0.049412 -4.7294 2.252e-06 ***

PlayStation:hours -0.129196 0.044682 -2.8915 0.0038345 **

Xbox:hours -0.173006 0.045698 -3.7858 0.0001532 ***

GameBoy:age -0.073587 0.078630 -0.9359 0.3493442

GameCube:age -0.067574 0.077631 -0.8704 0.3840547

PSPortable:age -0.088669 0.079421 -1.1164 0.2642304

PlayStation:age -0.067006 0.079365 -0.8443 0.3985154

Xbox:age -0.066659 0.075205 -0.8864 0.3754227

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -516.55

McFadden R^2: 0.36299

Likelihood ratio test : chisq = 588.7 (p.value = < 2.22e-16)

3. Relaxing the iid hypothesis
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With hypothesis 1 and 3, the error terms are iid (identically and independently dis-
tributed), i.e. not correlated and homoscedastic. Extensions of the basic multinomial
logit model have been proposed by relaxing one of these two hypothesis while maintaining
the second hypothesis of Gumbell distribution.

3.1. The heteroskedastic logit model

The heteroskedastic logit model was proposed by Bhat (1995).

The probability that Ul > Uj is :

P (εj < Vl − Vj + εl) = e−e
−

(Vl−Vj+εl)
θj

which implies the following conditional and unconditional probabilities

(Pl | εl) =
∏
j 6=l

e−e
−

(Vl−Vj+εl)
θj

(11)

Pl =

∫ +∞

−∞

∏
j 6=l

e−e− (Vl−Vj+εl)
θj

 1

θl
e
− εl
θl e−e

−
εl
θl dεl (12)

We then apply the following change of variable :

u = e
− εl
θl ⇒ du = − 1

θl
e
− εl
θl dεl

The unconditional probability (12) can then be rewritten :

Pl =

∫ +∞

0

∏
j 6=l

e−e−Vl−Vj−θl lnuθj

 e−udu =

∫ +∞

0

e−∑j 6=l e
−
Vl−Vj−θl lnu

θj

 e−udu
There is no closed form for this integral but it can be written the following way :

Pl =

∫ +∞

0
Gle
−udu

with

Gl = e−Al Al =
∑
j 6=l

αj αj = e
−
Vl−Vj−θl lnu

θj

This one-dimensional integral can be efficiently computed using a Gauss quadrature
method, and more precisely the Gauss-Laguerre quadrature method :
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∫ +∞

0
f(u)e−udu =

∑
t

f(ut)wt

where ut and wt are respectively the nodes and the weights.

Pl =
∑
t

Gl(ut)wt

∂Gl
∂βk

=
∑
j 6=l

αj
θj

(xlk − xjk)Gl

∂Gl
∂θl

= − lnu
∑
j 6=l

αj
θj
Gl

∂Gl
∂θj

= lnαj
αj
θj
Gl

To illustrate the estimation of the heteroscedastic logit model, we use the data used by
(Bhat 1995). This data set is called ModeCanada.

R> data("ModeCanada", package = "mlogit")

As done in the article, we first restrict the sample to the user who don’t choose the bus
and choose a mode among the four modes available (train, air, bus and car).

R> busUsers <- with(ModeCanada, case[choice == 1 & alt == 'bus'])
R> Bhat <- subset(ModeCanada, !case %in% busUsers & alt != 'bus' & nchoice == 4)

R> Bhat$alt <- Bhat$alt[drop = TRUE]

R> Bhat <- mlogit.data(Bhat, shape='long', chid.var = 'case',
+ alt.var = 'alt', choice='choice',
+ drop.index=TRUE)

R>

This restricts the sample to 2769 users.

R> ml.MC <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, Bhat, reflevel = 'car')
R> hl.MC <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, Bhat, reflevel = 'car', heterosc = TRUE)

R> summary(hl.MC)

Call:

mlogit(formula = choice ~ freq + cost + ivt + ovt | urban + income,

data = Bhat, reflevel = "car", heterosc = TRUE)
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Frequencies of alternatives:

car train air

0.45757 0.16721 0.37523

bfgs method

10 iterations, 0h:0m:4s

g'(-H)^-1g = 2.89E-07

gradient close to zero

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

train:(intercept) 0.6783934 0.3327626 2.0387 0.04148 *

air:(intercept) 0.6567544 0.4681631 1.4028 0.16067

freq 0.0639247 0.0049168 13.0014 < 2.2e-16 ***

cost -0.0269615 0.0042831 -6.2948 3.078e-10 ***

ivt -0.0096808 0.0010539 -9.1859 < 2.2e-16 ***

ovt -0.0321655 0.0035930 -8.9523 < 2.2e-16 ***

train:urban 0.7971316 0.1207392 6.6021 4.054e-11 ***

air:urban 0.4454726 0.0821609 5.4220 5.895e-08 ***

train:income -0.0125979 0.0039942 -3.1541 0.00161 **

air:income 0.0188600 0.0032159 5.8646 4.503e-09 ***

sp.train 1.2371829 0.1104610 11.2002 < 2.2e-16 ***

sp.air 0.5403239 0.1118353 4.8314 1.356e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1838.1

McFadden R^2: 0.35211

Likelihood ratio test : chisq = 1998 (p.value = < 2.22e-16)

The results obtained by Bhat (1995) can’t be exactly reproduced because he uses some
weights that are not available in the data set. However, we obtain very close values for
the two estimated scale parameters for the train sp.train and for the air mode sp.air.

The second example uses the TravelMode data set and reproduces the first column of
table 23.28 page 855 of Greene (2008).

R> data("TravelMode",package="AER")

R> TravelMode <- mlogit.data(TravelMode,choice="choice",shape="long",

+ alt.var="mode",chid.var="individual")

R> TravelMode$avinc <- with(TravelMode,(mode=='air')*income)
R> ml.TM <- mlogit(choice ~ wait + gcost + avinc, TravelMode,

+ reflevel = "car")

R> hl.TM <- mlogit(choice ~ wait + gcost + avinc, TravelMode,
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+ reflevel = "car", heterosc = TRUE)

R> summary(hl.TM)

Call:

mlogit(formula = choice ~ wait + gcost + avinc, data = TravelMode,

reflevel = "car", heterosc = TRUE)

Frequencies of alternatives:

car air train bus

0.28095 0.27619 0.30000 0.14286

bfgs method

43 iterations, 0h:0m:2s

g'(-H)^-1g = 3.77E-07

gradient close to zero

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

air:(intercept) 7.832450 10.950706 0.7152 0.4745

train:(intercept) 7.171867 9.135295 0.7851 0.4324

bus:(intercept) 6.865775 8.829608 0.7776 0.4368

wait -0.196843 0.288274 -0.6828 0.4947

gcost -0.051562 0.069444 -0.7425 0.4578

avinc 0.040253 0.060680 0.6634 0.5071

sp.air 4.024020 5.977821 0.6732 0.5008

sp.train 3.854208 6.220456 0.6196 0.5355

sp.bus 1.648749 2.826916 0.5832 0.5597

Log-Likelihood: -195.66

McFadden R^2: 0.31047

Likelihood ratio test : chisq = 176.2 (p.value = < 2.22e-16)

Note that the ranking of the scale parameters differs from the previous example. In
particular, the error of the air utility has the largest variance as it has the smallest one
in the previous example.

The standard deviations print at the end of table 23.28 are obtained by multiplying the
scale parameters by π/

√
6 :

R> c(coef(hl.TM)[7:9], sp.car = 1)*pi/sqrt(6)

sp.air sp.train sp.bus sp.car

5.161007 4.943214 2.114603 1.282550
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Note that the standard deviations of the estimated scale parameters are very high, which
means that they are poorly identified.

3.2. The nested logit model

The nested logit model was first proposed by McFadden (1978). It is a generalization
of the multinomial logit model that is based on the idea that some alternatives may
be joined in several groups (called nests). The error terms may then present some
correlation in the same nest, whereas error terms of different nests are still uncorrelated.

