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This manual shows how to use the mombf library to compute Moment
(MOM) and inverse Moment (iMOM) Bayes factors and to perform Bayesian
model selection using non-local priors. See Johnson and Rossell (2010) for
an introduction to non-local priors.

The intuitive appeal of MOM and iMOM priors is that they represent
prior beliefs under the alternative hypothesis which are fundamentally dif-
ferent from those under the null hypothesis. Mathematically, when the null
hypothesis is true they present better convergence rates than BF resulting
from most standard procedures. When the alternative hypothesis is true,
they present the same convergence rates as most standard procedures. Addi-
tionally, in some high dimensional setups the posterior probability assigned
to the correct model when using local priors is guaranteed to converge to 0,
whereas for non-local priors it converges to 1.

The routines implement a Gibbs sampling scheme to perform Bayesian
model selection in linear model setups. Also, we provide routines to compute
both exact and approximate BF and marginal densities for linear regression
models, and approximate BF for generalized linear models. Approximate
BF can also be obtained in other situations where the regression coefficients
are asymptotically normally distributed and sufficient. Finally, the library
also contains routines to evaluate the prior density and to elicit the prior
parameters by specifying the mode a priori of the standardized regression
coefficients.

In Section 1 we briefly review the definition of the MOM and iMOM
priors, and we present routines to evaluate them. In Section 2 we analyze
Hald’s data with linear models and compute Bayes factors to assess whether
some predictors can be dropped from the model. Section 3 shows the analysis
of some simulated logistic regression data.
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1 Mom and iMom priors

We implement both product and quadratic non-local priors. Quadratic non-
local priors are historically the first form of non-local priors that were intro-
duced, and are primarily targeted to the comparison of only two hypotheses.
Instead, product priors focus on the more general variable selection problem,
where one wants de determine which coefficients are zero within a vector of
p coefficients.

Let θ′ = (θ′
1, θ

′
2) be the vector of regression coefficients, φ be a dispersion

parameter (i.e. the residual variance in a linear regression setup)

1.1 Product non-local priors

The product non-local prior for θ = (θ1, . . . , θp) is simply defined as the
product of the univariate non-local priors, i.e. π(θ) =

∏p
i=1 π(θi), where π(·)

is a non-local prior density.
The product normal MOM prior of order r is defined as π(θ|φ) =(

p∏
i=1

θ2r
1i

(τφ)r(2r − 1)!!

)
N(θ;0, τφI), (1)

where I is the p× p identity matrix and τ is a prior dispersion parameter.
The product normal MOM prior of order r is defined as π(θ|φ) =(

p∏
i=1

θ2r
1i

(τφ)r(2r − 1)!!

)
N(θ;0, τφI), (2)

where I is the p × p identity matrix and τ is a prior dispersion parameter
and !! denotes the double factorial.

1.2 Quadratic non-local priors

Suppose that the goal is to test H0 : θ1 = θ0 versus H1 = θ1 6= θ0. Consider
the quadratic distance Q(θ1) = (θ1 − θ0)

T V −1
1 (θ1 − θ0)/(nτφ), where θ1 is

a p1 × 1 dimensional real vector, V1 is a p1 × p1 positive definite matrix and
τ > 0 is a scalar. We set V1 to be proportional to the asymptotic covariance
matrix of the maximum likelihood estimate θ̂1. For instance, in a linear
regression setup with design matrix X we set V1 = (X ′X)−1.

We define an improper prior density on θ2 proportional to 1, and in the
situation where φ is unknown we specify an independent improper prior on
φ proportional to 1/

√
φ.



1.2.1 Mom prior

Let πZ(θ1) be a prior density for θ1 for which EπZ
[Q(θ1)

k] is finite. We define
the quadratic MOM prior as

πM(θ1) =
Q(θ1)

k

EπZ
[Q(θ1)k]

πZ(θ1). (3)

The package currently implements normal MOM priors (where πZ is the g-
prior of Zellner and Siow (1980), i.e. πZ(θ1) = N(θ0, nτφV1)) and T MOM
priors (where πZ is a multivariate T with ν ≥ 3 degrees of freedom). Both
for normal and T MOM priors only the case k = 1 is currently implemented.
For the normal MOM prior the normalization constant is EπZ

(Q(θ)k) =∏k−1
i=0 (p1 + 2i), i.e. the kth raw moment of a chi-square distribution with p1

degrees of freedom. For k = 1 this simplifies to EπZ
(Q(θ)k) = 1. For the T

MOM prior and k = 1 the normalization constant is EπZ
(Q(θ)k) = d ν

ν−2
.

