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Abstract
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Table 1: Ratings of the bitterness of some white wines. Data are adopted from Randall
(1989).

Judge
Temperature Contact Bottle 1 2 3 4 5 6 7 8 9
cold no 1 2 1 2 3 2 3 1 2 1
cold no 2 3 2 3 2 3 2 1 2 2
cold yes 3 3 1 3 3 4 3 2 2 3
cold yes 4 4 3 2 2 3 2 2 3 2
warm no 5 4 2 5 3 3 2 2 3 3
warm no 6 4 3 5 2 3 4 3 3 2
warm yes 7 5 5 4 5 3 5 2 3 4
warm yes 8 5 4 4 3 3 4 3 4 4

1 Introduction

We will consider the data on the bitterness of wine from Randall (1989) presented in Table 1
and available as the object wine in package ordinal. The data were also analyzed with mixed
effects models by Tutz and Hennevogl (1996). The following gives an impression of the wine
data object:

> data(wine)

> head(wine)

response rating temp contact bottle judge

1 36 2 cold no 1 1

2 48 3 cold no 2 1

3 47 3 cold yes 3 1

4 67 4 cold yes 4 1

5 77 4 warm no 5 1

6 60 4 warm no 6 1

> str(wine)

'data.frame': 72 obs. of 6 variables:

$ response: num 36 48 47 67 77 60 83 90 17 22 ...

$ rating : Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 2 3 3 4 4 4 5 5 1 2 ...

$ temp : Factor w/ 2 levels "cold","warm": 1 1 1 1 2 2 2 2 1 1 ...

$ contact : Factor w/ 2 levels "no","yes": 1 1 2 2 1 1 2 2 1 1 ...

$ bottle : Factor w/ 8 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 1 2 ...

$ judge : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 2 2 ...

The data represent a factorial experiment on factors determining the bitterness of wine with
1 = “least bitter” and 5 = “most bitter”. Two treatment factors (temperature and contact)
each have two levels. Temperature and contact between juice and skins can be controlled
when crushing grapes during wine production. Nine judges each assessed wine from two
bottles from each of the four treatment conditions, hence there are 72 observations in all.
For more information see the manual entry for the wine data: help(wine).

The intention with this tutorial is not to explain cumulative link models in details, rather
the main aim is to briefly cover the main functions and methods in the ordinal package to
analyze ordinal data. A more thorough introduction to cumulative link models and the
ordinal package is given in Christensen (2011); a book length treatment of ordinal data
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analysis is given by Agresti (2010) although not related to the ordinal package.

2 Fitting Cumulative Link Models

We will fit the following cumulative link model to the wine data:

logit(P (Yi ≤ j)) = θj − β1(tempi)− β2(contacti)
i = 1, . . . , n, j = 1, . . . , J − 1

(1)

This is a model for the cumulative probability of the ith rating falling in the jth category or
below, where i index all observations (n = 72) and j = 1, . . . , J index the response categories
(J = 5). The thetaj parameter is the intercept for the jth cumulative logit logit(P (Yi ≤ j));
they are known as threshold parameters, intercepts or cut-points.

This model is also known as the proportional odds model, a cumulative logit model, and an
ordered logit model.

We fit this cumulative link model by maximum likelihood with the clm function in package
ordinal. Here we save the fitted clm model in the object fm1 (short for fitted model 1) and
print the model by simply typing its name:

> fm1 <- clm(rating ~ temp + contact, data=wine)

> fm1

formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad

logit flexible 72 -86.49 184.98 6(0) 4.01e-12

Coefficients:

tempwarm contactyes

2.503 1.528

Threshold coefficients:

1|2 2|3 3|4 4|5

-1.344 1.251 3.467 5.006

Additional information is provided with the summary method:

> summary(fm1)

formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.49 184.98 6(0) 4.01e-12 2.7e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.5031 0.5287 4.735 2.19e-06 ***

contactyes 1.5278 0.4766 3.205 0.00135 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Threshold coefficients:

Estimate Std. Error z value

1|2 -1.3444 0.5171 -2.600

2|3 1.2508 0.4379 2.857

3|4 3.4669 0.5978 5.800

4|5 5.0064 0.7309 6.850

The primary result is the coefficient table with parameter estimates, standard errors and
Wald (or normal) based p-values for tests of the parameters being zero. The maximum
likelihood estimates of the parameters are:

β̂1 = 2.50, β̂2 = 1.53, {θ̂j} = {−1.34, 1.25, 3.47, 5.01}. (2)

The number of Newton-Raphson iterations is given below niter with the number of step-
halvings in parenthesis. max.grad is the maximum absolute gradient of the log-likelihood
function with respect to the parameters. A small absolute gradient is a necessary condition
for convergence of the model. The iterative procedure will declare convergence whenever
the maximum absolute gradient is below

> clm.control()$gradTol

[1] 1e-06

which may be altered — see help(clm.control).

The condition number of the Hessian (cond.H) measures the empirical identifiability of the
model. High numbers, say larger than 104 or 106 indicate that the model is ill defined.
This could indicate that the model can be simplified, that possibly some parameters are not
identifiable, and that optimization of the model can be difficult. In this case the condition
number of the Hessian does not indicate a problem with the model.

The coefficients for temp and contact are positive indicating that higher temperature and
more contact increase the bitterness of wine, i.e., rating in higher categories is more likely.
The odds ratio of the event Y ≥ j is exp(βtreatment), thus the odds ratio of bitterness being
rated in category j or above at warm relative to cold temperatures is

> exp(coef(fm1)[5])

tempwarm

12.22034

The p-values for the location coefficients provided by the summary method are based on the
so-called Wald statistic. More accurate tests are provided by likelihood ratio tests. These
can be obtained with the anova method, for example, the likelihood ratio test of contact
is

> fm2 <- clm(rating ~ temp, data=wine)

> anova(fm2, fm1)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm2 rating ~ temp logit flexible

fm1 rating ~ temp + contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm2 5 194.03 -92.013
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fm1 6 184.98 -86.492 11.043 1 0.0008902 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

which in this case produces a slightly lower p-value. Equivalently we can use drop1 to
obtain likelihood ratio tests of the explanatory variables while controlling for the remaining
variables:

> drop1(fm1, test = "Chi")

Single term deletions

Model:

rating ~ temp + contact

Df AIC LRT Pr(>Chi)

<none> 184.98

temp 1 209.91 26.928 2.112e-07 ***

contact 1 194.03 11.043 0.0008902 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Likelihood ratio tests of the explanatory variables while ignoring the remaining variables
are provided by the add1 method:

> fm0 <- clm(rating ~ 1, data=wine)

> add1(fm0, scope = ~ temp + contact, test = "Chi")

Single term additions

Model:

rating ~ 1

Df AIC LRT Pr(>Chi)

<none> 215.44

temp 1 194.03 23.4113 1.308e-06 ***

contact 1 209.91 7.5263 0.00608 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case these latter tests are not as strong as the tests controlling for the other variable.

Confidence intervals are provided by the confint method:

> confint(fm1)

2.5 % 97.5 %

tempwarm 1.5097627 3.595225

contactyes 0.6157925 2.492404

These are based on the profile likelihood function and generally fairly accurate. Less ac-
curate, but simple and symmetric confidence intervals based on the standard errors of the
parameters (so-called Wald confidence intervals) can be obtained with

> confint(fm1, type="Wald")

2.5 % 97.5 %

1|2 -2.3578848 -0.330882

2|3 0.3925794 2.109038

3|4 2.2952980 4.638476

4|5 3.5738541 6.438954

tempwarm 1.4669081 3.539296
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contactyes 0.5936345 2.461961

In addition to the logit link, which is the default, the probit, log-log, complementary log-log
and cauchit links are also available. For instance, a proportional hazards model for grouped
survival times is fitted using the complementary log-log link:

> fm.cll <- clm(rating ~ contact + temp, data=wine, link="cloglog")

The cumulative link model in (1) assume that the thresholds, {θj} are constant for all
values of the remaining explanatory variables, here temp and contact. This is generally
referred to as the proportional odds assumption or equal slopes assumption. We can relax
that assumption in two general ways: with nominal effects and scale effects which we will
now discuss in turn.