We suppose that the alternatives can be put into M different nests. This implies the
following multivariate distribution for the error terms.

exp

− M∑
m=1

 ∑
j∈Bm

e−εj/λm

λm


The marginal distributions of the εs are still univariate extreme value, but there is now
some correlation within nests. 1−λm is a measure of the correlation, i.e. λm = 1 implies
no correlation. It can then be shown that the probability of choosing alternative j that
belongs to the nest l is :

Pj =
eVj/λl

(∑
k∈Bl e

Vk/λl
)λl−1

∑M
m=1

(∑
k∈Bm e

Vk/λm
)λm

and that this model is compatible with the random utility maximisation hypothesis if
all the nest elasticities are in the 0− 1 interval.

Let us now write the deterministic part of the utility of the alternative j as the sum of
two terms : the first one being specific to the alternative and the second one to the nest
it belongs to :

Vj = Zj +Wl

We can then rewrite the probabilities as follow :

Pj =
e(Zj+Wl)/λl∑

k∈Bl e
(Zk+Wl)/λl

×

(∑
k∈Bl e

(Zk+Wl)/λl
)λl

∑M
m=1

(∑
k∈Bm e

(Zk+Wm)/λm
)λm

Pj =
eZj/λl∑

k∈Bl e
Zk/λl

×

(∑
k∈Bl e

(Zk+Wl)/λl
)λl

∑M
m=1

(∑
k∈Bm e

(Zk+Wm)/λm
)λm

∑
k∈Bl

e(Zk+Wl)/λl

λl =

eWl/λl
∑
k∈Bl

eZk/λl

λl = eWl+λlIl
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with Il = ln
∑
k∈Bl e

Zk/λl which is often called the inclusive value or the inclusive utility.

We then can write the probability of choosing alternative j as :

Pj =
eZj/λl∑

k∈Bl e
Zk/λl

× eWl+λlIl∑M
m=1 e

Wm+λmIm

The first term Pj|l is the conditional probability of choosing alternative j if the nest l
is chosen. It is often referred as the lower model. The second term Pl is the marginal
probability of choosing the nest l and is referred as the upper model. Wm + λmIm can
be interpreted as the expected utility of choosing the best alternative of the nest m,
Wm being the expected utility of choosing an alternative in this nest (whatever this
alternative is) and λmIm being the expected extra utility he receives by being able to
choose the best alternative in the nest. The inclusive values links the two models. It is
then straightforward to show that IIA applies within nests, but not for two alternatives
in different nests.

A slightly different version of the nested logit model (Daly 1987) is often used, but is
not compatible with the random utility maximization hypothesis. Its difference with the
previous expression is that the deterministic parts of the utility for each alternative is
not divided by the nest elasticity :

Pj =
eVj

(∑
k∈Bl e

Vk
)λl−1

∑M
m=1

(∑
k∈Bm e

Vk
)λm

The differences between the two versions have been discussed in Koppelman and Wen
(1998), Heiss (2002) and Hensher and Greene (2002).

The gradient is, for the first version of the model and denoting Nm =
∑
k∈Bm e

Vk/λm :



∂ lnPj
∂β =

xj
λl

+ λl−1
λl

1
Nl

∑
k∈Bl e

Vk/λlxk − 1∑
m
Nλm
m

∑
mN

λm−1
m

∑
k∈Bm e

Vk/λmxk
∂ lnPj
∂λl

= −Vj
λ2
l

+ lnNl − λl−1
λ2
l

1
Nl

∑
k∈Bl Vke

Vk/λl

− N
λl
l∑

m
Nλm
m

(
lnNl − 1

λlNl

∑
k∈Bl Vke

Vk/λl
)

∂ lnPj
∂λm

= − Nλm
m∑

m
Nλm
m

(
lnNm − 1

λmNm

∑
k∈Bm Vke

Vk/λm
)

Denoting Pj|l = eVj/λl
Nl

the conditional probability of choosing alternative j if nest l is

chosen, Pl =
N
λl
l∑

m
Nλm
m

the probability of choosing nest l, x̄l =
∑
k∈Bl Pk|lxk the weight

average value of x in nest l, x̄ =
∑M
m=1 Pmx̄m the weight average of x for all the nests

and V̄l =
∑
k∈Bl Pk|lVk
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∂ lnPj
∂β = 1

λl
[xj − (1− λl)x̄l]− x̄

∂ lnPj
∂λl

= − 1
λ2
l

[
Vj − λ2

l lnNl − (1− λl)V̄l
]
− Pl

λ2
l

[
λ2
l lnNl − λlV̄l

]
∂ lnPj
∂λm

= Pm
λm

[
V̄m − λm lnNm

]


∂ lnPj
∂β =

xj−{(1−λl)x̄l+λlx̄}
λl

∂ lnPj
∂λl

= −Vj−{λl(1−Pl)λl lnNl+(1−λl(1−Pl))V̄l}
λ2
l

∂ lnPj
∂λm

= Pm
λm

[
V̄m − λm lnNm

]
For the unscaled version, the gradient is :


∂ lnPj
∂β = xj − (1− λl)x̄l −

∑
m λmPmx̄m

∂ lnPj
∂λl

= (1− Pl) lnNl
∂ lnPj
∂λm

= −Pm lnNm

Until now, we have supposed that every alternative belongs to one and only one nest.
If some alternatives belong to several nests, we get an overlapping nests model. In this
case, the notations should be slightly modified :

Pj =

∑
l|j∈Bl e

Vj/λlNλl−1
l∑

mN
λm
m

Pj =
∑
l|j∈Bl

eVj/λl

Nl

Nλl
l∑

mN
λm
m

=
∑
l|j∈Bl

Pj|lPl


∂ lnPj
∂β =

∑
l|j∈Bl

Pj|lPl
Pj

xj−{(1−λl)x̄l+λlx̄}
λl

∂ lnPj
∂λl

= −Pj|lPl
Pj

Vj−{λl(1−Pj/Pj|l)λl lnNl+(1−λl(1−Pj/Pj|l))V̄l}
λ2
l

∂ lnPj
∂λm

= Pm
λm

[
V̄m − λm lnNm

]
For the unscaled version of the model, the gradient is :


∂ lnPj
∂β =

∑
l|j∈Bl

Pj|lPl
Pj

(xj − (1− λl)x̄l)−
∑
m λmPmx̄m

∂ lnPj
∂λl

= Pl
(
Pjl
Pj
− 1

)
lnNl

∂ lnPj
∂λm

= −Pm lnNm

We illustrate the estimation of the unscaled nested logit model with an example used in
(Greene 2008). The dataset, called TravelMode has already been used. Four transport
modes are available and two nests are considered :

• the ground nest with bus, train and car modes,
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• the fly nest with the air modes.

Note that the second nest is a “degenerate” nest, which means that it contains only one
alternative. In this case, the nest elasticity is difficult to interpret, as it is related to
the degree of correlation of the alternatives within the nests and that there is only one
alternative in this nest. This parameter can only be identified in a very special case :
the use of the unscaled version of the nested logit model with generic variable. This is
exactly the situation considered by (Greene 2008) and presented in the table 21.11 p.
730.

