
opm: An R Package for Analysing OmniLog®
Phenotype MicroArray Data

Lea A.I. Vaas
CBS-KNAW Fungal Biodiversity Centre

Johannes Sikorski
Leibniz Institute DSMZ

Benjamin Hofner
Universität Erlangen-Nürnberg

Nora Buddruhs
Leibniz Institute DSMZ

Anne Fiebig
Leibniz Institute DSMZ

Hans-Peter Klenk
Leibniz Institute DSMZ

Markus Göker
Leibniz Institute DSMZ

Abstract

The OmniLog® Phenotype Microarray system enables one to monitor simultaneously,
on a longitudinal time scale, the phenotypic reaction of single-celled organisms such as
bacteria, fungi, and animal cell cultures to up to 2,000 environmental challenges spotted
on sets of 96-well microtiter plates. The phenotypic reactions are recorded as respiration
kinetics with an often sigmoidal shape. Tools for storing the curve kinetics, aggregat-
ing the curve parameters, recording associated metadata of organisms and experimental
settings as well as methods for analysing these highly complex data sets graphically and
statistically are increasingly in demand.

The opm R package facilitates management, visualization and statistical analysis of
Phenotype Microarray data. Raw measurements can be easily input into R, combined
with relevant meta-information and accordingly analysed. The kinetics can be aggregated
by estimating curve parameters using two distinct methods. Containers of opm data can
easily be queried for and subset by using the integrated metadata and other information.
The raw kinetic data can be displayed with customized plotting functions. The package
also includes 95% confidence plots and enhanced heat-map graphics for comparing the es-
timated curve parameters. It is also possible to discretize these parameters and to export
them for reconstructing character evolution or inferring phylogenies with external pro-
grams. Tabular and textual summaries suitable for, e.g., taxonomic journals can also be
automatically created and customized. Export and import in the YAML markup language
facilitates the data exchange among labs. All functionality is exemplified using real-world
data sets that are part of the package.

Keywords: Bootstrap, Cell Lines, grofit, Growth Curves, lattice, Metadata, Microbiology,
Respiration Kinetics, Splines, YAML.

1. Introduction

The phenotype is regarded as the set of all types of traits of an organism (Mahner and Kary
1997). The phenotype is of high biological relevance, as it is the phenotype which is the object

2 Phenotype MicroArray Data

of selection and, hence, is the level at which evolutionary directions are governed by adaptation
processes (Mayr 1997). It is also the phenotype which is of direct relevance to humans, for
example in exploiting microorganisms for industrial purposes or in the combat of pathogenic
organisms (Broadbent, Larsen, Deibel, and Steele 2010; Mithani, Hein, and Preston 2011).
In the study of single-cell living beings, such as bacteria, fungi, plant or animal cells, it is an
important field of research to study the phenotype by measuring physiological activities as
a response to environmental challenges. These can be single carbon sources, which may be
utilized as nutrients and hence trigger cellular respiration, or substances such as antibiotics,
which may slow down or even inhibit cellular respiration, indicating a successful inhibitory
effect on potentially pathogenic organisms. The intensity of cellular respiration correlates
with the production of NADH engendering a redox potential and thus a flow of electrons
in the electron transport chain. To measure cellular respiration in an experimental assay,
this flow of electrons can be utilized to reduce a tetrazolium dye such as tetrazolium violet,
thereby producing purple colour (Bochner and Savageau 1977). In principle, the more intense
the colour, the larger the physiological activity.

The Phenotype MicroArray (PM) system is capable of measuring a large number of pheno-
types in a high-throughput-system utilizing the above described tetrazolium detection system.
About 2,000 distinct physiological challenges, such as the metabolism of single carbon sources
for energy gain, the metabolism under varying osmolyte concentrations, and the response to
varying growth-inhibitory substances are included in the PM microtiter plates (Bochner,
Gadzinski, and Panomitros 2001; Bochner 2009). The OmniLog® PM system records the
colour formation in an automated setting (every 15 minutes) throughout the duration of the
experiment, which may last up to several days. Thus the experimenter ends up with high-
dimensional sets of longitudinal data, the PM respiration kinetics. For a detailed introduction
into the experimental setup for obtaining OmniLog® PM respiration kinetic data we refer to
the OmniLog® website (http://www.biolog.com/) and the associated hardware and software
manuals. Briefly, 96-well microtiter plates with substrates, dye, and bacterial cells are loaded
into the OmniLog® reader, a hardware device which provides the appropriate incubation
conditions and also automatically reads the intensity of colour formation during tetrazolium
reduction. The OmniLog® reader is driven by the Data Collection software. The stored
results files, which are in a proprietary format, are then imported into the Data Manage-
ment, File Management/Kinetic Analysis, and Parametric Analysis software packages for
data analysis.

In the case of positive reactions, the kinetics are expected to appear as sigmoidal curves
in analogy to typical bacterial growth curves. The intrinsic higher level of data complexity
contains additional valuable biological information which can be extracted by exploration
of the shape characteristics of the recorded curves (Brisbin, Collins, White, and McCallum
1987). These curve features can, in principle, unravel fundamental differences or similarities in
the respiration behaviour of distinct organisms, which cannot be identified by the traditional
end-point measurements alone.

The motivation for the here presented opm package originated from (i) the need to overcome
the limited graphical and analysis functions of the proprietary OmniLog® PM software and
(ii) the desirability of an analysis system for this kind of data in a free statistical software
environment such as R (R Development Core Team 2011). At the moment, the visualisation
of the kinetics is of limited quality, especially when simultaneously comparing the curves from
more than two experiments. The calculation of curve parameters is rather crude (Vaas, Siko-

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 3

rski, Michael, Göker, and Klenk 2012; BiOLOG Inc. 2009). The statistical treatment of raw
kinetic data and curve parameters would involve cumbersome manual and hence error-prone
manipulations of data in typical spreadsheet applications before they may be imported into
appropriate statistical software. Finally, the amount of organismic or experimental metadata
that can be added to the raw data is extremely limited.

Based on a previous study (Vaas et al. 2012) the here presented opm package offers function-
alities for a fast and comprehensive evaluation of PM respiration kinetics suitable for a wide
range of experimental questions.

Using customized input functions, raw kinetic data can be transferred into R, stored as S4
objects (Chambers 1998) containing single or multiple OmniLog® PM plates and further
processed. The package features the calculation and attachment of aggregated curve parame-
ters including their (bootstrapped) confidence intervals. Moreover, infrastructure is provided
to merge this with any kind of additional metadata. These complex data bundles can then
be exported in YAML format (http://www.yaml.org/), which is a human-readable data seri-
alization format which can be read by most common programming languages and facilitates
fast and easy data exchange between laboratories.

The framework for data evaluation starts with several functions for the graphical display of
the data, such as of the raw respiration curve kinetics or the confidence intervals of aggregated
curve parameters. With sophisticated selection methods the user is able to sort, group and
arrange the data according the specific experimental questions in the plotting and analysis
framework. For further specific graphical or statistical analysis according to the needs of
the user, the opm package organises and maintains the data such that any additional data
exploration using other packages in the R environment are easily applicable.

The work flow described below includes (i) the input of raw kinetic data and integration of
corresponding metadata, (ii) conversion into suitable storage formats, (iii) the computation of
a set of four parameters sufficient for comprehensively describing the curves’ shape (aggregated
data), (iv) manipulating and querying the constructed objects, and (v) visualizing both raw
kinetics and aggregated data.

2. Methods

2.1. Overview

In the following the work flow for generating an R object that contains multiple OmniLog®
plates along with the kinetic raw data, the corresponding metadata of interest, and the
corresponding aggregated curve parameters, is described. Further it is explained how to
analyse either raw data, metadata, aggregated curve parameter data, or combinations of all,
as stored in the respective R object, by both graphical or statistical approaches.

The raw data of the reduced tetrazolium colour intensity values can be exported by the pro-
prietary OmniLog® software File Management/Kinetic Analysis as CSV (comma-separated
values) files and imported into the opm package using read_opm(). In a first step the valu-
able biological information coded in the shape characteristics of the recorded curves have to
be extracted. Using the function do_aggr(), which under default settings accesses methods
from the package grofit (Kahm, Hasenbrink, Lichtenberg-Frate, Ludwig, and Kschischo 2010),
the length of the lag phase λ, the respiration rate µ (corresponding to the steepness of the

4 Phenotype MicroArray Data

One

96-well plate

set of 96

raw kinetics

96 sets of aggregated data

including confidence limits

Genus Bacillus

species subtilis

strain 0815

.

habitat soil

sampling place GPS coord.

sampling date 2011-06-15

sampling season summer

habitat [°C] 27

.

sporulation yes

flagellar motility yes

natural transformation no

.

PCR (gene xyz) positive

.

... as much/what you wish...

PM raw and aggregated data Metadata

Hour

00.00

00.25

00.50

.

30.00

.

60.00

value

35

33

37

.

102

.

328

Trehalose

Hour

00.00

00.25

00.50

.

30.00

.

60.00

value

35

33

37

.

102

.

328

Arabinose

Hour

00.00

00.25

00.50

.

30.00

.

60.00

value

35

33

37

.

102

.

328

Glucose

Trehalose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

Arabinose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

Trehalose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

Arabinose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

Glucose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

Hour

v
a
lu

e Glucose

Hour

v
a
lu

e Glucose

lag (λ)

s
lo

pe
 (

µ
)

max (A)

Area under the curve

(AUC)

Figure 1: Overview of the data assembly from an PM experiment. The raw colour-formation
values resulting in sets of 96 raw kinetics per plate are augmented by the information coded
in the shape characteristics, the 96 four-parameter sets of aggregated data. The resulting
bundle of raw and aggregated data of each single kinetic can be concatenated and combined
with meta-information on the organisms and/or experiments.

slope) and the maximum cell respiration A (corresponding to the maximum value recorded)
are calculated. As an additional descriptive parameter of cell respiration, the area under the
curve (AUC) is estimated via numerical integration. The user can select parametric model
fits as well as model-free fits using spline smoothers for the automated calculation of curve
parameters, as provided by the methods from the grofit package (Kahm et al. 2010). A
simpler and computationally faster approach for parameter estimation has additionally been
implemented, but only for the parameters A and AUC. Both implementations also provide
confidence limits calculated via bootstrapping, with 95% being the default confidence value
(Efron 1979).