3 Nominal Effects

The CLM in (1) specifies a structure in which the regression parameters, β are not allowed
to vary with j. Nominal effects relax this assumption by allowing one or more regression
parameters to vary with j. In the following model we allow the regression parameter for
contact to vary with j:

logit(P (Yi ≤ j)) = θj − β1(tempi)− β2j(contacti)
i = 1, . . . , n, j = 1, . . . , J − 1

(3)

This means that there is one estimate of β2 for each j. This model is specified as follows
with clm:

> fm.nom <- clm(rating ~ temp, nominal=~contact, data=wine)

> summary(fm.nom)

formula: rating ~ temp

nominal: ~contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.21 190.42 6(0) 1.64e-10 4.8e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.519 0.535 4.708 2.5e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2.(Intercept) -1.3230 0.5623 -2.353

2|3.(Intercept) 1.2464 0.4748 2.625

3|4.(Intercept) 3.5500 0.6560 5.411

4|5.(Intercept) 4.6602 0.8604 5.416

1|2.contactyes -1.6151 1.1618 -1.390

2|3.contactyes -1.5116 0.5906 -2.559

3|4.contactyes -1.6748 0.6488 -2.581

4|5.contactyes -1.0506 0.8965 -1.172
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As can be seen from the output of summary there is no regression coefficient estimated for
contact, but there are two sets of threshold parameters estimated.

The first five threshold parameters have .(Intercept) appended their names indicating that
these are the estimates of θj . The following five threshold parameters have .contactyes

appended their name indicating that these parameters are differences between the threshold
parameters at the two levels of contact. This interpretation corresponds to the default
treatment contrasts; if other types of contrasts are specified, the interpretation is a little
different. As can be seen from the output, the effect of contact is almost constant across
thresholds and around 1.5 corresponding to the estimate from fm1 on page 4, so probably
there is not much evidence that the effect of contact varies with j

We can perform a likelihood ratio test of the equal slopes or proportional odds assumption
for contact by comparing the likelihoods of models (1) and (3) as follows:

> anova(fm1, fm.nom)

Likelihood ratio tests of cumulative link models:

formula: nominal: link: threshold:

fm1 rating ~ temp + contact ~1 logit flexible

fm.nom rating ~ temp ~contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm1 6 184.98 -86.492

fm.nom 9 190.42 -86.209 0.5667 3 0.904

There is only little difference in the log-likelihoods of the two models, so the test is insignif-
icant. There is therefore no evidence that the proportional odds assumption is violated for
contact.

It is not possible to estimate both β2 and β2j in the same model. Consequently variables
that appear in nominal cannot enter elsewhere as well. For instance not all parameters are
identifiable in the following model:

> fm.nom2 <- clm(rating ~ temp + contact, nominal=~contact, data=wine)

We are made aware of this when summarizing or printing the model:

> summary(fm.nom2)

formula: rating ~ temp + contact

nominal: ~contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.21 190.42 6(0) 1.64e-10 4.8e+01

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.519 0.535 4.708 2.5e-06 ***

contactyes NA NA NA NA

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2.(Intercept) -1.3230 0.5623 -2.353
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2|3.(Intercept) 1.2464 0.4748 2.625

3|4.(Intercept) 3.5500 0.6560 5.411

4|5.(Intercept) 4.6602 0.8604 5.416

1|2.contactyes -1.6151 1.1618 -1.390

2|3.contactyes -1.5116 0.5906 -2.559

3|4.contactyes -1.6748 0.6488 -2.581

4|5.contactyes -1.0506 0.8965 -1.172

4 Scale Effects

Scale effects are usually motivated from the latent variable interpretation of a CLM. Assume
the following model for a latent variable:

Si = α∗ + xT
i β

∗ + εi, εi ∼ N(0, σ∗
2

) (4)