R> data("TravelMode",package="AER")

R> TravelMode <- mlogit.data(TravelMode,choice="choice",shape="long",

+ alt.var="mode",chid.var="individual")

R> TravelMode$avinc <- with(TravelMode,(mode=='air')*income)
R> nl.TM <- mlogit(choice ~ wait + gcost + avinc, TravelMode, reflevel = "car",

+ nests = list(fly = "air", ground = c("train", "bus", "car")),

+ unscaled=TRUE)

R> summary(nl.TM)

Call:

mlogit(formula = choice ~ wait + gcost + avinc, data = TravelMode,

reflevel = "car", nests = list(fly = "air", ground = c("train",

"bus", "car")), unscaled = TRUE)

Frequencies of alternatives:

car air train bus

0.28095 0.27619 0.30000 0.14286

bfgs method

17 iterations, 0h:0m:0s

g'(-H)^-1g = 1.02E-07

gradient close to zero

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

air:(intercept) 6.042373 1.331325 4.5386 5.662e-06 ***

train:(intercept) 5.064620 0.676010 7.4919 6.795e-14 ***

bus:(intercept) 4.096325 0.628870 6.5138 7.328e-11 ***

wait -0.112618 0.011826 -9.5232 < 2.2e-16 ***

gcost -0.031588 0.007434 -4.2491 2.147e-05 ***

avinc 0.026162 0.019842 1.3185 0.18732

iv.fly 0.586009 0.113056 5.1833 2.180e-07 ***

iv.ground 0.388962 0.157904 2.4633 0.01377 *
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -193.66

McFadden R^2: 0.31753

Likelihood ratio test : chisq = 180.21 (p.value = < 2.22e-16)

The second example deals with a choice of a heating mode. The data set is called HC.
There are seven alternatives, four of them provide also cooling : gaz central with cooling
gcc, electric central with cooling ecc, electric room with cooling erc and heat pump
with cooling hpc ; the other three provide only heating, these are electric central ec,
electric room er and gaz central gc.

R> data("HC", package = "mlogit")

R> HC <- mlogit.data(HC, varying = c(2:8, 10:16), choice = "depvar", shape = "wide")

R> head(HC)

depvar icca occa income alt ich och chid

1.ec FALSE 27.28 2.95 20 ec 24.50 4.09 1

1.ecc FALSE 27.28 2.95 20 ecc 7.86 4.09 1

1.er FALSE 27.28 2.95 20 er 7.37 3.85 1

1.erc TRUE 27.28 2.95 20 erc 8.79 3.85 1

1.gc FALSE 27.28 2.95 20 gc 24.08 2.26 1

1.gcc FALSE 27.28 2.95 20 gcc 9.70 2.26 1

icca and occa are the investment and the operating cost of the cooling part of the
system. This is only relevant for the cooling modes and therefore we have to set the
value to 0 for non-cooling modes.

R> cooling.modes <- HC$alt %in% c("gcc", "ecc", "erc","hpc")

R> HC$icca[!cooling.modes] <- HC$occa[!cooling.modes] <- 0

We now estimate a nested logit model with two nests : the cooling/non-cooling systems
:

R> ml.HC <- mlogit(depvar~occa+icca+och+ich, HC)

R> nl.HC <- mlogit(depvar~occa+icca+och+ich, HC,

+ nests = list(cooling = c('ecc', 'erc', 'gcc', 'hpc'),
+ noncool = c('ec', 'gc', 'er')))
R> summary(nl.HC)

Call:

mlogit(formula = depvar ~ occa + icca + och + ich, data = HC,
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nests = list(cooling = c("ecc", "erc", "gcc", "hpc"), noncool = c("ec",

"gc", "er")))

Frequencies of alternatives:

ec ecc er erc gc gcc hpc

0.004 0.016 0.032 0.004 0.096 0.744 0.104

bfgs method

18 iterations, 0h:0m:0s

g'(-H)^-1g = 2.24E-07

gradient close to zero

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

ecc:(intercept) 2.171367 3.401923 0.6383 0.52329

er:(intercept) -2.455199 1.071462 -2.2914 0.02194 *

erc:(intercept) 1.756250 3.547708 0.4950 0.62057

gc:(intercept) -0.208090 0.469091 -0.4436 0.65733

gcc:(intercept) 2.234177 3.383645 0.6603 0.50907

hpc:(intercept) 1.272654 3.618232 0.3517 0.72504

occa -0.966387 0.708161 -1.3646 0.17237

icca -0.051249 0.081461 -0.6291 0.52927

och -0.868681 0.445484 -1.9500 0.05118 .

ich -0.205005 0.090851 -2.2565 0.02404 *

iv.cooling 0.333827 0.172073 1.9400 0.05238 .

iv.noncool 0.328934 0.212062 1.5511 0.12087

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -188.03

McFadden R^2: 0.16508

Likelihood ratio test : chisq = 74.354 (p.value = 5.2125e-14)

The two nest elasticities are about 0.3, which implies a correlation of 0.7, which is quite
high. The two nest elasticities are very close to each other, and it is possible to enforce
the equality by updating the model with the argument un.nest.el set to TRUE.

R> nl.HC.u <- update(nl.HC, un.nest.el = TRUE)

3.3. The general extreme value model

Derivation of the general extreme value model
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McFadden (1978) developed a general model that suppose that the join distribution of
the error terms follow a a multivariate extreme value distribution. Let G be a function
with J arguments yj ≥ 0. G has the following characteristics :

i) it is non negative G(y1, . . . , yJ) ≥ 0 ∀j ,

ii) it is homogeneous of degree 1 in all its arguments G(λy1, . . . λyJ) = λG(y1, . . . , yJ),

iii) for all its argument, limyj→+∞ = G(y1, . . . yJ) = +∞,

iv) for distinct arguments, ∂kG
∂yi,...,yj

is non-negative if k is odd and non-positive if k is
even.

Assume now that the joint cumulative distribution of the error terms can be written :

F (ε1, ε2, . . . , εJ) = exp
(
−G

(
e−ε1 , e−ε2 , . . . , e−εJ

))
We first show that this is a multivariate extreme value distribution. This implies :

1. if F is a joint cumulative distribution of probability, for any limεj⇒−∞ F (ε1 . . . εJ) =
0,

2. if F is a joint cumulative distribution of probability, limε1,...εJ→+∞ F (ε1 . . . εJ) = 1,

3. all the cross-derivates of any order of F should be non-negative,

4. if F is a multivariate extreme value distribution, the marginal distribution of any
εj , which is limεk→+∞∀k 6=j F (ε1 . . . εJ) should be an extreme value distribution.

For point 1, if εj → −∞, yj → +∞, G→ +∞ and then F → 0.

For point 2, if (ε1, . . . , εJ)→ +∞, G→ 0 and then F → 1.

For point 3, let denote7 :

Qk = Qk−1Gk −
∂Qk−1

∂yk
and Q1 = G1

Qk is a sum of signed terms that are products of cross derivatives of G of various order.
If each term of Qk−1 are non-negative, so is Qk−1Gk (from iv, the first derivatives are

non-negative. Moreover “each term in
∂Qk−1

∂yk
is non positive, since one of the derivatives

within each term has increased in order, changing from even to odd or vice-versa, with
a hypothesized change in sign (hypothesis iv). Hence each term in Qk is non negative
and, by induction, Qk is non-negative for k = 1, 2, . . . J .

Suppose that the k − 1-order cross-derivative of F can be written :

7cited from McFadden (1978).
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∂k−1F

∂ε1 . . . ∂εk−1
= e−ε1 . . . e−εkQk−1F

Then , the k-order derivative is :

∂kF

∂ε1 . . . ∂εk
= e−ε1 . . . e−εkQkF

Q1 = G1 is non-negative, so are Q2, Q3, . . . Qk and therefore all the cross-derivatives of
any order are non-negatives.

To demonstrate the fourth point, we compute the marginal cumulative distribution of εl
which is :

F (εl) = lim
εj→+∞∀j 6=l

F (ε1, . . . , εl, . . . εJ) = exp
(
−G

(
0, . . . , e−εl , . . . , 0

))
with G being homogeneous of degree one, we have :

G
(
0, . . . , e−εl , . . . , 0

)
= ale

−εl

with al = G(0, . . . , 1, . . . , 0). The marginal distribution of εl is then :

F (εl) = exp
(
−ale−εl

)
which is an uni-variate extreme value distribution.