To facilitate a comprehensive and straightforward data processing and analysis, the raw and
aggregated data of each single kinetic can be concatenated and combined with metadata
using, e.g., the include_metadata() function. It has to be emphasized that metadata can
include all kind of describing characteristics of the observed organism(s) such as taxonomic
affiliation and geographical and/or ecological origin, or of the performed experimental setting
such as culture conditions, genetic modifications, physiological information of any kind and
so on. Figure 1 presents an overview of the data assembly from an PM experiment.

The work flow of the package was designed for offering a maximum of flexibility with respect
to the type of information added to the R object and to the order of steps in which this is
achieved. For example, it is possible to add first the metadata and to perform some of the
later described analysis and second to aggregate the raw kinetics and go on with analysis
of the aggregated values. Since experimental frameworks can be imagined where only very

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 5

limited meta-information is available, it is also feasible to work without metadata at all.

2.2. Data import

The example dataset coming with the package was published in our first study on PM data
(Vaas et al. 2012). In brief, four bacterial strains were measured on GenIII plates (AES
Chemunex BLG 1030) in the PM modus. For more details see Section 3.1.

The proprietary OmniLog® PM data analysis software File Management/Kinetic Analysis
(BiOLOG Inc. 2009) allows one to export the kinetic raw data from single or multiple plates as
CSV files containing a small amount of associated run information that the user can enter at
the interface of the OmniLog® PM Data Collection software which controls the OmniLog®
reader. Currently this conversion involves the creation of files with the extension “d5e” from
the original ones with the extension “oka”. For use with opm, the raw kinetic data should
be exported into a single CSV file for each measured plate. The opm package currently does
not support the input of several plates from PM-mode runs stored in a single CSV file, but
it offers functionality for splitting old-style CSV files containing multiple plates. (We refer to
the CSV exports from the currently distributed OmniLog® PM File Management/Kinetic
Analysis software as “old style”. Forthcoming versions are expected to export the data in a
slightly different CSV format we call “new style”. Please contact your local representative
of the vendor for the latest software version.) As of version 0.4-0, opm also supports the
input of MicroStation® CSV files (frequently used in conjunction with EcoPlate® assay
for microbial community analysis). These files contain only end-point measurements but
potentially several plates, which can nevertheless be input together with their potentially also
rich meta-information.

The easiest way to load the raw kinetic data (as CSV files or as YAML) into R in a single
step is using the function read_opm() (see Figure 2). If raw data from only one single-plate
OmniLog® PM are imported, the resulting object belongs to the S4 class OPM. This class
for holding single-plate OmniLog® PM data originally includes the information read from
the original input CSV files, but an arbitrary amount of metadata can be added later on (see
Figure 2). If multiple plates are imported, the resulting object automatically belongs to the
S4 class OPMS. In the OPMS class, data may have been obtained from distinct organisms
and/or replicates, but must correspond to the same plate type and must contain the same
wells (see Figure 2). The function read_opm() has an argument “convert” which controls how
sets of plates with distinct types are treated; for instance, the function can return a list of
OPMS objects, one for each plate type encountered. The entire class hierarchy used by opm
is shown in Figure 3.

To process and store huge numbers of raw data files, the function batch_opm_to_yaml()

reads all OmniLog® CSV files (or YAML files previously generated with opm) within a given
list of files and/or directories and converts them to opm YAML format. It is possible to let
opm automatically include metadata and aggregated values (curve parameters) during this
conversion. File selection and unselection using regular expressions or globbing patterns is
integrated in the function. The result from each file conversion is reported in detail, and
a demo mode is available for viewing the attempted file selections and conversions before
actually running the (potentially time consuming) conversion process. The package is accom-
panied by a command-line script run_opm.R, enabling the users to run the batch conversion
without starting an interactive R session.

6 Phenotype MicroArray Data

2.3. Integration of metadata

The interface of the Data Collection software of the OmniLog® reader is size-restricted and
allows for only a few entrances to enter accompanying information such as the organism under
study, the culture conditions, etc. to the plate, and not all of these fields are exported together
with the raw measurements. However, for most experimental designs there clearly exists the
need to add much more meta-information to the kinetic data. To this end, the opm user can
integrate the metadata in OPM and OPMS objects using the function include_metadata()

(among other functions for this task; see Figure 2). Usually, the metadata are kept in a data
frame which can be generated from a CSV file. To guarantee an unambiguous match between
the raw kinetic data in the OPMS object and the collected metadata, a unique identifier
is needed. By default the combination of Setup Time and Position is used, which should
unequivocally identify certain plates. Setup Time indicates the date and time at the precision
of seconds of starting the batch read in the OmniLog® reader. Position indicates the position
of the plate in the OmniLog® reader; for instance, 10-A indicates the plate sliding carriage
number 10 in slot A of the reader. Both Setup Time and Position are automatically recorded
by the OmniLog® reader Data Collection software and are exported by the OmniLog® PM
File Management/Kinetic Analysis software into CSV files together with the raw kinetic data.

To facilitate the compilation of metadata information, collect_template() generates a data
frame (and additionally, if requested, a CSV file) in which each line represents a single PM
plate. The function collect_template() automatically includes the Setup Time and Posi-
tion (or any other CSV data of interest) of each plate into the data frame or file. The user can
subsequently add further columns describing any metadata of interest of any PM plate of inter-
est. The data frame or CSV file can then be queried for the information specific to each plate,
and the resulting data integrated into OPM or OPMS objects using include_metadata().
Whereas this function will usually result in non-nested metadata entries, the implementa-
tion allows one, in principle, to deal with arbitrarily nested meta-information. The amount
of meta-information added and plates analysed is only limited by the available computer
memory.

The user can provide additional information to the metadata data frame on the fly (if not
provided in CSV) by calling the function edit(), which opens the R editor enabling the user
to modify and add data. Beside changing the metadata entries by using the R Editor, the
function map_metadata() offers a secure way to map metadata within OPMS objects. The
replacement function metadata()<- enables the user to set the entire meta-information, or
specific entries, directly.

2.4. Aggregating data by estimating curve parameters

Descriptive curve parameters from the kinetic raw data can be calculated and included in OPM
and OPMS objects using the function do_aggr() (see Figure 2), which accesses methods from
the package grofit (Kahm et al. 2010) or a native implementation which is faster but only
estimates two of the four parameters. The descriptive curve parameters are the lag phase
λ, the respiration rate µ (corresponding to the steepness of the slope), the maximum cell
respiration A (corresponding to the maximum value of the curve) and the area under the
curve AUC. The parameters λ, µ, and A are derived by default from spline fits, whereas AUC
is estimated via numerical integration (see Figure 2 in Kahm et al. (2010) for details). If
desired, the user is free to use the parameter estimates from the provided model fits as well

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 7

OPMD

Aggregation via
do_aggr()

Discretization via
do_disc()

Previously
generated YAML

Raw data
(CSV file)

Input via
read_opm()

a single plate plus
aggregated data

OPMA

a single plateOPM Aggregation via
do_aggr()many plates plus

aggregated data

many plates OPMS
merge via

opms()
c()
+

compile metadata via
editing a data frame in R

or by modifiying a CSV file

add metadata via
include_metadata()

facilitate metadata compilation
matching OPM or OPMS via

collect_template()

a single plate plus
aggregated and
discretized data

Discretization via
do_disc()

OPMS

many plates plus
aggregated and
discretized data

OPMS

Figure 2: Overview of the complete work flow for data compilation. The work flow allows
the user full flexibility with respect to the type of information added to the R object and
to the order of steps in which this is achieved. See Figure 4 for other methods to integrate
metadata.

(Vaas et al. 2012). In addition to the point estimates for the parameters from both model and
spline, confidence limits can be calculated (for the spline-based approach via bootstrapping),
with 95% being the default value (Efron 1979). Attaching the aggregated data to an OPM
object yields an object of the class OPMA, which can also be stored within an OPMS container
object.

2.5. Manipulation of OPM and OPMS data

After integration of additional metadata via include_metadata() and adding aggregated
curve parameters via do_aggr(), an OPMA or OPMS object comprises basically three pieces
of information: (i) the kinetic raw data; (ii) the aggregated data, i.e., the curve parameters
λ, µ, A, and AUC and optionally their corresponding 95% confidence limits; and (iii) the
metadata. As usual, the data analysis starts with data exploration for which the user may
now wish to subset and query using these pieces of information. As Figure 4 illustrates, the
package provides methods for (i) querying and sub-setting OPMS objects, (ii) plotting the
data in some customized manner, and (iii) converting the OPM or OPMS to other objects
for an independent exploration by the user (discretization and exporting in some useful file
formats is also possible).

Furthermore, the bundled structure of an OPMS object, and the methods of the class, permit
queries for the presence of a specific metadata key or a specific value of a specific metadata
key, or a specific combination of values and/or keys, and also enable the user to subset an
OPMS object accordingly.

8 Phenotype MicroArray Data

Figure 3: This picture shows the class hierarchy used by opm. Class names are shown within
the boxes. Boxes with white background indicate virtual classes, those with grey background
indicate real classes whose objects can be created and manipulated by the user. Continuous
arrows indicate inheritance relationships (pointing from parent to child class), dotted arrows
indicate object composition (pointing from the container class to its element classes). Note
particularly that OPM, which only contains raw data, csv data and metadata, is the parent
class of OPMA, which also contains aggregated data (and has methods for dealing with them).
OPMD inherits from OPMA and stores discretized curve parameters in addition to aggregated
values. OPMS is a container class that holds OPM, OPMA and/or OPMD objects. The query
functions has_aggr() and has_disc() are available for checking from which kinds of objects
an OPMS is composed. See the opm manual for further details.

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 9

Output as opm YAML
via to_yaml()

batch_opm_to_yaml()

Quering and subsetting via
extract()
subset()

[]
%k%, %q%, %K%, %Q%

Conversion via
flatten()
extract()
discrete()

phylo_data()

Customized plots
via level_plot()*

xy_plot()*
ci_plot()

heat_map()
radial_plot()

Independent
exploration
by the user

… many plates plus
aggregated/discretized data

OPMS
object

Metadata management via
metadata()<-

include_metadata()
map_metadata()
metadata_chars()

* Also applicable to OPM objects

Figure 4: This scheme provides an overview of the possible strategies and appropriate func-
tions for data analysis using the opm package. Taking an OPMS object containing the kinetic
raw data and the aggregated curve parameters (optionally with their corresponding 95% con-
fidence limits) as starting point, methods for metadata management, plotting the data in
a customized manner, querying and sub-setting OPMS objects, and data conversion tools
including discretization and output in files are provided.