1.2.2 iMom prior

The quadratic iMom prior on θ1 is

πI(θ1) = cI Q(θ1)
− ν+p1

2 exp
[
Q(θ1)

−k
]
, (4)

where

cI =

∣∣∣∣V −1
1

nτφ

∣∣∣∣1/2
k

Γ(ν/2k)

Γ(p1/2)

πp1/2
. (5)

As Q(θ1) increases, the influence of the exponential term in (4) disappears
and the tails of πI are of the same order as those of a multivariate T with
ν degrees of freedom. Several authors have found appealing to set ν = 1
(Bayarri and Garcia-Donato, 2007), which is the default value in our routines.
Currently the library only implements the case k = 1.

1.3 Evaluating the Mom and iMom priors

The functions dmom and dimom evaluate the Mom and iMom priors, re-
spectively. Set the argument penalty==’product’ for the product priors
and penalty==’quadratic’ for the quadratic priors. Setting the argument
baseDensity=’normal’ in dmom (the default) returns the normal MOM den-
sity, baseDensity=’t’ returns the t MOM density. The functions pmom and
pimom evaluate the distribution functions, and qmom and qimom return quan-
tiles. Currently pmom and qmom are only implemented for the normal MOM.
Let’s set the prior parameter tau = 1 and plot the Mom and iMom priors in
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Figure 1: Moment and inverse Moment priors for tau = 1

a univariate setting for θ1 ∈ (−3, 3). Notice that in the univariate case the
product and quadratic priors are equivalent.

> library(mombf)

> tau <- 1

> thseq <- seq(-3,3,length=1000)

> plot(thseq,dmom(thseq,tau=tau),type='l',ylab='Prior density')

> lines(thseq,dmom(thseq,tau=tau,baseDensity='t',penalty='quadratic',nu=3),lty=2,col=2)

> lines(thseq,dimom(thseq,tau=tau),lty=3,col=3)

The iMOM prior assigns the lowest density for θ1 in a neighborhood of
0, whereas the normal MOM prior assigns the largest density. We can also
plot the corresponding distribution functions.

> library(mombf)

> plot(thseq,pmom(thseq,tau=tau),type='l',ylab='Prior cdf')

> lines(thseq,pimom(thseq,tau=tau),lty=3,col=3)

2 Bayes factors for linear regression models

This section focuses on computing Bayes factors to compare two models.
The examples use quadratic non-local priors. For examples using product
non-local priors see Section 4.
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Figure 2: Moment and inverse Moment cdf for tau = 1

2.1 Linear model fit and prior elicitation

The Hald data contains 13 observations, a continuous response variable and
4 predictors. We start by loading the data and fitting a linear regression
model.

> data(hald)

> dim(hald)

[1] 13 5

> lm1 <- lm(hald[,1] ~ hald[,2] + hald[,3] + hald[,4] + hald[,5])

> summary(lm1)

Call:
lm(formula = hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] +

hald[, 5])

Residuals:
Min 1Q Median 3Q Max

-3.1750 -1.6709 0.2508 1.3783 3.9254

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.4054 70.0710 0.891 0.3991
hald[, 2] 1.5511 0.7448 2.083 0.0708 .
hald[, 3] 0.5102 0.7238 0.705 0.5009
hald[, 4] 0.1019 0.7547 0.135 0.8959
hald[, 5] -0.1441 0.7091 -0.203 0.8441



---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 2.446 on 8 degrees of freedom
Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736
F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07

The goal is to obtain Bayes factors to assess whether any one predictor
can be dropped from the model. First, we specify the prior parameter τ
based on considerations about the standardized regression coefficient (θ2

1/φ.
Notice that θ1/

√
φ is the signal-to-noise ratio or standardized effect size. To

find the g value that gives a prior mode at ±.2, we use the function mode2g.
For instance, for the regression coefficient associated to hald[,2] we would
do as follows.