We note compute the probabilities of choosing an alternative :

We denote Gl the derivative of G respective to the lth argument. The derivative of F
respective to the εl is then :

Fl(ε1, ε2, . . . , εJ) = e−εlGl
(
e−ε1 , e−ε2 , . . . , e−εJ

)
exp

(
−G

(
e−ε1 , e−ε2 , . . . , e−εJ

))
which is the density of εl for given values of the other J − 1 error terms.

The probability of choosing alternative l is the probability that Ul > Uj ∀j 6= l which is
equivalent to εj < Vl − Vj + εl.

This probability is then :

Pl =
∫+∞
−∞ Fl(Vl − V1 + εl, Vl − V2 + εl, . . . , Vl − VJ + εl)dεl

=
∫+∞
−∞ e−εlGl

(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl+VJ−εl

)
× exp

(
−G

(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl+VJ−εl

))
dεl

G being homogeneous of degree one, one can write :

G
(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl+VJ−εl

)
= e−Vle−εl ×G

(
eV1 , eV2 , . . . , eVJ

)
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Homogeneity of degree one implies homogeneity of degree 0 of the first derivative :

Gl
(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl−VJ−εl

)
= Gl

(
eV1 , eV2 , . . . , eVJ

)
The probability of choosing alternative i is then :

Pl =

∫ +∞

−∞
e−εlGl

(
eV1 , eV2 , . . . , eVJ

)
exp

(
−e−εle−VlG

(
eV1 , eV2 , . . . , eVJ

))
dεl

Pl = Gl

∫ +∞

−∞
e−εlexp

(
−e−εle−VlG

)
dεl

Pl = Gl
1

e−VlG

[
exp

(
−e−εle−VlG

)]+∞
−∞

=
Gl

e−VlG

Finally, the probability of choosing alternative i can be written :

Pl =
eVlGl

(
eV1 , eV2 , . . . , eVJ

)
G (eV1 , eV2 , . . . , eVJ )

Among this vast family of models, several authors have proposed some nested logit
models with overlapping nests Koppelman and Wen (2000) and Wen and Koppelman
(2001).

Paired combinatorial logit model

Koppelman and Wen (2000) proposed the paired combinatorial logit model, which is a
nested logit model with nests composed by every combination of two alternatives. This
model is obtained by using the following G function :

G(y1, y2, . . . , yn) =
J−1∑
k=1

J∑
l=k+1

(
y

1/λkl
k + y

1/λkl
l

)λkl
The pcl model is consistent with random utility maximisation if 0 < λkl ≤ 1 and the
multinomial logit results if λkl = 1 ∀(k, l). The resulting probabilities are :

Pl =

∑
k 6=l e

Vl/λlk
(
eVk/λlk + eVl/λlk

)λlk−1

∑J−1
k=1

∑J
l=k+1

(
eVk/λlk + eVl/λlk

)λlk
which can be expressed as a sum of J−1 product of a conditional probability of choosing
the alternative and the marginal probability of choosing the nest :

Pl =
∑
k 6=l

Pl|lkPlk
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with :

Pl|lk =
eVl/λlk

eVk/λlk + eVl/λlk

Plk =

(
eVk/λlk + eVl/λlk

)λlk
∑J−1
k=1

∑J
l=k+1

(
eVk/λlk + eVl/λlk

)λlk
We reproduce the example used by Koppelman and Wen (2000) on the same subset of
the ModeCanada than the one used by Bhat (1995). Three modes are considered and
there are therefore three nests. The elasticity of the train-air nest is set to one. To
estimate this model, one has to set the nests to pcl. All the nests of two alternatives
are then automatically created. The restriction on the nest elasticity for the train-air
nest is performed by using the constPar argument.

R> pcl <- mlogit(choice~freq+cost+ivt+ovt, Bhat, reflevel='car',
+ nests='pcl', constPar=c('iv.train.air'))
R> summary(pcl)

Call:

mlogit(formula = choice ~ freq + cost + ivt + ovt, data = Bhat,

reflevel = "car", nests = "pcl", constPar = c("iv.train.air"))

Frequencies of alternatives:

car train air

0.45757 0.16721 0.37523

bfgs method

16 iterations, 0h:0m:1s

g'(-H)^-1g = 2.08E-07

gradient close to zero

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

train:(intercept) 1.30439316 0.16544227 7.8843 3.109e-15 ***

air:(intercept) 1.99012922 0.35570613 5.5949 2.208e-08 ***

freq 0.06537827 0.00435688 15.0057 < 2.2e-16 ***

cost -0.02448565 0.00316570 -7.7347 1.044e-14 ***

ivt -0.00761538 0.00067374 -11.3032 < 2.2e-16 ***

ovt -0.03223993 0.00237097 -13.5978 < 2.2e-16 ***

iv.car.train 0.42129039 0.08613435 4.8911 1.003e-06 ***

iv.car.air 0.27123320 0.09061319 2.9933 0.00276 **

---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1903

McFadden R^2: 0.32927

Likelihood ratio test : chisq = 1868.3 (p.value = < 2.22e-16)

The generalized nested logit model

Wen and Koppelman (2001) proposed the generalized nested logit model. This model is
obtained by using the following G function :

G(y1, y2, . . . , yn) =
∑
m

 ∑
j∈Bm

(αjmyj)
1/λm

λm

with αjm the allocation parameter which indicates which part of alternative j is assigned
to nest m, with the condition

∑
m αjm = 1 ∀j and λm the logsum parameter for nets m,

with 0 < λm ≤ 1.

The resulting probabilities are :

Pj =

∑
m

[(
αjme

Vj
)1/λm

(∑
k∈Nm

(
αkme

Vk
)1/λm

)λm−1
]

∑
m

(∑
k∈Bm (αkmeVk)1/λm

)λm
which can be expressed as a sum of products of a conditional probability of choosing the
alternative and the marginal probability of choosing the nest :

Pj =
∑
m

Pj|mPm

with :

Pj|m =

(
αjme

Vj
)1/λm

∑
k∈Bm (αkmeVk)1/λm

Pm =

(∑
k∈Nm

(
αkme

Vk
)1/λm

)λm
∑
m

(∑
k∈Bm (αkmeVk)1/λm

)λm

4. The random parameters (or mixed) logit model
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A mixed logit model or random parameters logit model is a logit model for which the
parameters are assumed to vary from one individual to another. It is therefore a model
that takes the heterogeneity of the population into account.

4.1. The probabilities

For the standard logit model, the probabilities are :

Pil =
eβ
′xil∑

j e
β′xij

Suppose now that the coefficients are individual-specific. The probabilities are then :

Pil =
eβ
′
ixil∑

j e
β′ixij

Two strategies of estimation can then be considered :

• estimate the coefficients for each individual in the sample,

• consider the coefficients as random variables.

The first approach is of limited interest, because it would require numerous observations
for each individual and because we are not interested on the value of the coefficients for
a given individual. The second approach leads to the mixed logit model.

The probability that individual i will choose alternative l is :

Pil | βi =
eβ
′
ixil∑

j e
β′ixij

This is the probability for individual i conditional on the vector of individual-specific
coefficients βi. To get the unconditional probability, we have to compute the average of
these conditional probabilities for all the values of βi.

Suppose that Vil = α + βixil, i.e. there is only one individual-specific coefficient and
that the density of βi is f(β, θ), θ being the vector of the parameters of the distribution
of β. The unconditional probability is then :

Pil = E(Pil | βi) =

∫
β
(Pil | β)f(β, θ)dβ

which is a one-dimensional integral that can be efficiently estimated by quadrature meth-
ods.

If Vil = β>i xil where βi is a vector of length K and f(β, θ) is the joint density of the K
individual-specific coefficients, the unconditional probability is :
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Pil = E(Pil | βi) =

∫
β1

∫
β2
. . .