10 Phenotype MicroArray Data

2.6. Plotting functions for raw data

The function xy_plot() displays the raw measurements (y-axis) in dependency of the time
(x-axis). For each well one sub-panel is drawn, and the user is free to colour the plotted curves
by either their affiliation to a specific plate or by a combination of (metadata-)variables of
choice. By default the panels are arranged according to the factual microtiter plate dimensions
(eight rows labelled A to H × 12 columns labelled 01-12), but other user-defined arrangements
are easily feasible because the plates can be subset by selecting specific wells. Every panel
is annotated with the microtiter plate numbering (A01 to H12) and additionally or alterna-
tively with the substrate name (given the plate type, the opm package can translate all well
coordinates to substrate names). Thus, the function enables the user to compare the curve
data in a customized and useful arrangement (Vaas et al. 2012).

The function level_plot() provides false-colour level plots from the raw respiration mea-
surements over time. Each respiration curve can be displayed as a thin horizontal line, in
which the measured respiration value (OmniLog® units) is represented by colour, while the
x-axes indicates the measurement times. With increasing respiration measurement values, the
displayed colour changes (by default) from light yellow into dark orange and brownish. By
default one sub-panel in the level-plot corresponds to one complete plate comprising 96 lines,
but as in the case of xy_plot() plotting could also be preceded by creating subsets of the
plates. The user can obtain an overview in a compacted design (Vaas et al. 2012). This plot
offers a display format which is especially powerful in uncovering general differences between
plates, for example longer lag-phases or smaller AUC values across the majority of wells.

2.7. Plotting the aggregated data

For graphical representation of the aggregated data, namely point estimators and correspond-
ing confidence limits for the curve parameters, the function ci_plot() provides a framework
to plot subsets of different parameters in a convenient and easily applicable manner. This
straightforward assembly of different curves’ characteristics in a single overview facilitates the
interpretation and comparison of user-defined data subsets arranged according to the techni-
cal and/or biological repetition structure or other aspects of the experimental design (Vaas
et al. 2012).

Additionally, the package offers the possibility of plotting the aggregated curve parameters
as a heat map via the function heat_map(). Heat maps appear particularly powerful for
visualizing the outcomes of PM experiment because dendrograms inferred from both the
substrates and the plates can be used to rearrange the plot. Since the user is free to define
which metadata or strain information are of interest for the annotation of the plot and the
clustering analysis, this tool provides a powerful feature for data exploration in specialized
contexts. For instance, the naming scheme of the individual plates can be devised by selecting
associated metadata; it is also possible to automatically construct row groups by selecting
the same or other meta-information. heat_map() is mainly a wrapper for the heatmap()

functions from either the stats or the gplots R package, but contains some useful adaptations
to the PM data, facilitates the selection of a clustering algorithm and the construction of
row and column groups, and provides more appropriate default solutions for row and column
descriptions sizes (we suppose that in most situations the pictures produced by heat_map()

should not need manual adaptation in these respects).

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 11

2.8. Discretizing and exporting the aggregated data

Whereas the main data analysis strategies of the opm package are based on quantitative, con-
tinuous data (as described in the previous chapters), users may nevertheless be interested in
discretizing the estimated curve parameters. For instance, discretizing the data is necessary
for analysing the data with external programs that cannot deal with continuous characters.
Indeed, phylogeny software such as PAUP* (Swofford 2003) and RAxML (Stamatakis, Ludwig,
and Meier 2005) is limited to at most 32 distinct character states (to the best of our knowl-
edge, a maximum-parsimony algorithm applicable directly to continuous data has only been
implemented in TNT (Goloboff, Farris, and Nixon 2008)). Phylogenetic studies of PM data
are of interest because such phenotypic information is frequently used for taxonomic purposes
in microorganisms, and here phylogenetic inference methods might be superior to clustering
algorithms (Felsenstein 2004). But tabular or textual descriptions of physiological reactions
classified into negative, weak (ambiguous) and positive reactions (see next paragraph for de-
tails) are of even greater relevance in current microbial taxonomy (Tindall, Kämpfer, Euzéby,
and Oren 2006). The opm package includes data-transformation functionality within the
discrete() methods for coding continuous characters by assigning them to a given number
of equal-width categories within a given range. For example, for the parameter A (the maxi-
mum curve height) the theoretically possible range between 0 and 400 OmniLog® units could
be used. The data should then be analysed under ordered (Wagner) maximum parsimony
in PAUP* (Farris 1970) or with the options for ordered multi-state phenotypic characters in
RAxML (Berger and Stamatakis 2010), or corresponding settings in other programs, to min-
imize the loss of information caused by discretizing the values. For this reason, this kind
of unsupervised, equal-width-intervals discretization (Dougherty, Kohavi, and Sahami 1995;
Ventura and Martinez 1995), even though simple, appears appropriate for this task. In this
context, it also makes not much sense to let a discretization method determine the number of
categories because they are not dictated by some property of the data but by the limitations
of the subsequently to apply analysis software. The opm package offers appropriate functions
for data export.

If users were interested to discretize the parameters into “positive” and “negative” results, this
would apparently make most sense for the parameter A because here it is not of interest when
and how fast a reaction starts (which would be coded in λ and µ, respectively) or how much
overall respiration was achieved (as coded in AUC) but whether or not a reaction takes place
at all. Unfortunately, PM data frequently result in a continuum of A values between clearly
negative and clearly positive reactions. For instance, the distribution of A in the example
datasets distributed with the opm and opmdata packages is clearly bimodal, but contains
a large number of intermediary values. For this reason, the discrete() methods and their
more user-friendly wrapper do_disc() offer a gap-mode discretization by interpreting a given
range of values (within the overall range of observations) as “ambiguous”. Values below would
then be coded as negative, values above the range as positive, and values within the range as
either missing information or an intermediary state, “weak”. This range could be determined
by some discretization approach known from the literature (Dougherty et al. 1995; Ventura
and Martinez 1995). The opm package offers its automated determination using k-means
partitioning as implemented in Ckmeans.1d.dp (Wang and Song 2011), using an exact algo-
rithm for one-dimensional data. Alternatively, an algorithm implemented in best_cutoff()

is available, but it requires measurement replicates (which are highly recommended, if not
mandatory, anyway) which need to be specified in the metadata. Both methods are accessible

12 Phenotype MicroArray Data

via do_disc(). Export as richly annotated HTML table is possible using phylo_data(). If
analysis with phylogenetic programs was of interest, in the case of an intermediary state the
data should then be analysed as described above. If intermediary values were coded as miss-
ing information they could be analysed under either Wagner or unordered (Fitch) maximum
parsimony in PAUP* (Farris 1970; Fitch 1971) or with the options for binary phenotypic char-
acters in RAxML (Berger and Stamatakis 2010), or corresponding settings in other programs.

3. Program application

3.1. Overview

The example dataset distributed with the package comprises the results from running 114
GEN-III plates in the PM mode of the OmniLog® reader. The organisms were two strains
of Escherichia coli (DSM 18039 = K1 and the type strain DSM 30083T) and two strains
of Pseudomonas aeruginosa (DSM 1707 and 429SC (Selezska, Kazmierczak, Müsken, Garbe,
Schobert, Häussler, Wiehlmann, Rohde, and Sikorski 2012)). The strains with a DSM number
could be ordered from the Leibniz Institute DSMZ – German Collection of Microorganisms
and Cell Cultures. Each strain was measured in two biological replicates, each comprising ten
technical replicates, yielding a total of 80 plates. To additionally investigate the impact of the
growth age of cultures on the technical and biological reproducibility of the PM respiration
kinetics, strain E. coli DSM 18039 was grown on solid LB medium for nine different durations,
from 16.75 h (t1) to 40.33 h (t9), respectively. For each growth duration four technical
replicates were performed except for t9 (which was repeated only twice), yielding 34 plates
for this time-series experiment. All further biological and experimental details of this dataset
have been described previously (Vaas et al. 2012). The dataset vaas_et_al comes with the
supporting package opmdata and can (if that package is installed, of course) be loaded using:

R> library("opm")

R> data("vaas_et_al", package = "opmdata")

The subsets vaas_1 and vaas_4 are described in the opm manual.

The metadata comprise seven entries. The entry Experiment denotes the biological replicate
or the affiliation to the time-series experiments. The keys Species and Strain refer to the
organism used for the respective experiment (see above), and Slot (either A or B) indicates
whether the plate was placed in the left or the right half of the OmniLog® reader. (Note that
for an assessment of the reproducibility of the curves the slot is occasionally of relevance.)
Two additional entries contain the index of the time point and the corresponding sample
point in minutes for the time series experiment. The key Plate number indicates the technical
replicate (per biological replicate). Combining the keys Strains, Species, Experiment and
Plate number results in a unique label which unequivocally annotates every single plate.

3.2. Data import

The following code describes the import of the OmniLog® CSV file(s) into the opm package.
The CSV files with the OmniLog® raw data should be stored in one to several user-defined
folders. Setting the working directory of R to the parent folder of these using setwd()

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 13

frequently facilitates file selection, but in principle the user can provide any number of paths
to input files and/or directories containing such files to the function read_opm(), which can
load several CSV files (and also YAML files generated by opm) at once. A restriction of the
input functions is that they can only read CSV files that only contain the measurements from
a single plate per file (either a PM plate or a single Gen-III plate measured in either PM-
or identification modus). But the package contains a function split_files() which can be
used to split CSV files with multiple plates into one file per plate For details see the opm
manual; all functions relevant here are contained in a family of functions called “IO-functions”
with according cross-references.

To illustrate the file import step by step, a set of example input CSV files is provided with
the package. Before starting, please load the opm package by typing:

R> library("opm")

Then use the built-in function opm_files() to find the example files in your R installation
and check whether this returns a vector of nine file names:

R> (files <- opm_files("testdata"))

R> stopifnot(length(files) == 9) # just a check -- usually not needed

(It might fail in very unusual R installation situations; in that case, the files must be found
manually.) One of these files contains multiple plates and acts as an example for split_files();
the other ones can be read directly.