If the ordinal variable Yi is observed such that Yi = j is recorded if θ∗j−1
< Si ≤ θ∗j , where

−∞ ≡ θ∗
0
< θ∗

1
< . . . < θ∗J−1

< θ∗J ≡ ∞ (5)

then we have the cumulative link model for Yi:

P (Yi ≤ j) = Φ(θj − xT
i β)

where we have used θj = (θ∗j + α∗)/σ∗ and β = β∗/σ∗ (parameters with a “∗” exist on the
latent scale, while those without are identifiable), and Φ is the inverse probit link and denotes
the standard normal CDF. Other assumptions on the distribution of the latent variable, Si

lead to other link functions, e.g., a logistic distribution for the latent variable corresponds
to a logit link.

If the scale (or dispersion) of the latent distribution is described by a log-linear model such
that log(σi) = zT

i ζ (equivalently σi = exp(zT
i ζ); also note that zT

i ζ is a linear model just
like xT

i β), then the resulting CLM reads (for more details, see e.g., Christensen (2011) or
Agresti (2010)):

P (Yi ≤ j) = Φ

(

θj − xT
i β

σi

)

(6)

The conventional link functions in cumulative link models correspond to distributions for the
latent variable that are members of the location-scale family of distributions (cf. http://

en.wikipedia.org/wiki/Location-scale_family). They have the common form F (µ, σ),
where µ denotes the location of the distribution and σ denotes the scale of the distribution.
For instance in the normal distribution (probit link) µ is the mean, and σ is the spread,
while in the logistic distribution (logit link), µ is the mean and σπ/

√
3 is the spread (cf.

http://en.wikipedia.org/wiki/Logistic_distribution).

Thus allowing for scale effects corresponds to modelling not only the location of the latent
distribution, but also the scale. Just as the absolute location (α∗) is not identifiable, the
absolute scale (σ∗) is not identifiable either in the CLM, however differences in location
modelled with xT

i β and ratios of scale modelled with exp(zT
i ζ) are identifiable.

Now we turn to our running example and fit a model where we allow the scale of the latent
distribution to depend on temperature:

logit(P (Yi ≤ j)) =
θj − β1(tempi)− β2(contacti)

exp(ζ1(tempi))
(7)
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i = 1, . . . , n, j = 1, . . . , J − 1

We can estimate this model with

> fm.sca <- clm(rating ~ temp + contact, scale=~temp, data=wine)

> summary(fm.sca)

formula: rating ~ temp + contact

scale: ~temp

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.44 186.88 8(0) 5.25e-09 1.0e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.6294 0.6860 3.833 0.000127 ***

contactyes 1.5878 0.5301 2.995 0.002743 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log-scale coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 0.09536 0.29414 0.324 0.746

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.3520 0.5223 -2.588

2|3 1.2730 0.4533 2.808

3|4 3.6170 0.7774 4.653

4|5 5.2982 1.2027 4.405

Notice that both location and scale effects of temp are identifiable. Also notice that the
scale coefficient for temp is given on the log-scale, where the Wald test is more appropriate.
The absolute scale of the latent distribution is not estimable, but we can estimate the scale
at warm conditions relative to cold conditions. Therefore the estimate of κ in the relation
σwarm = κσcold is given by

> exp(fm.sca$zeta)

tempwarm

1.100054

However, the scale difference is not significant in this case as judged by the p-value in the
summary output. confint and anova apply with no change to models with scale, but drop1,
add1 and step methods will only drop or add terms to the (location) formula and not to
scale.