∫
βK

(Pil | β)f(β, θ)dβ1dβ2 . . . dβK

This is a K-dimensional integral which cannot easily estimated by quadrature methods.
In these kind of situations, the only practical method is to use simulations. More pre-
cisely, R draws of the parameters are taken from the distribution of β, the probability is
computed for every draw and the unconditional probability, which is the expected value
of the conditional probabilities is estimated by the average of the R probabilities.

4.2. Panel data

It is often the case, especially with stated preference survey, that we have repeated
observations for the same individuals. This panel dimension can be taken into account
in the mixed logit model. More specifically, we’ll compute one probability for each
individual and this is this probability that is included in the log-likelihood function. For
a given vector of coefficients βi, the probability that alternative l is chosen for the kth
observation of the individual i is :

Pikl =
eβixikl∑
j e

βixikj

The probability for the chosen probability for the kth observation for the individual i is
:

Pik =
∏
l

Pikl
yikl

Finally, the joint probability for the K observations of individual i is :

Pi =
∏
k

∏
l

Pikl
yikl

4.3. Simulations

The probabilities for the random parameter logit are integrals with no closed form. More-
over, the degree of integration is the number of random parameters. In practice, these
models are estimated using simulation techniques, i.e. the expected value is replaced by
an arithmetic mean. More precisely, the computation is done using the following steps :

• make an initial hypothesis about the distribution of the random parameters

• draw R numbers on this distribution,

• for each draw βr, compute the probability : P ril = eβ
rxil∑

j
eβ
rxij

• compute the average of these probabilities : P̄il =
∑n
r=1 Pil/R
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• compute the log-likelihood for these probabilities,

• iterate until the maximum.

Drawing from densities

To estimate a model using simulations, one needs to draw pseudo random numbers from
a specified distribution. For this purpose, what is actually needed is a function that
draws pseudo random numbers from a uniform distribution between 0 and 1. These
numbers are then transformed using the quantile function of the required distribution.

For example, suppose one needs to drawn numbers from the Gumbell distribution. The
cumulative distribution of a Gumbell variable is F (x) = e−e

−x
. The quantile function is

obtained by inverting this function :

⇒ F−1(x) = − ln(− lnx)

and R draws from a Gumbell distribution are obtained by computing F−1(x) for R draws
from the uniform distribution between 0 and 1. This is illustrated on figure˜2.

0.0 0.2 0.4 0.6 0.8 1.0
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3
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(x

)

Figure 2: Uniform to Gumbell deviates
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The problem is that there may not be a good coverage of the relevant interval instead
numerous draws are made. More deterministic methods like Halton draws may be used
instead.

Halton sequence

To generate a Halton sequence, we use a prime (e.g. 3). The sequence is then :

• 0 — 1/3 — 2/3,

• 0+1/9 — 1/3+1/9 — 2/3+1/9 — 0+2/9 — 1/3+2/9 — 2/3+2/9,

• 0+1/27 — 1/3+1/27 — 2/3+1/9+1/27 — 1/3+2/9+1/27 — 2/3+2/9+1/27 —
1/3+1/9+2/27 — 2/3+1/9+2/27 — 1/3+2/9+2/27 — 2/3+2/9+2/27

This Halton sequence is illustrated in figure˜3.
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Figure 3: Halton sequences

The use of Halton sequences for two random coefficients is illustrated in figure˜4.

On figure˜4, one can see that, when using pseudo-random numbers, we have a bad
coverage of the unit square, which means that there are some holes (some portions of
the unit square where there are no observation and some redundancies (some portions
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Figure 4: Halton sequences vs random numbers in two dimensions

of the unit square where there are almost identical observations). The coverage of the
unit square is much better with Halton draws.

Correlation

It is often relevant to introduce correlations between random parameters. This is done
using Choleski decomposition. Let Ω be the covariance matrix of two random parameters.
As a covariance matrix is necessarily positive definite, it can be written Ω = C>C, with
C an upper triangular matrix :

C =

(
c11 c12

0 c22

)

so that :

Ω = C>C =

(
c2

11 c11c12

c11c12 c2
12 + c2

22

)
If c12 = 0, Ω reduces to a diagonal matrix and the remaining two parameters (c11, c22) are
the standard deviations of the two random coefficients. To obtain a couple of correlated
coefficients, one has to post-multiply a matrix of uncorrelated coefficients by the Choleski
matrix.

If V(η1, η2) = I, then the variance of (ν1, ν2) = (η1η2)C is Ω

As an example, suppose that the covariance matrix is :

Ω =

(
0.5 0.8
0.8 2.0

)
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The Choleski matrix is :

C =

(
0.71 1.13

0 0.85

)
Starting with two uncorrelated parameters (η1, η2), we obtain the following two corre-
lated coefficients (ν1, ν2) with covariance matrix Ω :{

ν1 = 0.71η1

ν2 = 1.13η1 + 0.85η2

This situation is illustrated by the figure˜5.
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Figure 5: Correlation

4.4. Application

We use the Train data set to illustrate the estimation of a mixed logit model. The
random parameter logit model is estimated by providing a rpar argument to mlogit. This
argument is a named vector, the names being the random coefficients and the values the
name of the law (for example ’n’ for a normal distribution). R is the number of draws,
halton indicates whether halton draws should be used (NA indicates that default halton
draws are used), panel and correlation are logical values that indicate that the panel
version of the mixed logit model is estimated and that the correlation between random
coefficients is taken into account.

We estimate a model with three random parameters, time, change and comfort. Two
mixed logit models are estimated : Train.mxlc is a correlated model and Train.mxlu is an
uncorrelated model. A basic multinomial model ml is also estimated.
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R> data("Train", package = "mlogit")

R> Tr <- mlogit.data(Train, shape = "wide", varying = 4:11,

+ choice = "choice", sep = "",

+ opposite = c("price", "time", "change", "comfort"),

+ alt.levels=c("choice1", "choice2"), id="id")

R> Train.ml <- mlogit(choice ~ price + time + change + comfort, Tr)

R> Train.mxlc <- mlogit(choice ~ price + time + change + comfort, Tr,

+ panel = TRUE, rpar = c(time = "cn", change = "n", comfort = "ln"),

+ correlation = TRUE, R = 100, halton = NA)

R> Train.mxlu <- update(Train.mxlc, correlation = FALSE)

The summary method supplies the usual table of coefficients, and also some statistics
about the random parameters. Random parameters may be extracted using the func-
tion rpar which take as first argument a mlogit object, as second argument par the
parameter(s) to be extracted and as third argument norm the coefficient (if any) that
should be used for normalization. This is usually the coefficient of the price (taken as a
non random parameter), so that the effects can be interpreted as monetary values. This
function returns a rpar object, and several methods/functions are provided to describe
it :

R> time.value <- rpar(Train.mxlc, "time", norm = "price")

R> summary(time.value)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-Inf 6.643815 25.250344 25.250344 43.856873 Inf

R> med(time.value)

[1] 0.08151964

R> mean(time.value)

[1] 0.08151964

R> stdev(time.value)

[1] 0.08906046

In case of correlated random parameters further functions are provided to analyse the
correlation of the coefficients :

R> cor.mlogit(Train.mxlc)



50 Estimation of multinomial logit models in R : The mlogit Packages

time change comfort

time 1.00000000 -0.02990826 0.3699102

change -0.02990826 1.00000000 0.2484853

comfort 0.36991023 0.24848532 1.0000000

R> cov.mlogit(Train.mxlc)

time change comfort

time 0.007931766 -0.004685441 0.09230148

change -0.004685441 3.094203688 1.22462343

comfort 0.092301480 1.224623430 7.84973058

R> stdev(Train.mxlc)

time change comfort

0.08906046 1.75903487 2.80173706

5. Multinomial Probit

5.1. The model

The multinomial probit is obtained with the same modeling that we used while presenting
the random utility model. The utility of an alternative is still the sum of two components
: Uj = Vj + εj .

but the joint distribution of the error terms is now a multivariate normal with mean 0
and with a matrix of covariance denoted Ω8.