From the given vector of file and/or directory names, files can be easily selected and deselected
using globbing or regular-expression patterns. For instance, for reading the three example
files in “new style” CSV format (see Section 2.2), use the following code. After performing this
step, the OPMS object should contain three plates, as indicated by the customized summary()

function:

R> summary(example.opm <- read_opm(files, include = "*Example_?.csv.xz"))

R> stopifnot(length(example.opm) == 3) # just a check -- usually not needed

As previously addressed, instead of a single file name the user could also provide several
file names to read_opm(), or a mixture of file and directory names; if these are contained as
subdirectories of the current working directory, read_opm(".") or read_opm(getwd()) would
be sufficient to input these files. To filter the files with patterns, the arguments exclude and
include are available. There is also a demo mode allowing the user to check the effect of
applying these arguments before actually reading files. One can use the gen.iii argument to
trigger the automated conversion of the plate type to “Gen III” or “ECO” plates run in “PM”
mode, or convert later on using gen_iii(). Plate-type conversions to one of the “PM” modes
are disallowed (and are, to the best of our knowledge, not relevant in practice anyway).

If more than one plate of the same plate type is read, data from all files are automatically
integrated in a single OPMS object. To read plates from several types at once, have a look
at the documentation of the convert argument in the manual. A single plate could also be
imported using, e.g.,:

R> example.single <- read_single_opm(files[1])

14 Phenotype MicroArray Data

In addition to read_opm() and read_single_opm(), which need to be called before an in-
teractive exploration of PM data, batch-processing large numbers of files by converting them
from CSV (or previously generated YAML) to YAML format, optionally after aggregating the
raw data by estimating curve parameters and integrating metadata, is also possible. Again
there is a demo mode to first investigate the attempted conversions:

R> batch_opm_to_yaml(files, include = "*Example_?.csv.xz",

aggr.args = list(boot = 100, method = "opm-fast"),

outdir = ".", demo = TRUE)

The arguments aggr.args and md.args control aggregation and metadata incorporation, re-
spectively; details on both processes are given below, and for the exact use of these arguments
see the opm manual. The following command would thus read three of the seven example
input files, estimate two of the four curve parameters using the fast native method including
100 rounds of bootstrapping, and store the resulting YAML files (one per plate) in the current
working directory (given by “.”):

R> batch.result <- batch_opm_to_yaml(files, include = "*Example_?.csv.xz",

outdir = ".",

aggr.args = list(boot = 100, method = "opm-fast"))

By default, progress messages are printed to the screen. The return value, here assigned to
the batch.result variable, also contains all information about the success of the individual
file conversions. The run_opm.R script distributed with the package is an Rscript-dependent
command-line tool for non-interactively running such file conversions.

3.3. Integration and manipulation of metadata

Several ways are possible for linking metadata to OPM or OPMS objects; the easiest one is
probably the batch-inclusion after creating a template with plate identifiers associating it with
metadata. In the first step, either a data frame to be manipulated within R or a CSV file to be
modified with a suitable editor are created. The opm package supports metadata integration
by creating a template for such a table from an OPM or OPMS objects that contains plate
identifiers in the first columns; by default the keys Setup Time, Position and File. These
data must not be changed, ensuring that the package can later on link the metadata to the
dedicated plates according to these identifiers.

In the opm manual, most functions relevant for metadata manipulation are contained in a
family called “metadata-functions” with according cross-references. For the collection of a
metadata template in a data frame to be manipulated in R, use this command:

R> metadata.example <- collect_template(files, include = "*Example_?.csv.xz")

For the generation of a metadata template file, the following command can be used:

R> collect_template(files, include = "*Example_?.csv.xz",

outfile = "example_metadata.csv")

This will result in a file “example metadata.csv” in the current working directory (whose
name is accessible using getwd()). If other metadata have previously been collected, by

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 15

default a pre-existing file with the same name will be reused. The pre-defined columns will be
respected, novel rows be added, old metadata will be kept and identifiers for novel files will be
included and their so far empty metadata columns are set to missing data (NA). You can also
provide the location of another previously created metadata file with the collect_template()
argument previous.

The generated CSV file could then be edited using external software; for the purpose of this
tutorial, we load it directly and manipulate it in R. To avoid the usual changes in data format
and header of the table during the import a customized import function was implemented as
a wrapper for read.delim():

R> metadata.example <- to_metadata("example_metadata.csv")

Per default, this expects CSV columns separated by tabulators, with the fields protected by
quotes. To input other formats, consider the sep argument for defining an alternative column
separator, as well as the strip.white argument for turning the removal of whitespace at the
beginning and end of the fields on or off (which is relevant if a spreadsheet program exports
CSV without quotes). Now the user could add information to the data frame by calling
edit(), which would open the R editor, or by any other way of manipulating data frames in
R. New columns could be defined, or the existing metadata modified. But the first columns
must remain unchanged because they are needed to identify individual PM plates for linking
them to their meta-information. As an example, we here add an (arbitrary) Colour column
with the values “blue”, “red” and “yellow”:

R> metadata.example[, "Colour"] <- c("blue", "red", "yellow")

Now the metadata are ready to be included into the previously generated OPMS object:

R> example.opm <- include_metadata(example.opm, md = metadata.example)

The metadata could then be received as follows:

R> metadata(example.opm)

This returns the entire metadata entries as a list. By default only the added metadata are
included in the object, but not the identifiers used for assigning data frame rows to plates.

One might want to tidy the files up if they are not needed any more:

R> unlink("example_metadata.csv")

A couple of other functions have been implemented for manipulating metadata included in
OPM and OPMS objects. For instance, the entire meta-information, or specific entries, can
be set using the replacement function metadata()<- (see the opm manual for details). In the
following we discuss metadata modification using map_metadata().

Making use of the exemplar generated above, the key Colour could be changed to Colony
colour as follows:

R> (md.map <- metadata_chars(example.opm, values = FALSE))

16 Phenotype MicroArray Data

This yields a character vector including itself as names attribute, thus implying an identity
mapping. Next the new labels will be defined and will then be exchanged with the old ones
using map_metadata().

R> md.map["Colour"] <- "Colony colour"

R> example.opm <- map_metadata(example.opm, md.map, values = FALSE)

R> metadata(example.opm)

The keys should have been changed to Colony colour now but the values should have remained
unaffected. In addition to mapping based on character vectors, a mapping function could also
have been used. By setting their argument values to TRUE, the functions metadata_chars()
and map_metadata() could be used as well to modify values instead of key. For instance,
assume any entries “red” in the field denoted Colony colour should be changed to “green”:

R> (md.map <- metadata_chars(example.opm, values = TRUE))

R> md.map["red"] <- "green"

R> example.opm <- map_metadata(example.opm, md.map, values = TRUE)

R> metadata(example.opm)

This command will transform all entries in the table with the value ”red” to ”green”. Other
values, as well as the keys, should be unaffected. It is possible to map other types of entries
such as numeric vectors by requesting their coercion to the character type; see the opm manual
for details.

3.4. Aggregating data by estimating curve parameters

The package brings along an OPMS object, named vaas_et_al, containing multiple full 96-
well plates, aggregated data (curve parameters), and metadata. For demonstration purposes
a subset of one plate, provided in the object vaas_1, will be used:

R> data("vaas_1")

Data aggregation (curve-parameter estimation) can be performed using do_aggr(). In the
opm manual, this one and the other functions relevant for data aggregation are contained
in a family called “aggregation-functions” with according cross-references. vaas_1 already
contains aggregated data but we will here re-calculate some for demonstration purposes. For
invoking the fast estimation method, use:

R> vaas_1.reaggr <- do_aggr(vaas_1, boot = 100, method = "opm-fast")

This will only estimate two of the four parameters. (Screen messages output by boot.ci()

might be annoying but can usually be ignored.) Information about the data aggregation
settings is available via:

R> aggr_settings(vaas_1)

R> aggr_settings(vaas_1.reaggr)

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 17

and the aggregated data can be extracted as a matrix via:

R> vaas_1.aggr <- aggregated(vaas_1)

R> vaas_1.reaggr.aggr <- aggregated(vaas_1.reaggr)

The default function of do_aggr() includes 100-fold bootstrapping of the data to obtain
confidence intervals. As this is a time-consuming intensive process (if grofit is used), it may
be split over several cores on a multicore machine if the multicore R package is available by
setting the cores argument to a value larger than one.

3.5. Manipulation of OPM and OPMS data

In the opm manual, the functions relevant for retrieving information contained in OPM
or OPMS objects are included in a family called “getter-functions” with according cross-
references.

For instance, the user may wish to select specific wells from the input plates, which are present
in a 96-well layout, numbered from A01 to H12. The function dim() provides the dimensions
of an OPMS object as a three-element vector comprising (i) number of contained OPM or
OPMA objects, (ii) the number of time points (of the first contained plate; these values need
not be uniform within an OPMS object), and (iii) the number of wells (which must be uniform
within an OPMS object).

To extract, for example, only the data from wells G11 and H11 together with the negative-
control well A01 from the dataset vaas_et_al the bracket operator defined for the OPMS
class has to be invoked as follows:

R> data("vaas_et_al", package = "opmdata")

R> vaas.small <- vaas_et_al[, , c("A01", "G11", "H11")]

R> dim(vaas.small)

R users should be familiar with this subsetting style, which was modelled after the style for
multidimensional arrays, even though the internal representation is quite different.

After metadata have been added, OPM and OPMS objects can be queried for their content.
Specialized infix operators %k% and %q% (for %K% and %Q% see the opm manual) have been
modelled in analogy to R’s %in% operator. The user may be interested whether an OPM or
OPMS object contains a specific value associated with a specific metadata key, or the key
associated with any value, or combinations of keys and/or values. %k% allows the user to
search in the metadata keys. The user can test whether all given keys are present as names of
the metadata. %q% tests whether all given query keys are present as names of the metadata
and refer to the same query elements.

Some examples using vaas_et_al are given in the following. This OPMS object contains
a metadata key Experiment with the three possible values Time series, First replicate, and
Second replicate, and a metadata key Species with either Escherichia coli or Pseudomonas
aeruginosa as values.

R> data("vaas_et_al", package = "opmdata")

18 Phenotype MicroArray Data

Which plates within vaas_et_al have Experiment as metadata key?

R> "Experiment" %k% vaas_et_al

Which plates within vaas_et_al have Experiment and Species as metadata key?

R> c("Experiment", "Species") %k% vaas_et_al

Which plates within vaas_et_al have Experiment and Species as metadata key with the
respective values First replicate and Escherichia coli?

R> c(Experiment = "First replicate",

Species = "Escherichia coli") %q% vaas_et_al

Which plates within vaas_et_al have Species as metadata key associated with the value
Escherichia coli or the value Bacillus subtilis?