> prior.mode <- .2^2

> V <- summary(lm1)$cov.unscaled

> diag(V)

(Intercept) hald[, 2] hald[, 3] hald[, 4] hald[, 5]
820.65457471 0.09271040 0.08756026 0.09520141 0.08403119

> taumom <- mode2g(prior.mode,prior='normalMom')

> tautmom <- mode2g(prior.mode,prior='tMom',nu=3)

> tauimom <- mode2g(prior.mode,prior='iMom')

> taumom

[1] 0.02

> tautmom

[1] 0.01333333

> tauimom

[1] 0.04

We can check the obtained τ values by plotting the prior density.

> thseq <- seq(-1,1,length=1000)

> plot(thseq,dmom(thseq,V1=nrow(hald)*V[2,2],tau=taumom),type='l',xlab='theta/sigma',ylab='Prior density')

> lines(thseq,dmom(thseq,V1=nrow(hald)*V[2,2],tau=tautmom,baseDensity='t',nu=3,penalty='quadratic'),lty=2,col=2)

> lines(thseq,dimom(thseq,V1=nrow(hald)*V[2,2],tau=tauimom),lty=3,col=3)

> abline(v=.2,lty=2,col='gray')

Another way to specify g is by finding the value that assigns a desired
prior probability to a certain interval. This can be achieved with the function
priorp2g. For instance, to find the g value that gives 5% probability to the
interval (-0.2,0.2) we use the following code.
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Figure 3: Hald data. Mom and iMom priors for a regression coefficient. The
prior mode for θ1/σ is set at ±0.2

> a <- .2; priorp <- .05

> taumom2 <- priorp2g(priorp=priorp,q=a,prior='normalMom')

> tauimom2 <- priorp2g(priorp=priorp,q=-a,prior='iMom')

> taumom2

[1] 0.113686

> tauimom2

[1] 0.07682918

2.2 Bayes factor computation

Bayes factors can be easily computed using the functions mombf and imombf.
The normal Mom BF can be computed in explicit form, the T MOM BF
require computing a one dimensional integral and the iMom BF a two di-
mensional integral (regardless of the dimensionality of θ1). The numerical
integration can be achieved either via adaptive quadratures (as implemented
in the routines integrate) by setting method=’adapt’, or via Monte Carlo
simulation by setting method=’MC’. When φ is unknown, method==’adapt’
combines integrate with the quantile method of Johnson (1992). The pa-
rameter nquant determines the number of quantiles of the posterior distribu-
tion of φ at which to evaluate the integral. The default nquant=100 usually
gives a fairly good approximation. For Monte Carlo integration, the argu-
ment B specifies the number of Monte Carlo samples.



In our example, for computational speed we use B=100000, even though
in real examples a higher value can be used to ensure proper accuracy. For
comparison, we also compute the Bayes factors that would be obtained under
Zellner’s g-prior with the default value g = 1. which can be achieved with
the function zellnerbf. Notice that g corresponds to τ in our notation. For
reproducibility, we set the random number generator seed to the date this
code was written.

> set.seed(4*2*2008)

> mombf(lm1,coef=2,g=taumom)

[,1]
[1,] 1.690808

> mombf(lm1,coef=2,g=tautmom,baseDensity='t')

[1] 0.007494312

> imombf(lm1,coef=2,g=tauimom,method='adapt')

[,1]
[1,] 1.714063

> imombf(lm1,coef=2,g=tauimom,method='MC',B=10^5)

[,1]
[1,] 1.711426

> zellnerbf(lm1,coef=2,g=1)

[,1]
[1,] 1.582311

We assess the Monte Carlo error by re-computing the iMom BF with a
different set of Monte Carlo samples. We find the error to be acceptable.

> imombf(lm1,coef=2,g=tauimom,method='MC',B=10^5)

[,1]
[1,] 1.711051

We now assess the sensitivity to the prior mode specification. For illus-
tration purposes, we exclude the T MOM and iMom BF as these take longer
to compute. The estimated standardized regression coefficient is

> sr <- sqrt(sum(lm1$residuals^2)/(nrow(hald)-5))

> thest <- coef(lm1)[2]/sr

> thest

hald[, 2]
0.6341364
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Figure 4: Hald data. BF obtained for Mom and Zellner’s g-prior for several
prior mode specifications.