Alternative l is chosen if :
U1 − Ul = (V1 − Vl) + (ε1 − εl) < 0
U2 − Ul = (V2 − Vl) + (ε2 − εl) < 0

...
UJ − Ul = (VJ − Vl) + (εJ − εl) < 0

wich implies, denoting V l
j = Vj − Vl :

εl1 = (ε1 − εl) < −V l
1

εl2 = (ε2 − εl) < −V l
2

...
...

εlJ = (εJ − εl) < −V l
J

8see Hausman and Wise (1978) and Daganzo (1979).
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The initial vector of errors ε are transformed using the following transformation :

εl = M lε

where the transformation matrix M l is a (J − 1)× J matrix obtained by inserting in an

identity matrix a lth column of −1. For example, if J = 4 and l = 3 :

M3 =

 1 0 −1 0
0 1 −1 0
0 0 −1 1


The covariance matrix of the error differences is obtained using the following matrix :

V
(
εl
)

= V
(
M lε

)
= M lV (ε)M l> = M lΩM l>

The probability of choosing l is then :

Pl = P(εl1 < −V l
1 & εl2 < −V l

2 & . . . εlJ < −V l
J) (13)

with the hypothesis of distribution, this writes :

Pl =

∫ −V l1
−∞

∫ −V l2
−∞

. . .

∫ −V lJ
−∞

φ(εl)dεl1dε
l
2 . . . d

l
J (14)

with :

φ
(
εl
)

=
1

(2π)(J−1)/2 | Ωl |1/2
e−

1
2
εlΩl

−1
εl (15)

Two problems arise with this model :

• the first one is that the identified parameters are the elements of Ωl and not of Ω.
We must then carefully investigate the meanings of these elements.

• the second one is that the probability is a J−1 integral, which should be numerically
computed. The relevant strategy in this context is to use simulations.

5.2. Identification

The meaning-full parameters are those of the covariance matrix of the error Ω. For
example, with J = 3 :

Ω =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33
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Ω1 = M1ΩM1> =

(
σ11 + σ22 − 2σ12 σ11 + σ23 − σ12 − σ13

σ11 + σ23 − σ12 − σ13 σ11 + σ33 − 2σ13

)

The overall scale of utility being unidentified, one has to impose the value of one of the
variance, for example the first one is fixed to 1. We then have :

Ω1 =

(
1 σ11+σ23−σ12−σ13

σ11+σ22−2σ12
σ11+σ23−σ12−σ13
σ11+σ22−2σ12

σ11+σ33−2σ13
σ11+σ22−2σ12

)

Therefore, out the 6 structural parameters of the covariance matrix, only 3 can be
identified. Moreover, it’s almost impossible to interpret these parameters.

More generally, with J alternatives, the number of the parameters of the covariance
matrix is (J + 1)× J/2 and the number of identified parameters is J × (J − 1)/2− 1.

5.3. Simulations

Let Ll be the Choleski decomposition of the covariance matrix of the error differences :

Ωl = LlLl
>

This matrix is a lower triangular matrix of dimension (J − 1) :

Ll =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
...

l(J−1)1 l(J−1)2 l(J−1)3 . . . l(J−1)(J−1)


Let η be a vector of standard normal deviates :

η ∼ N(0, I)

Therefore, we have :

V
(
Llη

)
= LlV (η)Ll

>
= LlILl

>
= Ωl

Therefore, if we draw a vector of standard normal deviates η and apply to it this trans-
formation, we get a realization of εl.

This joint probability can be written as a product of conditional and marginal probabil-
ities :
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Pl = P(εl1 < −V l
1 & εl2 < −V l

2 & . . . & εlJ < −V l
J))

= P(εl1 < −V l
1 ))

× P(εl2 < −V l
2 | εl1 < −V l

1 )
× P(εl3 < −V l

3 | εl1 < −V l
1 & εl2 < −V l

2 )
...
× P(εlJ < −V l

J | εl1 < −V l
1 & . . . & εlJ−1 < −V l

J−1))

The vector of error differences deviates is :


εl1
εl2
εl3
...
εlJ

 =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
...

l(J−1)1 l(J−1)2 l(J−1)3 . . . l(J−1)(J−1)

×


η1

η2

η3
...
ηJ




εl1
εl2
εl3
...
εlJ

 =


l11η1

l21η1 + l22η2

l31η1 + l32η2 + l33η3
...
l(J−1)1η1 + l(J−1)2η2 + . . .+ l(J−1)(J−1)ηJ−1


Let’s now investigate the marginal and conditional probabilities :

• the first one is simply the marginal probability for a standard normal deviates,

therefore we have : P(εl1 < −V l
1 ) = Φ

(
− V l1
l11

)

• the second one is, for a given value of η1 equal to Φ

(
−V l2+l21η1

l22

)
. We then have

to compute the mean of this expression for any value of η1 lower than − V l1
l11

. We

then have, denoting φ̄1 the truncated normal density :

P(εl2 < −V l
2 ) =

∫ − V l1
l11

−∞
Φ

(
−V

l
2 + l21η1

l22

)
φ̄1(η1)dη1

• the third one is, for given values of η1 and η2 equal to : Φ

(
−V l3+l31η1+l32η2

l33

)
. We

then have :

P(εl3 < −V l
3 ) =

∫ − V l1
l11

−∞

∫ −V l2+l21η1
l22

−∞
Φ

(
−V

l
3 + l31η1 + l32η2

l33

)
φ̄1(η1)φ̄2(η2)dη1dη2

• and so on.
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This probabilities can easily be simulated by drawing numbers from a truncated normal
distribution.

This so called ghk algorithm9 (for Geweke, Hajivassiliou and Keane who developed this
algorithm) can be described as follow :

1. compute Φ

(
− V l1
l11

)
2. draw a number called ηr1 from a standard normal distribution upper-truncated at

− V l1
l11

and compute Φ

(
−V l2+l21ηr1

l22

)
3. draw a number called ηr2 from a standard normal distribution upper-truncated at

−V l2+l21ηr1
l22

and compute Φ

(
−V l3+l31ηr1+l32ηr2

l33

)
4. . . . draw a number called ηrJ−1 from a standard normal distribution upper-truncated

at −V lJ−1+l(J−1)1η
r
1+...V lJ−1+l(J−1)(J−2)η

r
J−2

l(J−1)(J−1)

5. multiply all these probabilities and get a realization of the probability called P rl .

6. repeat all these steps many times and average all these probabilities ; this average
is an estimation of the probability : P̄l =

∑R
r=1 P

r
l /R.

Several points should be noted concerning this algorithm :

• the utility differences should be computed respective to the chosen alternative for
each individual,

• the Choleski decomposition used should relies on the same covariance matrix of
the errors. One method to attained this goal is to start from a given difference, e.g.
the difference respective with the first alternative. The vector of error difference is

then ε1 and its covariance matrix is Ω1 = L1L1>. To apply a difference respective
with an other alternative l, we construct a matrix called Sl which is obtained by
using a J − 2 identity matrix, adding a first row of 0 and inserting a column of −1

at the l − 1th position. For example, with 4 alternatives and l = 3, we have :

S3 =

 0 −1 0
1 −1 0
0 −1 1


The elements of the choleski decomposition of the covariance matrix is then ob-
tained as follow :

Ωl = SlΩ1Sl
>

= LlLl
>

9see for example Geweke, Keane, and Runkle (1994).
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• to compute draws from a normal distribution truncated at a, the following trick
is used : take a draw µ from a uniform distribution (between 0 and 1) ; then
η = Φ−1 (µΦ(a)) is a draw from a normal distribution truncated at a

5.4. Applications

We use again the Fishing data frame, with only a subset of three alternatives used. The
multinomial probit model is estimated using mlogit with the probit argument equal to
TRUE