R> list(Species = c("Escherichia coli", "Bacillus subtilis")) %q% vaas_et_al

In addition to conducting queries with alternatives, using lists as queries would also allow
for nested queries (as the metadata entries could also be nested). The results of these infix
operators are reported as logical vector with one value per plate; the usual R functions such as
all(), any() or which() could be applied to work on these vectors. They could also be used
directly as the first argument of the bracket operator for OPMS objects to create subsets:

R> vaas.e.coli.1 <- vaas_et_al[c(Experiment = "First replicate",

Species = "Escherichia coli") %q% vaas_et_al]

Alternatively, the user may wish to subset a certain part of the data set using the function
subset(), which is based on these kinds of querying for metadata keys and their values. Prior
to this, the user could check the keys of the metadata:

R> data("vaas_et_al", package = "opmdata")

R> metadata_chars(vaas_et_al, values = FALSE)

The values in the metadata could be obtained by using values = TRUE. Additionally, the
user can check the values of special keys in the metadata:

R> metadata(vaas_et_al, "Species")

The resulting vectors could then also be used for mapping old metadata keys or values to
novel ones (for details see Section 2.3).

The presented plotting results of xy_plot() and level_plot() (see Section 3.6) show selected
subsets of vaas_et_al. In our example below, the function subset() extracts the plates
which contain the value First replicate in the metadata key Experiment and the value 6 in
the key Plate number, resulting in one representative technical repetition and thus four plates
(because four strains were involved) from the data set vaas_et_al:

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 19

R> vaas.1.6 <- subset(vaas_et_al,

query = list(Experiment = "First replicate", 'Plate number' = 6))

Providing the desired combination of metadata keys and values as a list offers a maximum of
flexibility, but other approaches are also implemented, as well as the selection of plates based
on the presence of keys only (like %k% described above; it makes not much sense for vaas_et_al
whose plates are uniform regarding the keys), and nested queries (like %q% with a list described
above; makes of course more sense if the metadata contain nested entries). The subset()

function also has a “time” argument that allows one to create a subset containing only the
time points that were common to all plates. This is useful because deviations regarding the
overall measurement hours might exist. See the manual for details.

In addition to plate-wise querying and subsetting of OPMS objects, a number of conversion
functions for selected content of all plates have been implemented. The opm manual lists
them in a family of functions called “conversion-functions” with according cross-references.
For instance, the user may wish to explore the aggregated curve parameters (lag phase λ,
steepness of the slope µ, maximum curve height A, and area under the curve AUC). These
may be exported either as matrix or data frame using extract():

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = NULL, subset = "mu")

To extract also the full or partial set of metadata, it is sufficient to add a list of desired
metadata:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = list("Experiment","Number of sample time point",

"Plate number", "Slot", "Species", "Strain", "Time point in min"),

subset = "mu")

This only works if this meta-information is present for the plates under study. Once a data
frame is exported, these metadata will be contained in additional columns; once a matrix is
exported, they will be used to construct the row names.

3.6. Plotting functions for raw data

In the opm manual, the functions relevant for plotting are contained in a family called, well,
“plotting-functions” with according cross-references. The function xy_plot() displays the
respiration curves as such (see Figure 5). In our example the selected OPMS object vaas.1.6
is the subset of the dataset vaas_et_al constructed in Section 3.5:

R> xy_plot(vaas.1.6, main = "E. coli vs. P. aeruginosa",

include = list("Species", "Strain"))

Using the argument main, the user can include a main title in the plot; if it is omitted,
by default the title is automatically constructed from the plate type. Likewise, the well
coordinates are automatically converted to substrate names (details can be set using additional

20 Phenotype MicroArray Data

E. coli vs. P. aeruginosa

Time [h]

V
al

ue
 [O

m
ni

Lo
g

un
its

]

100

200

300

A01 (Negative Control)

0 20 40 60 80 10
0

A02 (Dextrin) A03 (D−Maltose)

0 20 40 60 80 10
0

A04 (D−Trehalose) A05 (D−Cellobiose)

0 20 40 60 80 10
0

A06 (b−Gentiobiose) A07 (Sucrose)

0 20 40 60 80 10
0

A08 (D−Turanose) A09 (Stachyose)

0 20 40 60 80 10
0

A10 (Positive Control) A11 (pH 6)

0 20 40 60 80 10
0

A12 (pH 5)

B01 (D−Raffinose) B02 (a−D−Lactose) B03 (D−Melibiose) B04 (b−Methyl−D−Galactoside) B05 (D−Salicin) B06 (N−Acetyl−D−Glucosamine) B07 (N−Acetyl−b−D−Mannosamine) B08 (N−Acetyl−D−Galactosamine) B09 (N−Acetyl−Neuraminic Acid) B10 (1% NaCl) B11 (4% NaCl)

100

200

300

B12 (8% NaCl)

100

200

300

C01 (D−Glucose) C02 (D−Mannose) C03 (D−Fructose) C04 (D−Galactose) C05 (3−O−Methyl−D−Glucose) C06 (D−Fucose) C07 (L−Fucose) C08 (L−Rhamnose) C09 (Inosine) C10 (1% Sodium Lactate) C11 (Fusidic Acid) C12 (D−Serine)

D01 (D−Sorbitol) D02 (D−Mannitol) D03 (D−Arabitol) D04 (myo−Inositol) D05 (Glycerol) D06 (D−Glucose−6−Phosphate) D07 (D−Fructose−6−Phosphate) D08 (D−Aspartic Acid) D09 (D−Serine) D10 (Troleandomycin) D11 (Rifamycin SV)

100

200

300

D12 (Minocycline)

100

200

300

E01 (Gelatin) E02 (Glycyl−L−Proline) E03 (L−Alanine) E04 (L−Arginine) E05 (L−Aspartic Acid) E06 (L−Glutamic Acid) E07 (L−Histidine) E08 (L−Pyroglutamic Acid) E09 (L−Serine) E10 (Lincomycin) E11 (Guanidine Hydrochloride) E12 (Niaproof 4)

F01 (Pectin) F02 (D−Galacturonic Acid) F03 (L−Galactonic Acid−g−Lactone) F04 (D−Gluconic Acid) F05 (D−Glucuronic Acid) F06 (Glucuronamide) F07 (Mucic Acid) F08 (Quinic Acid) F09 (D−Saccharic Acid) F10 (Vancomycin) F11 (Tetrazolium Violet)

100

200

300

F12 (Tetrazolium Blue)

100

200

300

G01 (p−Hydroxy−Phenylacetic Acid) G02 (Methyl Pyruvate) G03 (D−Lactic Acid Methyl Ester) G04 (L−Lactic Acid) G05 (Citric Acid) G06 (a−Keto−Glutaric Acid) G07 (D−Malic Acid) G08 (L−Malic Acid) G09 (Bromo−Succinic Acid) G10 (Nalidixic Acid) G11 (Lithium Chloride) G12 (Potassium Tellurite)

0 20 40 60 80 10
0

H01 (Tween 40) H02 (g−Amino−n−Butyric Acid)

0 20 40 60 80 10
0

H03 (a−Hydroxy−Butyric Acid) H04 (b−Hydroxy−Butyric Acid)

0 20 40 60 80 10
0

H05 (a−Keto−Butyric Acid) H06 (Acetoacetic Acid)

0 20 40 60 80 10
0

H07 (Propionic Acid) H08 (Acetic Acid)

0 20 40 60 80 10
0

H09 (Sodium Formate) H10 (Aztreonam)

0 20 40 60 80 10
0

H11 (Butyric Acid)

100

200

300

H12 (Sodium Bromate)

Escherichia coli DSM18039
Escherichia coli DSM30083T
Pseudomonas aeruginosa 429SC1
Pseudomonas aeruginosa DSM1707

Figure 5: PM curves from the 6th technical repetition of the first biological repetition plotted
using xy_plot() and by default arranged according to the factual plate layout. The respective
curves from all four strains are superimposed; the affiliation to each strain is indicated by
colour (see the legend). The x-axes show the measurement time in hours, the y-axes the
measured colour intensities in OmniLog® units.

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 21

E. coli vs. P. aeruginosa

Time [h]

V
al

ue
 [O

m
ni

Lo
g

un
its

]

100

200

300

A01 (Negative Control)

0 20 40 60 80 10
0

G11 (Lithium Chloride)

0 20 40 60 80 10
0

100

200

300

H11 (Butyric Acid)

Escherichia coli DSM18039
Escherichia coli DSM30083T
Pseudomonas aeruginosa 429SC1
Pseudomonas aeruginosa DSM1707

Figure 6: Selected PM curves from the 6th technical repetition from the first biological
repetition plotted using xy_plot(). The respective curves from all four strains are superim-
posed, the affiliation to each strain indicated by colour (see the legend). The x-axes show the
measurement time in hours, the y-axes the measured colour-value units.

arguments). The content of the legend (mainly a description of the assignment of the colours
to the curves) is also determined automatically. The argument include refers to the metadata
and allows the user to choose which entries should be used for assigning curve colours and
accordingly be included in the legend. In the example the combination of species and strain
is used, yielding four distinct colours. If include is not used, the colours are assigned per
plate.