We define a sequence of prior modes, find the corresponding g values and
compute Bayes factors. Note that mombf, imombf and zellnerbf accept g to
be a vector instead of a single value. For large g vectors setting the option
method=’MC’ in imombf can save considerable computing time, as the Monte
Carlo samples need only be generated once for all g values.

> prior.mode <- seq(.01,1,length=100)^2

> taumom <- mode2g(prior.mode,prior='normalMom')

> bf1 <- mombf(lm1,coef=2,g=taumom)

> bf2 <- zellnerbf(lm1,coef=2,g=taumom)

> plot(prior.mode,bf1,type='l',ylab='BF')

> lines(prior.mode,bf2,lty=2,col=2)

> abline(v=thest,lty=2)

The highest possible BF are observed when the prior mode is slightly
smaller than the estimated 0.634. As the mode converges to zero both priors
converge to a point mass at zero, and hence the BF converges to 1. As the
mode goes to infinity the BF goes to 0, as predicted by Lindley’s paradox
(Lindley, 1957). Although the Mom and Zellner BF show some sensitivity to
the prior specification, any prior mode between 0 and 1 results in evidence
in favor of including the variable in the model.



3 Bayes factors for generalized linear regres-

sion models

This section focuses on obtaining Bayes factors to compare two models. In
the examples we use quadratic non-local priors. For examples using product
non-local priors see Section 4.

As an illustration, we simulate data with 50 observations from a probit
regression model. We simulate two correlated predictors with coefficients
equal to log(2) and 0 (i.e. the second variable is not actually in the model).
The predictors are stored in the matrix x, the success probabilities in the
vector p and the observed responses in the vector y. As in Section 2.2, for
reproducibility purposes we set the random number generator seed to the
date this code was written.

> set.seed(4*2*2008)

> n <- 50; theta <- c(log(2),0)

> x <- matrix(NA,nrow=n,ncol=2)

> x[,1] <- rnorm(n,0,1); x[,2] <- rnorm(n,.5*x[,1],1)

> p <- pnorm(x %*% matrix(theta,ncol=1))

> y <- rbinom(n,1,p)

Before computing Bayes factors, we fit a probit regression model with the
function glm. The maximum likelihood estimates are stored in thetahat and
the asymptotic covariance matrix in V.

> glm1 <- glm(y~x[,1]+x[,2],family=binomial(link = "probit"))

> thetahat <- coef(glm1)

> V <- summary(glm1)$cov.scaled

To compute Bayes factors we use the functions momknown and imomknown.
These functions take as primary arguments a vector of regression coefficients
and their covariance matrix, and hence they can be used in any setting where
one has a statistic that is asymptotically sufficient and normally distributed.
The resulting Bayes factors are approximate. The functions also allow for
the presence of a dispersion parameter sigma, i.e. the covariance of the
regression coefficients is sigma*V, but they assume that sigma is known. The
probit regression model that we simulated has no over-dispersion and hence
it corresponds to sigma=1. We first compare the full model with the model
resulting from excluding the second covariate, setting g = 0.5 for illustration
(note that thetahat[1] contains the intercept).

> g <- .5

> bfmom.1 <- momknown(thetahat[2],V[2,2],n=n,g=g,sigma=1)

> bfimom.1 <- imomknown(thetahat[2],V[2,2],n=n,nuisance.theta=2,g=g,sigma=1)

> bfmom.1



[,1]
[1,] 4.262401

> bfimom.1

[,1]
[1,] 3.336888

Both priors result in evidence for including the first covariate. We now
check whether the second covariate can be dropped.

> bfmom.2 <- momknown(thetahat[3],V[3,3],n=n,g=g,sigma=1)

> bfimom.2 <- imomknown(thetahat[3],V[3,3],n=n,nuisance.theta=2,g=g,sigma=1)

> bfmom.2

[,1]
[1,] 0.02784354

> bfimom.2

[,1]
[1,] 0.008250121

Both Mom and iMom BF provide strong evidence in favor of the simpler
model, i.e. excluding x[,2]. To compare the full model with the model
that has no covariates (i.e. only the constant term remains) we use the same
routines, passing a vector as the first argument and a matrix as the second
argument.