5 Structured Thresholds

In section 3 we relaxed the assumption that regression parameters have the same effect
across all thresholds. In this section we will instead impose additional restrictions on the
thresholds. In the following model we require that the thresholds, θj are equidistant or
equally spaced (θj − θj−1 = constant for j = 2, ..., J − 1):
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> fm.equi <- clm(rating ~ temp + contact, data=wine,

threshold="equidistant")

> summary(fm.equi)

formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit equidistant 72 -87.86 183.73 5(0) 4.80e-07 3.2e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.4632 0.5164 4.77 1.84e-06 ***

contactyes 1.5080 0.4712 3.20 0.00137 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

threshold.1 -1.0010 0.3978 -2.517

spacing 2.1229 0.2455 8.646

The parameters determining the thresholds are now the first threshold and the spacing
among consecutive thresholds. The mapping to this parameterization is stored in the trans-
pose of the Jacobian (tJac) component of the model fit. This makes it possible to get the
thresholds imposed by the equidistance structure with

> c(with(fm.equi, tJac %*% alpha))

[1] -1.001044 1.121892 3.244828 5.367764

The following shows that the distance between consecutive thresholds in fm1 is very close
to the spacing parameter from fm.equi:

> mean(diff(fm1$alpha))

[1] 2.116929

The gain in imposing additional restrictions on the thresholds is the use of fewer parameters.
Whether the restrictions are warranted by the data can be tested in a likelihood ratio test:

> anova(fm1, fm.equi)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm.equi rating ~ temp + contact logit equidistant

fm1 rating ~ temp + contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm.equi 4 183.73 -87.865

fm1 6 184.98 -86.492 2.7454 2 0.2534

In this case the test is non-significant, so there is no considerable loss of fit at the gain of
saving two parameters, hence we may retain the model with equally spaced thresholds.
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6 Predictions

Fitted values are extracted with e.g., fitted(fm1) and produce fitted probabilities, i.e., the
ith fitted probability is the probability that the ith observation falls in the response category
that it did. The predictions of which response class the observations would be most likely
to fall in given the model are obtained with:

> predict(fm1, type = "class")

$fit

[1] 2 2 3 3 3 3 4 4 2 2 3 3 3 3 4 4 2 2 3 3 3 3 4 4 2 2 3 3 3 3 4 4 2 2 3 3 3 3

[39] 4 4 2 2 3 3 3 3 4 4 2 2 3 3 3 3 4 4 2 2 3 3 3 3 4 4 2 2 3 3 3 3 4 4

Levels: 1 2 3 4 5

Say we just wanted the predictions for the four combinations of temp and contact. The
probability that an observation falls in each of the five response categories based on the
fitted model is given by:

> newData <- expand.grid(temp=levels(wine$temp),

contact=levels(wine$contact))

> cbind(newData, predict(fm1, newdata=newData)$fit)

temp contact 1 2 3 4 5

1 cold no 0.206790132 0.57064970 0.1922909 0.02361882 0.00665041

2 warm no 0.020887709 0.20141572 0.5015755 0.20049402 0.07562701

3 cold yes 0.053546010 0.37764614 0.4430599 0.09582084 0.02992711

4 warm yes 0.004608274 0.05380128 0.3042099 0.36359581 0.27378469

Standard errors and confidence intervals of predictions are also available, for example, the
predictions, standard errors and 95% confidence intervals are given by (illustrated here using
do.call for the first six observations):

> head(do.call("cbind", predict(fm1, se.fit=TRUE, interval=TRUE)))

fit se.fit lwr upr

[1,] 0.57064970 0.08683884 0.39887109 0.7269447

[2,] 0.19229094 0.06388672 0.09609419 0.3477399

[3,] 0.44305990 0.07939754 0.29746543 0.5991420

[4,] 0.09582084 0.04257593 0.03887676 0.2173139

[5,] 0.20049402 0.06761012 0.09886604 0.3643505

[6,] 0.20049402 0.06761012 0.09886604 0.3643505

The confidence level can be set with the level argument and other types of predictions are
available with the type argument.