R> data("Fishing", package = "mlogit")

R> Fish <- mlogit.data(Fishing, shape="wide", varying=2:9, choice="mode")

R> Fish.mprobit <- mlogit(mode~price | income | catch, Fish, probit = TRUE, alt.subset=c('beach', 'boat','pier'))

R> summary(Fish.mprobit)

Call:

mlogit(formula = mode ~ price | income | catch, data = Fish,

alt.subset = c("beach", "boat", "pier"), probit = TRUE)

Frequencies of alternatives:

beach boat pier

0.18356 0.57260 0.24384

bfgs method

14 iterations, 0h:0m:55s

g'(-H)^-1g = 9.77E-07

gradient close to zero

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

boat:(intercept) 7.2514e-01 3.5809e-01 2.0250 0.0428661 *

pier:(intercept) 6.2393e-01 2.7396e-01 2.2774 0.0227617 *

price -1.2154e-02 1.7697e-03 -6.8681 6.505e-12 ***

boat:income 2.4005e-06 3.6698e-05 0.0654 0.9478448

pier:income -6.5419e-05 4.0832e-05 -1.6022 0.1091198

beach:catch 1.5479e+00 4.3002e-01 3.5995 0.0003188 ***

boat:catch 4.0010e-01 4.1600e-01 0.9618 0.3361595

pier:catch 1.2747e+00 5.5863e-01 2.2819 0.0224968 *

boat.pier 5.4570e-01 4.6263e-01 1.1795 0.2381809

pier.pier 6.9544e-01 2.9294e-01 2.3740 0.0175973 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Log-Likelihood: -478.43

McFadden R^2: 0.32751

Likelihood ratio test : chisq = 465.99 (p.value = < 2.22e-16)

6. Tests

6.1. The three tests

As for all models estimated by maximum likelihood, three testing procedures may be
applied to test hypothesis about models fitted using mlogit. The hypothesis tested define
two models :

• the unconstrained model that doesn’t take these hypothesis into account,

• the constrained model that impose these hypothesis.

This in turns define three principles of tests :

• the Wald test is based only on the unconstrained model,

• the Lagrange multiplier test (or score test) is based only on the constrained model,

• the Likelihood ratio test is based on the comparison of both models.

The three principles of test are better understood using figure˜6.

In this one dimensional setting, the hypothesis is of the form θ = θo, which can be
written f(θ) = θ − θo, with f(θ) = 0 if the hypothesis is unforced. This is the equation
of a straight line on figure˜6 . The constrained model is just θ̂c = θo, i.e. the constrained
model is not estimated. The unconstrained model corresponds to the maximum of the
curve that represents the log-likelihood function.

• The Wald test is based on f(θ̂nc) = Rθ̂nc − q which is depicted by the arrow in
figure˜6. More generally, it is a vector of length J , whose expected value should be
0 if the hypothesis is true : E(Rθ̂nc − q) = Rθ− q. Its variance is : V(Rθ̂nc − q) =

RV(θ̂nc)R
>. (Rθ̂nc− q) ∼ N

(
Rθ − q,RV(θ̂nc)R

>
)
. If the hypothesis are true, the

quadratic form is a chi-squared with J degrees of freedom :

twald = (Rθ̂nc − q)>
(
RV(θ̂nc)R

>
)−1

(Rθ̂nc − q)
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Figure 6: The three tests
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• The Lagrange multiplier is based on the gradient (the slope of the likelihood curve)
evaluated at the constrained model : ∂ lnL

∂θ (θ̂c). Here again, this should be a random
vector with expected value equal to 0 if Ho is true. The variance of the gradient

is : V
(
∂ lnL
∂θ (θ̂c)

)
= E

(
∂2 lnL
∂θ∂θ>

(θ)
)
. ∂ lnL

∂θ (θ̂c) ∼ N(0,E
(
∂2 lnL
∂θ∂θ>

)
). If the hypothesis

are true, the quadratic form is a chi-squared with J degrees of freedom :

tscore =

(
∂ lnL

∂θ
(θ̂c)

)>
V

(
∂ lnL

∂θ
(θ̂c)

)−1 (∂ lnL

∂θ
(θ̂c)

)

• Finally, the likelihood ratio test compares both models. More specifically, the
statistic is twice the value of the log-likelihood for the two models and, if the
hypothesis are true, is a chi-squared with J degrees of freedom :

tlr = 2 (lnLnc − lnLc)

Two of these tests are implemented in the lmtest package (Zeileis and Hothorn 2002)
: waldtest and lrtest. The wald test is also implemented in linearHypothesis from package
car with a fairly different syntax. We provide special methods of waldtest and lrtest

for mlogit objects and we also provide a function for the lagrange multiplier (or score)
test called scoretest.

We’ll see later that the score test is especially useful for mlogit objects when one is
interested in extending the basic multinomial logit model. In this case, the unconstrained
model is much more difficult to estimate than the constrained model which is the basic
multinomial logit model. The score test, which is based on the constrained model is
therefore very simple to compute.

For now, we’ll just demonstrate the use of the testing in the usual setting where the two
models are provided. This can done by passing two fitted models to the testing function,
or just one model and a formula which describes the second model.

We’ve previously estimated the following model :

R> ml.Fish <- mlogit(mode~price | income | catch, Fishing, shape = "wide", varying = 2:9)

The hypothesis that the income doesn’t influence the choice for a fishing mode is a joint
hypothesis that three coefficients are zero. The constrained model can be obtained by
updating the previous model :

R> ml.Fish.c <- update(ml.Fish, . ~ . | . - income | .)

The wald and likelihood ratio tests are then obtained by providing the two models as
arguments :

R> waldtest(ml.Fish, ml.Fish.c)
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Wald test

Model 1: mode ~ price | income | catch

Model 2: mode ~ price | 1 | catch

Res.Df Df Chisq Pr(>Chisq)

1 1171

2 1174 -3 28.613 2.701e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> lrtest(ml.Fish, ml.Fish.c)

Likelihood ratio test

Model 1: mode ~ price | income | catch

Model 2: mode ~ price | 1 | catch

#Df LogLik Df Chisq Pr(>Chisq)

1 11 -1199.1

2 8 -1214.2 -3 30.138 1.291e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> scoretest(ml.Fish.c, ml.Fish)

score test

data: mode ~ price | income | catch

chisq = 29.7103, df = 3, p-value = 1.588e-06

alternative hypothesis: unconstrained model

or just one of them and a formula that describes the second one :

R> lrtest(ml.Fish, . ~ . | . - income | .)

R> lrtest(ml.Fish, mode ~ price | 1 | catch)

R> lrtest(ml.Fish.c, . ~ . | . + income | .)

R> lrtest(ml.Fish.c, mode ~ price | income | catch)

R> waldtest(ml.Fish, . ~ . | . - income | .)

R> waldtest(ml.Fish, mode ~ price | 1 | catch)

R> waldtest(ml.Fish.c, . ~ . | . + income | .)

R> waldtest(ml.Fish.c, mode ~ price | income | catch)

R> scoretest(ml.Fish.c, . ~ . | . + income | .)

R> scoretest(ml.Fish.c, mode ~ price | income | catch)
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6.2. Test of heteroscedasticity

The homoscedascticity hypothesis can be tested using any of the three tests. A particular
convenient syntax is provided in this case. For the likelihood ratio and the wald test,
one can pass only the fitted model as argument. In this case, it is guessed that the
hypothesis that the user wants to test is the homoscedasticity hypothesis. We’ll test
the homoscedasticity hypothesis for the two heteroscedastic models (hl.MC and hl.TM
estimated previously, with the RdModeCanada and the TravelMode and data sets.