> bfmom.0 <- momknown(thetahat[2:3],V[2:3,2:3],n=n,g=g,sigma=1)

> bfimom.0 <- imomknown(thetahat[2:3],V[2:3,2:3],n=n,nuisance.theta=2,g=g,sigma=1)

> bfmom.0

[,1]
[1,] 0.5272556

> bfimom.0

[,1]
[1,] 0.953978

Based on the resulting BF being close to 1, it is not clear whether the full
model is preferable to the model with no covariates.

The BF can be used to easily compute posterior probabilities for each of
the four considered models: no covariates, only x[,1], only x[,2] and both
x[,1] and x[,2]. We assume equal probabilities a priori.

> prior.prob <- rep(1/4,4)

> bf <- c(bfmom.0,bfmom.1,bfmom.2,1)

> pos.prob <- prior.prob*bf/sum(prior.prob*bf)

> pos.prob



[1] 0.090632677 0.732686026 0.004786169 0.171895128

The model with the highest posterior probability is the one including
only x[,1], i.e. the correct model, and the model with the lowest posterior
probability is that including only x[,2].

4 Variable selection for linear models

We illustrate how to perform variable selection with a simple simualted
dataset. We generate 100 observations for the response variable and 3 co-
variates. The regression coefficient for the third covariate is 0.

> set.seed(2011*01*18)

> x <- matrix(rnorm(100*3),nrow=100,ncol=3)

> theta <- matrix(c(1,1,0),ncol=1)

> y <- x %*% theta + rnorm(100)

First we need to specify the prior distribution for the regression coeffi-
cients, the model space and the residual variance. We specify a (product)
iMOM prior on the coefficients with prior variance parameter tau=.131,
which targets the detection of standardized effect sizes above 0.2. Regarding
the model space, we use a Beta-binomial prior (binomial prior on the num-
ber of included variables with a beta hyper-prior on the Binomial success
probability) as then posterior probabilities automatically adjust for multiple
comparisons (Scott and Berger, 2010). Finally, for the residual variance we
set a fairly non-informative inverse gamma prior.

> priorCoef <- new("msPriorSpec",priorType='coefficients',priorDistr='piMOM',priorPars=c(tau=.131))

> priorDelta <- new("msPriorSpec",priorType='modelIndicator',priorDistr='binomial',priorPars=c(alpha.p=1,beta.p=1))

> priorVar <- new("msPriorSpec",priorType='nuisancePars',priorDistr='invgamma',priorPars=c(alpha=.01,lambda=.01))

The routine modelSelection implements a Gibbs sampling scheme which
returns a posterior sample for the variable inclusion indicators in the slot
postSample, the visited model with highest posterior probability and the
marginal posterior probabilities of inclusion for each covariate. The marginal
posterior probabilities are estimated via Rao-Blackwellization, i.e. averaging
the posterior probability for inclusion in each Gibbs iteration, as this estimate
is more precise than simply taking colMeans on the slot postSample.

> fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE, niter=10^2,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ method='Laplace')

Greedy searching posterior mode... Done.
Running Gibbs sampler........... Done.



> fit1$postMode

[1] 1 1 0

> fit1$margpp

[1] 1.000000000 1.000000000 0.002106971

We see that the posterior mode chooses the correct model, and that the
marginal probabilities clearly indicate that covariates 1 and 2 should be in-
cluded and covariate 3 should be excluded. This illustrates an important
issue: non-local priors result in a procedure which assigns high posterior
probability to the true model (or the model under consideration with small-
est Kullback-Leibler distance to the true model). This remains true even
in high dimensions, whereas local priors typically assign negligible mass to
any single model. We can see this by checking the proportion of posterior
samples in which the correct model has been visited: 90 out of 90.

> correct <- t(fit1$postSample)==c(TRUE,TRUE,FALSE)

> table(colSums(correct)==3)

TRUE
90
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