The plotting of sub-panels (see Figure 6) works in the same way; the only difference is the
previous manipulation of the dataset:

R> xy_plot(vaas.1.6[, , c("A01", "G11", "H11")],

main = "E. coli vs. P. aeruginosa", include = list("Species", "Strain"))

The function level_plot() (see Figure 7) provides false-colour level plots from the raw
respiration measurements over time:

22 Phenotype MicroArray Data

E. coli vs. P. aeruginosa

Time

W
el

l

A01 (Negative Control)
A02 (Dextrin)

A03 (D−Maltose)
A04 (D−Trehalose)

A05 (D−Cellobiose)
A06 (b−Gentiobiose)

A07 (Sucrose)
A08 (D−Turanose)

A09 (Stachyose)
A10 (Positive Control)

A11 (pH 6)
A12 (pH 5)

B01 (D−Raffinose)
B02 (a−D−Lactose)
B03 (D−Melibiose)

B04 (b−Methyl−D−Galactoside)
B05 (D−Salicin)

B06 (N−Acetyl−D−Glucosamine)
B07 (N−Acetyl−b−D−Mannosamine)

B08 (N−Acetyl−D−Galactosamine)
B09 (N−Acetyl−Neuraminic Acid)

B10 (1% NaCl)
B11 (4% NaCl)
B12 (8% NaCl)

C01 (D−Glucose)
C02 (D−Mannose)
C03 (D−Fructose)

C04 (D−Galactose)
C05 (3−O−Methyl−D−Glucose)

C06 (D−Fucose)
C07 (L−Fucose)

C08 (L−Rhamnose)
C09 (Inosine)

C10 (1% Sodium Lactate)
C11 (Fusidic Acid)

C12 (D−Serine)
D01 (D−Sorbitol)

D02 (D−Mannitol)
D03 (D−Arabitol)

D04 (myo−Inositol)
D05 (Glycerol)

D06 (D−Glucose−6−Phosphate)
D07 (D−Fructose−6−Phosphate)

D08 (D−Aspartic Acid)
D09 (D−Serine)

D10 (Troleandomycin)
D11 (Rifamycin SV)

D12 (Minocycline)
E01 (Gelatin)

E02 (Glycyl−L−Proline)
E03 (L−Alanine)

E04 (L−Arginine)
E05 (L−Aspartic Acid)

E06 (L−Glutamic Acid)
E07 (L−Histidine)

E08 (L−Pyroglutamic Acid)
E09 (L−Serine)

E10 (Lincomycin)
E11 (Guanidine Hydrochloride)

E12 (Niaproof 4)
F01 (Pectin)

F02 (D−Galacturonic Acid)
F03 (L−Galactonic Acid−g−Lactone)

F04 (D−Gluconic Acid)
F05 (D−Glucuronic Acid)

F06 (Glucuronamide)
F07 (Mucic Acid)
F08 (Quinic Acid)

F09 (D−Saccharic Acid)
F10 (Vancomycin)

F11 (Tetrazolium Violet)
F12 (Tetrazolium Blue)

G01 (p−Hydroxy−Phenylacetic Acid)
G02 (Methyl Pyruvate)

G03 (D−Lactic Acid Methyl Ester)
G04 (L−Lactic Acid)

G05 (Citric Acid)
G06 (a−Keto−Glutaric Acid)

G07 (D−Malic Acid)
G08 (L−Malic Acid)

G09 (Bromo−Succinic Acid)
G10 (Nalidixic Acid)

G11 (Lithium Chloride)
G12 (Potassium Tellurite)

H01 (Tween 40)
H02 (g−Amino−n−Butyric Acid)
H03 (a−Hydroxy−Butyric Acid)
H04 (b−Hydroxy−Butyric Acid)

H05 (a−Keto−Butyric Acid)
H06 (Acetoacetic Acid)

H07 (Propionic Acid)
H08 (Acetic Acid)

H09 (Sodium Formate)
H10 (Aztreonam)

H11 (Butyric Acid)
H12 (Sodium Bromate)

20 40 60 80

Escherichia coli DSM18039

20 40 60 80

Escherichia coli DSM30083T

20 40 60 80

Pseudomonas aeruginosa DSM1707

20 40 60 80

Pseudomonas aeruginosa 429SC1

0

50

100

150

200

250

300

350

Figure 7: Visualization of PM curves using the function level_plot(). Each respiration
curve is displayed as a thin horizontal line, in which the curve height as measured in colour-
value units is represented by color intensity (darker parts indicate higher curves). The x-axes
correspond to the measurement time in hours.

R> level_plot(vaas.1.6, main = "E. coli vs. P. aeruginosa",

include = list("Species", "Strain"))

Again, a main title can be set explicitly. Furthermore, the argument include again refers to
the metadata and allows the user to choose the information to be included in the header for
annotating the plates. In the example the combination of species and strain is used.

3.7. Plotting the aggregated data

The function heat_map() (see Figure 8) provides false-colour level plots in which both axes
are rearranged according to clustering results. In the context of PM data, it makes most sense
to apply it to the estimated curve parameters. This opm function is a wrapper for heatmap()
from the stats and heatmap.2() from the gplots package with some adaptations to PM data.
For instance, row groups can be automatically constructed from the metadata. The function
must be applied to matrices or data frames constructed using extract():

R> vaas.1.6.A <- extract(vaas.1.6, as.labels = list("Species", "Strain"),

dataframe = TRUE)

R> vaas.1.6.A.hm <- heat_map(vaas.1.6.A, as.labels = "Strain",

as.groups = "Species")

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 23

F
01

 (
P

ec
tin

)

G
03

 (
D

−
La

ct
ic

 A
ci

d
M

et
hy

l E
st

er
)

H
06

 (
A

ce
to

ac
et

ic
 A

ci
d)

H
09

 (
S

od
iu

m
 F

or
m

at
e)

F
06

 (
G

lu
cu

ro
na

m
id

e)

E
01

 (
G

el
at

in
)

A
01

 (
N

eg
at

iv
e

C
on

tr
ol

)

C
06

 (
D

−
F

uc
os

e)

C
05

 (
3−

O
−

M
et

hy
l−

D
−

G
lu

co
se

)

D
08

 (
D

−
A

sp
ar

tic
 A

ci
d)

A
08

 (
D

−
Tu

ra
no

se
)

A
09

 (
S

ta
ch

yo
se

)

D
04

 (
m

yo
−

In
os

ito
l)

B
05

 (
D

−
S

al
ic

in
)

B
01

 (
D

−
R

af
fin

os
e)

A
07

 (
S

uc
ro

se
)

A
05

 (
D

−
C

el
lo

bi
os

e)

C
07

 (
L−

F
uc

os
e)

B
09

 (
N

−
A

ce
ty

l−
N

eu
ra

m
in

ic
 A

ci
d)

A
04

 (
D

−
Tr

eh
al

os
e)

C
04

 (
D

−
G

al
ac

to
se

)

C
02

 (
D

−
M

an
no

se
)

B
02

 (
a−

D
−

La
ct

os
e)

B
08

 (
N

−
A

ce
ty

l−
D

−
G

al
ac

to
sa

m
in

e)

A
06

 (
b−

G
en

tio
bi

os
e)

B
03

 (
D

−
M

el
ib

io
se

)

B
04

 (
b−

M
et

hy
l−

D
−

G
al

ac
to

si
de

)

B
07

 (
N

−
A

ce
ty

l−
b−

D
−

M
an

no
sa

m
in

e)

A
03

 (
D

−
M

al
to

se
)

F
07

 (
M

uc
ic

 A
ci

d)

F
09

 (
D

−
S

ac
ch

ar
ic

 A
ci

d)

G
02

 (
M

et
hy

l P
yr

uv
at

e)

H
05

 (
a−

K
et

o−
B

ut
yr

ic
 A

ci
d)

H
03

 (
a−

H
yd

ro
xy

−
B

ut
yr

ic
 A

ci
d)

H
12

 (
S

od
iu

m
 B

ro
m

at
e)

G
09

 (
B

ro
m

o−
S

uc
ci

ni
c

A
ci

d)

C
08

 (
L−

R
ha

m
no

se
)

A
02

 (
D

ex
tr

in
)

D
01

 (
D

−
S

or
bi

to
l)

F
03

 (
L−

G
al

ac
to

ni
c

A
ci

d−
g−

La
ct

on
e)

D
06

 (
D

−
G

lu
co

se
−

6−
P

ho
sp

ha
te

)

G
07

 (
D

−
M

al
ic

 A
ci

d)

F
02

 (
D

−
G

al
ac

tu
ro

ni
c

A
ci

d)

F
05

 (
D

−
G

lu
cu

ro
ni

c
A

ci
d)

D
09

 (
D

−
S

er
in

e)

D
07

 (
D

−
F

ru
ct

os
e−

6−
P

ho
sp

ha
te

)

D
03

 (
D

−
A

ra
bi

to
l)

H
01

 (
Tw

ee
n

40
)

E
07

 (
L−

H
is

tid
in

e)

E
08

 (
L−

P
yr

og
lu

ta
m

ic
 A

ci
d)

H
02

 (
g−

A
m

in
o−

n−
B

ut
yr

ic
 A

ci
d)

G
05

 (
C

itr
ic

 A
ci

d)

G
01

 (
p−

H
yd

ro
xy

−
P

he
ny

la
ce

tic
 A

ci
d)

F
08

 (
Q

ui
ni

c
A

ci
d)

E
04

 (
L−

A
rg

in
in

e)

H
04

 (
b−

H
yd

ro
xy

−
B

ut
yr

ic
 A

ci
d)

G
12

 (
P

ot
as

si
um

 T
el

lu
rit

e)

E
06

 (
L−

G
lu

ta
m

ic
 A

ci
d)

G
10

 (
N

al
id

ix
ic

 A
ci

d)

C
01

 (
D

−
G

lu
co

se
)

C
03

 (
D

−
F

ru
ct

os
e)

B
06

 (
N

−
A

ce
ty

l−
D

−
G

lu
co

sa
m

in
e)

C
09

 (
In

os
in

e)

C
12

 (
D

−
S

er
in

e)

D
05

 (
G

ly
ce

ro
l)

D
02

 (
D

−
M

an
ni

to
l)

F
11

 (
Te

tr
az

ol
iu

m
 V

io
le

t)

F
12

 (
Te

tr
az

ol
iu

m
 B

lu
e)

G
04

 (
L−

La
ct

ic
 A

ci
d)

H
11

 (
B

ut
yr

ic
 A

ci
d)

F
10

 (
V

an
co

m
yc

in
)

E
10

 (
Li

nc
om

yc
in

)

A
11

 (
pH

 6
)

A
10

 (
P

os
iti

ve
 C

on
tr

ol
)

E
12

 (
N

ia
pr

oo
f 4

)

A
12

 (
pH

 5
)

D
12

 (
M

in
oc

yc
lin

e)

B
10

 (
1%

 N
aC

l)

E
11

 (
G

ua
ni

di
ne

 H
yd

ro
ch

lo
rid

e)

G
11

 (
Li

th
iu

m
 C

hl
or

id
e)

E
09

 (
L−

S
er

in
e)

H
10

 (
A

zt
re

on
am

)

B
12

 (
8%

 N
aC

l)

E
03

 (
L−

A
la

ni
ne

)

D
11

 (
R

ifa
m

yc
in

 S
V

)

C
10

 (
1%

 S
od

iu
m

 L
ac

ta
te

)

D
10

 (
Tr

ol
ea

nd
om

yc
in

)

C
11

 (
F

us
id

ic
 A

ci
d)

B
11

 (
4%

 N
aC

l)

H
07

 (
P

ro
pi

on
ic

 A
ci

d)

F
04

 (
D

−
G

lu
co

ni
c

A
ci

d)

G
08

 (
L−

M
al

ic
 A

ci
d)

H
08

 (
A

ce
tic

 A
ci

d)

E
05

 (
L−

A
sp

ar
tic

 A
ci

d)

E
02

 (
G

ly
cy

l−
L−

P
ro

lin
e)

G
06

 (
a−

K
et

o−
G

lu
ta

ric
 A

ci
d)

DSM1707

429SC1

DSM18039

DSM30083T

50 100 150 200 250 300 350
Value

0
2

4
6

8
10

12

Color Key
and Histogram

C
ou

nt

Figure 8: Visualization of the clustered results from the curve parameter maximum height (A)
for each substrate using the function heat_map(). The x-axis corresponds to the substrates
clustered according to the similarity of their values over all plates; the y-axis corresponds
to the plates clustered to the similarity of their values over all substrates. As row labels,
the strain names were selected, whereas the species affiliations was used to assign row group
colours (bars at the left side). The central rectangle is a substrate x plate matrix in which
the colours represent the classes of values. The default colour setting uses topological colours,
with deep violet and blue indicating the lowest values and light brown indicating the highest
values.