R> lrtest(hl.MC, ml.MC)

Likelihood ratio test

Model 1: choice ~ freq + cost + ivt + ovt | urban + income

Model 2: choice ~ freq + cost + ivt + ovt | urban + income

#Df LogLik Df Chisq Pr(>Chisq)

1 12 -1838.1

2 10 -1841.6 -2 6.8882 0.03193 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> waldtest(hl.MC, heterosc = FALSE)

Wald test

data: homoscedasticity

chisq = 25.1955, df = 2, p-value = 3.38e-06

or, more simply :

R> lrtest(hl.MC)

R> waldtest(hl.MC)

The wald test can also be computed using the linearHypothesis function from the car
package (Fox and Weisberg 2010) :

R> library("car")

R> linearHypothesis(hl.MC, c('sp.air=1', 'sp.train=1'))

Linear hypothesis test

Hypothesis:

sp.air = 1

sp.train = 1
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Model 1: restricted model

Model 2: choice ~ freq + cost + ivt + ovt | urban + income

Res.Df Df Chisq Pr(>Chisq)

1 2759

2 2757 2 25.195 3.38e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For the score test, we provide the constrained model as argument, which is the stan-
dard multinomial logit model and the supplementary argument which defines the un-
constrained model, which is in this case heterosc = TRUE.

R> scoretest(ml.MC, heterosc = TRUE)

score test

data: heterosc = TRUE

chisq = 9.4883, df = 2, p-value = 0.008703

alternative hypothesis: heteroscedastic model

The homoscedasticity hypothesis is strongly rejected using any of the three tests.

For the hl.TM model, the standard deviations of the estimated scale parameters are very
high, which means that they are poorly identified. This is confirmed by the fact that
the homoscedasticity hypothesis is not rejected :

R> c(wald = waldtest(hl.TM)$statistic,

+ lr = lrtest(hl.TM)$Chisq[2],

+ score = scoretest(ml.TM, heterosc = TRUE)$statistic)

wald.chisq lr score.chisq

3.635586 6.935712 21.565985

6.3. Test about the nesting structure

For the nested logit models, two tests are of particular interest :

• the test of no nests, which means that all the nest elasticities are equal to 1,

• the test of unique nest elasticities, which means that all the nest elasticities are
equal to each other.
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To illustrate the use of these tests, we’ll use the nl.HC model estimated using the HC data
set.

For the test of no nests, the nested model is provided as the unique argument for the lrtests
and the waldtest function. For the scoretest, the constrainted model (i.e. the multinomial
logit model is provided as the first argument and the second argument is nests, which
describes the nesting structure that one wants to test.

R> lrtest(nl.HC)

Likelihood ratio test

Model 1: depvar ~ occa + icca + och + ich

Model 2: depvar ~ occa + icca + och + ich

#Df LogLik Df Chisq Pr(>Chisq)

1 12 -188.03

2 10 -192.88 -2 9.6853 0.007886 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> waldtest(nl.HC)

Wald test

data: no nests

chisq = 15.3069, df = 2, p-value = 0.0004744

R> scoretest(ml.HC, nests = list(cooling = c('ecc', 'erc', 'gcc', 'hpc'),
+ noncool = c('ec', 'gc', 'er')))

score test

data: nests = list(cooling = c('ecc','erc','gcc','hpc'), noncool = c('ec','gc','er'))
chisq = 15.1762, df = 2, p-value = 0.0005065

alternative hypothesis: nested model

The wald test can also be performed using the linearHypothesis function :

R> linearHypothesis(nl.HC, c("iv.cooling=1", "iv.noncool=1"))

Linear hypothesis test

Hypothesis:

iv.cooling = 1
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iv.noncool = 1

Model 1: restricted model

Model 2: depvar ~ occa + icca + och + ich

Res.Df Df Chisq Pr(>Chisq)

1 240

2 238 2 15.307 0.0004744 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The three tests reject the null hypothesis of no correlation at the 1% level. The two nests
elasticities being very closed, we’d like to test the equality between both elasticities. This
can be performed using the three tests. For the score test, we provide the constrained
model that is called nl.HC.u

R> lrtest(nl.HC,nl.HC.u)

Likelihood ratio test

Model 1: depvar ~ occa + icca + och + ich

Model 2: depvar ~ occa + icca + och + ich

#Df LogLik Df Chisq Pr(>Chisq)

1 12 -188.03

2 11 -188.03 -1 0.0012 0.9723

R> waldtest(nl.HC, un.nest.el = TRUE)

Wald test

data: unique nest elasticity

chisq = 0.0011, df = 1, p-value = 0.9739

R> scoretest(nl.HC.u, un.nest.el = FALSE)

score test

data: un.nest.el = FALSE

chisq = 0.0014, df = 1, p-value = 0.9702

alternative hypothesis: unique nest elasticity

R> linearHypothesis(nl.HC, "iv.cooling=iv.noncool")
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Linear hypothesis test

Hypothesis:

iv.cooling - iv.noncool = 0

Model 1: restricted model

Model 2: depvar ~ occa + icca + och + ich

Res.Df Df Chisq Pr(>Chisq)

1 239

2 238 1 0.0011 0.9739

6.4. Test of random parameters

The three tests can be applied to test the specification of the model, namely the pres-
ence of random coefficients and their correlation. Actually, three nested models can be
considered :

• a model with no random effects,

• a model with random but uncorrelated effects,

• a model with random and correlated effects.

These three models have been previously estimated for the example based on the Train
data set under the names of Train.ml, Train.mxlu and Train.mxlc.

We first present the three tests of no random-uncorrelated effects.

R> lrtest(Train.mxlu, Train.ml)

Likelihood ratio test

Model 1: choice ~ price + time + change + comfort

Model 2: choice ~ price + time + change + comfort

#Df LogLik Df Chisq Pr(>Chisq)

1 8 -1551.2

2 5 -1723.8 -3 345.36 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> waldtest(Train.mxlu)

Wald test

data: no random effects

chisq = 275.1466, df = 3, p-value < 2.2e-16



Yves Croissant 65

R> scoretest(Train.ml, rpar = c(time = "n", change = "n", comfort = "n"), R = 100,

+ correlation = FALSE, halton = NA, panel = TRUE)

score test

data: rpar(time='n',change='n',comfort='n')
chisq = 298.3146, df = 3, p-value < 2.2e-16

alternative hypothesis: no uncorrelated random effects

Next, we present the three tests of no random-correlated effects.

R> lrtest(Train.mxlc, Train.ml)

Likelihood ratio test

Model 1: choice ~ price + time + change + comfort

Model 2: choice ~ price + time + change + comfort

#Df LogLik Df Chisq Pr(>Chisq)

1 11 -1530.0

2 5 -1723.8 -6 387.72 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> waldtest(Train.mxlc)

Wald test

data: no random effects

chisq = 287.1511, df = 6, p-value < 2.2e-16

R> scoretest(Train.ml, rpar = c(time = "n", change = "n", comfort = "n"), R = 100,

+ correlation = TRUE, halton = NA, panel = TRUE)

score test

data: rpar(time='n',change='n',comfort='n')
chisq = 294.7337, df = 6, p-value < 2.2e-16

alternative hypothesis: no correlated random effects

Finally, we present the three tests of no correlation, the existence of random parameters
being maintained.

R> lrtest(Train.mxlc, Train.mxlu)
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Likelihood ratio test

Model 1: choice ~ price + time + change + comfort

Model 2: choice ~ price + time + change + comfort

#Df LogLik Df Chisq Pr(>Chisq)

1 11 -1530.0

2 8 -1551.2 -3 42.366 3.355e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> waldtest(Train.mxlc, correlation = FALSE)

Wald test

data: uncorrelated random effects

chisq = 102.7181, df = 3, p-value < 2.2e-16

R> scoretest(Train.mxlu, correlation = TRUE)

score test

data: correlation = TRUE

chisq = 10.3812, df = 3, p-value = 0.01559

alternative hypothesis: uncorrelated random effects
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