7 Infinite Parameter Estimates

If we attempt to test the proportional odds assumption for temp, some peculiarities show
up:

> fm.nom2 <- clm(rating ~ contact, nominal=~temp, data=wine)

> summary(fm.nom2)

formula: rating ~ contact

nominal: ~temp

data: wine
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link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -84.90 187.81 16(0) 6.45e-07 2.8e+08

Coefficients:

Estimate Std. Error z value Pr(>|z|)

contactyes 1.4652 0.4688 3.125 0.00178 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2.(Intercept) -1.2656 0.5149 -2.458

2|3.(Intercept) 1.1040 0.4388 2.516

3|4.(Intercept) 3.7657 0.8046 4.680

4|5.(Intercept) 19.8964 2145.3568 0.009

1|2.tempwarm -16.0954 1245.0152 -0.013

2|3.tempwarm -2.1530 0.5898 -3.650

3|4.tempwarm -2.8733 0.8174 -3.515

4|5.tempwarm -17.5500 2145.3569 -0.008

Several of the threshold coefficients are extremely large with huge standard errors. Also the
condition number of the Hessian is very large and a larger number of iterations was used all
indicating that something is not well-behaved. The problem is that the the ML estimates
of some of the threshold parameters are at (plus/minus) infinity. clm is not able to detect
this and just stops iterating when the likelihood function is flat enough for the termination
criterion to be satisfied, i.e., when the maximum absolute gradient is small enough.

Even though some parameter estimates are not at (plus/minus) infinity while they should
have been, the remaining parameters are accurately determined and the value of the log-
likelihood is also accurately determined. This means that likelihood ratio tests are still
available, for example, it is still possible to test the proportional odds assumption for temp:

> anova(fm1, fm.nom2)

Likelihood ratio tests of cumulative link models:

formula: nominal: link: threshold:

fm1 rating ~ temp + contact ~1 logit flexible

fm.nom2 rating ~ contact ~temp logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm1 6 184.98 -86.492

fm.nom2 9 187.81 -84.904 3.175 3 0.3654

8 Unidentified parameters

In the following example (using another data set) one parameter is not identifiable:

> data(soup)

> fm.soup <- clm(SURENESS ~ PRODID * DAY, data=soup)

> summary(fm.soup)
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formula: SURENESS ~ PRODID * DAY

data: soup

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 1847 -2672.08 5374.16 6(1) 5.55e-13 9.4e+02

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

PRODID2 0.6665 0.2146 3.106 0.00189 **

PRODID3 1.2418 0.1784 6.959 3.42e-12 ***

PRODID4 0.6678 0.2197 3.040 0.00237 **

PRODID5 1.1194 0.2400 4.663 3.11e-06 ***

PRODID6 1.3503 0.2337 5.779 7.53e-09 ***

DAY2 -0.4134 0.1298 -3.186 0.00144 **

PRODID2:DAY2 0.4390 0.2590 1.695 0.09006 .

PRODID3:DAY2 NA NA NA NA

PRODID4:DAY2 0.3308 0.3056 1.083 0.27892

PRODID5:DAY2 0.3871 0.3248 1.192 0.23329

PRODID6:DAY2 0.5067 0.3350 1.513 0.13030

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.63086 0.10740 -15.184

2|3 -0.64177 0.09682 -6.629

3|4 -0.31295 0.09546 -3.278

4|5 -0.05644 0.09508 -0.594

5|6 0.61692 0.09640 6.399

The undefined parameter shows up as NA in the coefficient table. The source of the singularity
is revealed in the following table:

> with(soup, table(DAY, PRODID))

PRODID

DAY 1 2 3 4 5 6

1 369 94 184 93 88 93

2 370 275 0 92 97 92

which shows that the third PRODID was not presented at the second day at all. The design
matrix will in this case be column rank deficient (also referred to as singular). This is
detected by clm using the drop.coef function from ordinal. The following illustrates that
the column rank of the design matrix is less than its number of columns:

> mm <- model.matrix( ~ PRODID * DAY, data=soup)

> ncol(mm)

[1] 12

> qr(mm, LAPACK = FALSE)$rank

[1] 11

A similar type of rank deficiency occurs when variables in nominal are also present in
formula or scale as illustrated in section 3.
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9 Assessment of Model Convergence

The maximum likelihood estimates of the parameters in cumulative link models do not
have closed form expressions, so iterative methods have to be applied to fit the models.
Such iterative methods can fail to converge simply because an optimum cannot be found or
because the parameter estimates are not determined accurately enough.