The ci_plot() function (see Figure 9) provides a visualization of the point estimator and
its 95% confidence interval calculated via bootstrapping during aggregation of curves into
parameters. The user is free to select the subsets of interest via the bracket operator as
described above (see Section 3.5):

R> ci_plot.legend <- ci_plot(vaas.1.6[, , 1:3],

as.labels = list("Species", "Strain"), subset = "A",

legend.field = NULL, x = 150, y = 3)

3.8. Discretization and phylogenetic data export

After suitable subsetting and extraction of one of the curve parameters, data can be dis-
cretized and optionally also be exported for analysis with external phylogeny software. In the

24 Phenotype MicroArray Data

−50 0 50 100 150 200

A01 (Negative Control)

1
2

3
4

()●

()●

()●

()●

50 100 150 200 250 300

A02 (Dextrin)

1
2

3
4

()●

()●

()●

()●

50 100 150 200 250 300

A03 (D−Maltose)

1
2

3
4

()●

()●

()●

()●

1: Escherichia coli DSM18039
2: Escherichia coli DSM30083T
3: Pseudomonas aeruginosa 429SC1
4: Pseudomonas aeruginosa DSM1707

Figure 9: Comparison of point estimates and their 95% confidence intervals for the parameter
maximum height (A) observed from four strains. Shown are the results on the three wells A01
(negative control), A02 (Dextrin) and A03 (D-Maltose) as indicated by the sub-plot titles.

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 25

opm manual, the functions relevant for either task are contained in the families“discretization-
functions”and“phylogeny-functions”with according cross-references. Restricting the vaas_et_al
example dataset to the two biological replicates yields an orthogonal dataset with 2×10 repli-
cates for each of the four strains for which we can calculate discretized parameters:

R> vaas.repl <- subset(vaas_et_al,

query = list(Experiment = c("First replicate", "Second replicate")))

R> vaas.repl <- do_disc(vaas.repl)

Note that the resulting objects is an OPMS object with OPMD objects as elements. Such
objects contain discretized values available via discretized() and the discretization settings
used, which can be obtained using disc_settings(). This works much like aggregated()

and aggr_settings() explained above. disc_settings() also yields the computed dis-
cretization cutoffs. The subset() function has a positive argument that allows one to
create a subset containing only the wells that were positive in at least one plate or in all
plates, as well as a negative argument. See the manual for details.

The listing() methods of the OPMD and OPMD classes create textual descriptions of the
discretization results suitable for the direct inclusion in scientific manuscripts.

R> listing(vaas.repl, as.groups = NULL)

R> listing(vaas.repl, as.groups = list("Species"))

As usual, the results can be grouped according to specified metadata entries using the
“as.groups” argument. If this yields ambiguities (such as a negative reaction of the same
well on one plate and a positive reaction on another plate), the result is accordingly renamed.
The “cutoff” argument can be used to define filters, keeping only those values that occur in a
specified minimum proportion of wells. See the manual for details.

The default settings of do_disc() imply exact k-means partitioning into three groups (“neg-
ative”, “ambiguous” and “positive”), treating all contained plates together. Let A1 and A2 be
the maximum-height parameters from two curves C1 and C2, respectively, and let us assume
that A1 ≥ A2 holds. The algorithm then guarantees that if C2 is judged as positive reaction
then C1 is also judged as positive; if C2 is weak then C1 is not negative; if C1 is negative then
C2 is negative; and if C1 is weak then C2 is not positive. There are not many other things
the algorithm guarantees. Note particularly that always three clusters result by default (one
can omit the middle cluster, i.e. the “weak” reactions), irrespective of the input data. That
is, additionally checking the curve heights and particularly the “cutoffs” entry obtained via
disc_settings() should be mandatory.

The manual describes the other discretization approaches available in opm, such as using
best_cutoff() instead of k-means partitioning, and using subsets of the plates, specified
using stored metainformation.

The HTML created by opm deliberately contains no formatting instructions. Rather, it is
possible (and recommended) to link it to a CSS file. As the generated HTML is richly anno-
tated with “class” attributes, which not only provide information on the structure of the file
but also on the depicted data, very specific formatting can be obtained just by modifying one
to several associated CSS files.

For the following example, we set the default CSS file to be linked from the generated HTML
to the file that comes with opm.

26 Phenotype MicroArray Data

R> opm_opt(css.file = grep("[.]css$", opm_files("auxiliary"), value = TRUE))

Users who want to define their own CSS files can start with modifying the file shipped with
opm. Microsoft Windows users should consider that the path to the file must be provided in
UNIX style, as obtained, e.g., using normalizePath(x, winslash = "/") if x is the path to
the file. Anyway, one could now easily create an HTML table from the discretized data and
write it to a file:

R> vaas.html <- phylo_data(vaas.repl, format = "html",

as.labels = list("Species", "Strain"), outfile = "vaas.html")

By default columns with measurement repetitions as specified using as.labels are joined
together. The delete argument specifies how to reduce the table: either not at all or keeping
only the variable, parsimony-informative or non-ambiguous characters. The legend of the table
is as used in taxonomic journals such as IJSEM but could also be adapted. Users can modify
the headline, add sections before the table legend, or before or after the table. The title and
the “meta” entries of the resulting HTML can also be modified. The phylo_data() methods
have an auxiliary function, html_args, which assists in putting together the arguments that
determine the shape and content of the HTML output. See the manual for further details.

One can also conduct discretization step-by-step by using the functions best_cutoff() or
discrete() after extracting matrices from the OPMS object. This offers more flexibility
(such as additional discretization approaches, e.g. the creation of multiple-state characters)
but is also more tedious.

R> vaas.repl <- subset(vaas_et_al,

query = list(Experiment = c("First replicate", "Second replicate")))

R> vaas.repl <- extract(vaas.repl,

as.labels = list("Species", "Strain", "Experiment", "Plate number"))

The A parameter can be discretized into (per default) 32 states using the theoretical range
of 0 to 400 OmniLog® units (see Section 2.8):

R> vaas.repl.disc <- discrete(vaas.repl, range = c(0, 400))

This yields (at most) 32 distinct character states corresponding to the 32 equal-width inter-
vals within 0 and 400. Exporting the data in extended PHYLIP format readable by RAxML
(Stamatakis et al. 2005) would work as follows:

R> phylo_data(vaas.repl.disc, outfile = "example_replicates.epf")

The other supported formats are PHYLIP, NEXUS and TNT (Goloboff et al. 2008). For
discretizing the data not in equally spaced intervals but into binary characters including
missing data, or ternary characters with a third, intermediary state between ”negative” and
”positive” the gap mode of discrete() can be used:

R> vaas.repl.disc <- discrete(vaas.repl, range = c(120.2, 236.6), gap = TRUE)

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 27

Here the range argument provides not the overall boundaries of the data as before (at least
as large as the real range), but the boundaries of a zone within the real range of the data
corresponding to an area of ambiguous affiliation. That is, values below 120.2 are coded
as “0”, those above 236.6 as “1”, and those in between as “?”. The values used above were
determined by k-means partitioning of the A values from the vaas_et_al dataset (Vaas et al.
2012); there is currently no conclusive evidence that they can generally be applied. The last
command would result in the treatment of values within the given range as “missing data” (NA
in R, “?” if exported). To treat them as a third, intermediary character state, set middle.na
to FALSE:

R> vaas.repl.disc <- discrete(vaas.repl, range = c(120.2, 236.6),

gap = TRUE, middle.na = FALSE)

The three resulting states, coded as “0”, “1” and “2” (in contrast to “0”, “?” and “1” above)
would have to be interpreted as “negative”, “weak” and “positive”. Exporting the data in
one of the supported phylogeny formats would work as described above. If the do_disc()

function described above calls discrete(), then only in gap mode and with middle.na set
to TRUE, yielding a vector or logical matrix.

3.9. Accessing substrate information

The opm package contains a number of functions suitable for accessing precomputed infor-
mation on the substrates of wells and plates. In the manual, these functions are contained
in the family “naming-functions” with according cross-references. One usually would start a
search by determining the exact spelling of an internally used name with find_substrate():

R> (names <- find_substrate(c("Glutamine", "Glutamic acid")))

The results is a list containing character vectors with the results for each query name as values.
Surprisingly, nothing was found for “Glutamic acid” but several values for “Glutamine”. The
default search argument is “exact”, which is exact (case-sensitive) matching of substrings of
the names. One might want to use “glob” searching mode:

R> (names <- find_substrate(c("L-Glutamine", "L-Glutamic acid"), "glob"))

But with so-called wildcards, i.e. “*” for zero to many and “?” for a single arbitrary character
the search is more flexible:

R> (names <- find_substrate(c("*L-Glutamine", "*L-Glutamic acid"), "glob"))

This fetches all terms that end in either query character string, and does so case-insensitively.
Advanced users can apply the much more powerful “regex” and “approx” search modes; see
the manual for details.

Once the internally used names have been found, information on the substrates can be queried
such as their occurrences and positions on plates:

R> (positions <- find_positions(names))

28 Phenotype MicroArray Data

This yields a nested list containing two-column matrices with plate names in the first and well
coordinates in the second column. References to external data resources for each substrate
name can be obtained using substrate_info():

R> (subst.info <- substrate_info(names))

By default this yields CAS numbers, but KEGG and Metacyc IDs have also been collected
for the majority of the substrates. Another use of substrate_info() is to convert substrate
names to lower case but protecting name components such as abbreviations or chemical
symbols. See the manual for further details.

3.10. Global settings

It is possible to modify settings that have an effect on multiple functions and/or on frequently
used arguments globally using opm_opt(). It is checked that the novel values inherit from
the same class(es) than the old ones. See the manual for details.

4. Discussion and conclusion

The high-dimensional sets of longitudinal data collected by the OmniLog® PM system call
for fast and easily applicable (and extendable) data organisation and analysis facilities. The
here presented opm package for the free statistical software R (R Development Core Team
2011) features not only the calculation of aggregated values (curve parameters) including
their (bootstrapped) confidence intervals, but also provides a rather complete infrastructure
for the management of raw kinetic values and aggregated curve parameters together with
any kind of meta-information of relevance for the user. The analysis toolbox of the package
includes the implementation of a fully automated estimation of whether respiration kinetics
should be classified as either a “positive” or “negative” (absent) physiological reaction. This
dichotomization is apparently of high interest to many users of the OmniLog® PM system
but would apparently be extremely biased as long as thresholds are chosen ad hoc and by eye.
(Users should nevertheless be aware that loss of information is inherent to discretizing contin-
uous data.) The opm package enables the user to produce highly informative and specialized
graphical outputs from both the raw kinetic data as well as the curve parameter estimates. In
combination with the functionality for annotating the data with meta-information and then
selecting subsets of the data, straightforward analyses regarding specific analytical questions
can be performed without the need to invoke other R packages.

But since the design of the opm objects is not intended to be limited to specific analysis
frameworks, the opm package works as a data containment providing well organized and
comprehensive PM data for further, more specialized analyses using methods from different
R packages or other third party software tools including phylogeny software. The generation
of S4 objects featuring a rich set of methods as containers for either single or multiple Om-
niLog® PM plates enables not only the transfer of raw kinetic data into R but also eases their
further processing with, for example, other R packages. The complex data bundles can also
be exported in YAML format (www.yaml.org), which is a human-readable data serialization
format that can be read by most common programming languages and facilitates fast and
easy data exchange between laboratories.

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 29

These features render the opm package to be the first comprehensive toolbox for the man-
agement and a broad range of analyses of OmniLog® PM data. Its usage requires some
familiarity with R, but is otherwise intuitive and straightforward also for biologists who are
not used to command-line based software.

An enhancement of the opm package would be to include much more precomputed information
about the substrates, thus greatly facilitating data arrangement and hypothesis testing. At
the moment only the translation of well coordinates to substrate names is provided, as well
as access to CAS, KEGG and Metacyc IDs for the majority of the substrates. More substrate
information could be integrated into the package, particularly for arranging the substrate into
groups, thus easing testing of phenotypic hypotheses.

Potential for improvement can also be seen in the spline estimation and parameter calculation
in the data-aggregation step. One main issue in the spline-fitting procedure is the selection
of suitable smoothing parameters. The here presented methods provide a basic framework
for this based on methods from the grofit package, but could also be improved by the incor-
poration of approaches to the selection of smoothing parameters via cross-validation (Eilers
and Marx 1996), generalized cross-validation (Craven and Wahba 1979) and application of
information criteria like AIC or BIC (Eilers and Marx 1996) into the fitting procedure (Vaas
et al. 2012). Last but not least, it might also be useful to provide functionality for a direct
cross-talk between opm and database management systems. The current version is entirely
file-based, and whereas powerful selection mechanisms for both input files and container ob-
jects for previously imported PM plates have already been implemented, future version could
directly include database access. In the meantime, however, the output YAML format is likely
to facilitate the quick establishment of third-party software for importing PM data into a
database.

To summarize, we are convinced that the opm package already enables the users to analyse
OmniLog® PM data in rather unlimited exploratory directions.

5. Acknowledgements

We thank Barry Bochner (BIOLOG Inc.), John Kirkish (BIOLOG Inc.), Andre Chouankam
(BIOLOG Inc.), Jan Meier-Kolthoff (DSMZ), and Stefan Ehrentraut (DSMZ) for helpful
advice, as well as Victoria Michael (DSMZ) for technical support. This work was supported
by the German Research Foundation (DFG) SFB/TRR 51 and by the Microme project within
the Framework 7 programme of the European Commission, which is gratefully acknowledged.
JS gratefully acknowledges his support by DFG grant SI 1352/1-2.

References

Berger S, Stamatakis A (2010). “Accuracy of Morphology-Based Phylogenetic Fossil Place-
ment under Maximum Likelihood.” In 8th ACS/IEEE International Conference on Com-
puter Systems and Applications (AICCSA-10). ACS/IEEE, Hammamet, Tunisia.

BiOLOG Inc (2009). Converter, File Management Software, Parametric Software, Phenotype
MicroArray, User Guide, Part 90333. Biolog Inc., Hayward CA.

30 Phenotype MicroArray Data

Bochner B (2009). “Global Phenotypic Characterization of Bacteria.” FEMS Microbiological
Reviews, 33, 191–205.

Bochner B, Gadzinski P, Panomitros E (2001). “Phenotype MicroArrays for High Throughput
Phenotypic Testing and Assay of Gene Function.” Genome Research, 11, 1246–1255.

Bochner B, Savageau M (1977). “Generalized Indicator Plate for Genetic, Metabolic, and
Taxonomic Studies with Microorganisms.” Applied and Environmental Microbiology, 33,
434–444.

Brisbin I, Collins C, White G, McCallum D (1987). “A New Paradigm for the Analysis and
Interpretation of Growth Data: The Shape of Things to Come.” The Auk, 104, 552–553.

Broadbent J, Larsen R, Deibel V, Steele J (2010). “Physiological and Transcriptional Response
of Lactobacillus casei ATCC 334 to Acid Stress.” Journal of Bacteriology, 192, 2445–2458.

Chambers J (1998). Programming with Data. Statistics and Computing. Springer-Verlag,
New York.

Craven P, Wahba G (1979). “Smoothing Noisy Data with Spline Functions.” Numerische
Mathematik, 31, 377–403.

Dougherty J, Kohavi R, Sahami M (1995). “Supervised and Unsupervised Discretization of
Continuous Features.” In A Prieditis, S Russell (eds.), Machine Learning: Proceedings of
the fifth international conference.

Efron B (1979). “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statis-
tics, 7, 1–26.

Eilers P, Marx B (1996). “Flexible Smoothing with B-splines and Penalties.” Statistical
Sciences, 11, 89–121.

Farris J (1970). “Methods for Computing Wagner Trees.” Systematic Zoology, 19, 83–92.

Felsenstein J (2004). Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA.

Fitch W (1971). “Towards Defining the Course of Evolution: Minimal Change for a Specified
Tree Topology.” Systematic Zoology, 20, 406–416.

Goloboff P, Farris J, Nixon K (2008). “TNT, a Free Program for Phylogenetic Analysis.”
Cladistics, 24, 774–786.

Kahm M, Hasenbrink G, Lichtenberg-Frate H, Ludwig J, Kschischo M (2010). “grofit: Fit-
ting Biological Growth Curves with R.” Journal of Statistical Software, 33, 1–21. URL:
http://cran.r-project.org/web/packages/grofit/.

Mahner M, Kary M (1997). “What Exactly are Genomes, Genotypes and Phenotypes? And
what about Phenomes?” Journal of Theoretical Biology, 186, 55–63.

Mayr E (1997). “The Objects of Selection.” Proceedings of the National Academy of Science
USA, 94, 2091–2094.

L.A.I. Vaas, J. Sikorski, B. Hofner, N. Buddruhs, A. Fiebig, H.-P. Klenk, M. Göker 31

Mithani A, Hein J, Preston G (2011). “Comparative Analysis of Metabolic Networks Pro-
vides Insight into the Evolution of Plant Pathogenic and Nonpathogenic Lifestyles in Pseu-
domonas.” Molecular Biology and Evolution, 28, 483–499.

R Development Core Team (2011). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-
project.org/.

Selezska K, Kazmierczak M, Müsken M, Garbe J, Schobert M, Häussler S, Wiehlmann L,
Rohde C, Sikorski J (2012). “Pseudomonas aeruginosa Population Structure Revisited
under Environmental Focus: Impact of Water Quality and Phage Pressure.” Environmental
Microbiology, 14, 1952–1967.

Stamatakis A, Ludwig T, Meier H (2005). “RAxML-III: A fast Program for Maximum
Likelihood-Based Inference of Large Phylogenetic Trees.” Bioformatics, 21, 456–463.

Swofford D (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).
Version 4. Sinauer Associates, Sunderland, Massachusetts.

Tindall B, Kämpfer P, Euzéby J, Oren A (2006). “Valid publication of names of prokaryotes
according to the rules of nomenclature: past history and current practice.” International
Journal of Systematic and Evolutionary Microbiology, 56, 2715–2720.

Vaas L, Sikorski J, Michael V, Göker M, Klenk H (2012). “Visualization and Curve Parameter
Estimation Strategies for Efficient Exploration of Phenotype MicroArray Kinetics.” PLoS
ONE, 7, e34846.

Ventura D, Martinez T (1995). “An Empirical Comparison of Discretization Methods.” In
Proceedings of the Tenth International Symposium on Computer and Information Sciences,
pp. 443–450. Morgan Kaufmann Publishers, San Francisco, CA.

Wang H, Song M (2011). “Ckmeans.1d.dp: optimal k-means clustering in one dimension by
dynamic programming.” The R Journal, 3, 29–33.

Affiliation:

Markus Göker
Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures
Braunschweig

Telephone: +49/531-2616-272
Fax: +49/531-2616-237
E-mail: markus.goeker@dsmz.de
URL: www.dsmz.de

mailto:markus.goeker@dsmz.de
www.dsmz.de

	Introduction
	Methods
	Overview
	Data import
	Integration of metadata
	Aggregating data by estimating curve parameters
	Manipulation of OPM and OPMS data
	Plotting functions for raw data
	Plotting the aggregated data
	Discretizing and exporting the aggregated data

	Program application
	Overview
	Data import
	Integration and manipulation of metadata
	Aggregating data by estimating curve parameters
	Manipulation of OPM and OPMS data
	Plotting functions for raw data
	Plotting the aggregated data
	Discretization and phylogenetic data export
	Accessing substrate information
	Global settings

	Discussion and conclusion
	Acknowledgements