An optimum has been found if the maximum absolute gradient is small and if the condition
number of the Hessian (defined here as the ratio of the largest to the smallest eigenvalues of
the Hessian evaluated at convergence) is positive and not very large, say smaller than 104 or
106. The maximum absolute gradient (max.grad) and the condition number of the Hessian
(cond.H) are reported by the summary method, for an example see page 4. A large condition
number of the Hessian is not necessarily a problem, but it can be. A small condition number
of the Hessian on the other hand is a good insurance that an optimum has been reached.
Thus the maximum absolute gradient and the condition number of the Hessian can be used
to check if the optimization has reached a well-defined optimum.

To determine the accuracy of the parameter estimates we use the convergence method:

> convergence(fm1)

nobs logLik niter max.grad cond.H logLik.Error

72 -86.49 6(0) 4.01e-12 2.7e+01 <1e-10

Estimate Std.Err Gradient Error Cor.Dec Sig.Dig

1|2 -1.344 0.5171 2.06e-12 3.09e-13 12 13

2|3 1.251 0.4379 2.12e-12 -2.42e-13 12 13

3|4 3.467 0.5978 -4.01e-12 -9.32e-13 11 12

4|5 5.006 0.7309 -7.77e-14 -9.22e-13 11 12

tempwarm 2.503 0.5287 -4.53e-13 -6.33e-13 11 12

contactyes 1.528 0.4766 6.20e-14 -2.95e-13 12 13

Eigen values of Hessian:

21.7090 18.5615 10.3914 5.2093 4.0955 0.8163

The most important information is the number of correct decimals (Cor.Dec) and the number
of significant digits (Sig.Dig) with which the parameters are determined. In this case all
parameters are very accurately determined, so there is no reason to lower the convergence
tolerance. The logLik.error shows that the error in the reported value of the log-likelihood
is below 10−10, which is by far small enough that likelihood ratio tests based on this model
are accurate.

The convergence properties of the fitted model may be illustrated by plotting slices of the
log-likelihood function for the parameters. The following code produce the slices in Figure 1.

> slice.fm1 <- slice(fm1, lambda = 5)

> par(mfrow = c(2, 3))

> plot(slice.fm1)

The slices illustrates the log-likelihood function plotted as a function each parameter in
turn while the remaining parameters are fixed at the ML estimates. The lambda argument
controls how far from the ML estimates the slices should be computed; it can be interpreted
as a multiplier in curvature units, where a curvature unit is similar to a standard error.

For an inspection of the log-likelihood function closer to the optimum we can use a smaller
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Figure 1: Slices of the (negative) log-likelihood function for parameters in a model for the
bitterness-of-wine data. Dashed lines indicate quadratic approximations to the log-likelihood
function and vertical bars indicate maximum likelihood estimates.
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Figure 2: Slices of the log-likelihood function for parameters in a model for the bitterness-
of-wine data very close to the MLEs. Dashed lines indicate quadratic approximations to the
log-likelihood function and vertical bars the indicate maximum likelihood estimates.

lambda:

> slice2.fm1 <- slice(fm1, lambda = 1e-5)

> par(mfrow = c(2, 3))

> plot(slice2.fm1)

The resulting figure is shown in Fig. 2.

10 Profile Likelihood

The profile likelihood can be used for several things. Two of the most important objectives
are to provide accurate likelihood confidence intervals and to illustrate effects of parameters
in the fitted model.

Confidence intervals based on the profile likelihood were already obtained in section 2 and
will not be treated any further here.

The effects of contact and temp can be illustrated with

> pr1 <- profile(fm1, alpha=1e-4)

> plot(pr1)

and provided in Figure 3. The alpha argument is the significance level controling how far
from the maximum likelihood estimate the likelihood function should be profiled. Learn
more about the arguments to profile with help(profile.clm). From the relative profile
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Figure 3: Relative profile likelihoods for the regression parameters in the Wine study. Hor-
izontal lines indicate 95% and 99% confidence bounds.

likelihood for tempwarm we see that parameter values between 1 and 4 are reasonably well
supported by the data, and values outside this range has little likelihood. Values between 2
and 3 are very well supported by the data and all have high likelihood.
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