
recommenderlab: A Framework for Developing and Testing

Recommendation Algorithms∗

Michael Hahsler

November 9, 2011

Abstract

The problem of creating recommendations given a large data base from directly elicited
ratings (e.g., ratings of 1 through 5 stars) is a popular research area which was lately boosted
by the Netflix Prize competition. While several libraries which implement recommender al-
gorithms have been developed over the last decade there is still the need for a framework
which facilitates research on recommender systems by providing a common development and
evaluation environment. This paper describes recommenderlab which provides the infrastruc-
ture to develop and test recommender algorithms for rating data and 0-1 data in a unified
framework. The Package provides basic algorithms and allows the user to develop and use
his/her own algorithms in the framework via a simple registration procedure.

1 Introduction

Predicting ratings and creating personalized recommendations for products like books, songs
or movies online came a long way from Information Lense, the first system using social filtering
created by Malone, Grant, Turbak, Brobst, and Cohen (1987) more than 20 years ago. Today
recommender systems are an accepted technology used by market leaders in several industries
(e.g., by Amazon1, Netflix2 and Pandora3). Recommender systems apply statistical and
knowledge discovery techniques to the problem of making product recommendations based on
previously recorded data (Sarwar, Karypis, Konstan, and Riedl, 2000). Such recommendations
can help to improve the conversion rate by helping the customer to find products she/he
wants to buy faster, promote cross-selling by suggesting additional products and can improve
customer loyalty through creating a value-added relationship (Schafer, Konstan, and Riedl,
2001). The importance and the economic impact of research in this field is reflected by the
Netflix Prize4, a challenge to improve the predictions of Netflix’s movie recommender system
by more than 10% in terms of the root mean square error. The grand price of 1 million dollar
was awarded in September 2009 to the Belcore Pragmatic Chaos team.

Ansari, Essegaier, and Kohli (2000) categorizes recommender systems into content-based
approaches and collaborative filtering. Content-based approaches are based on the idea that
if we can elicit the preference structure of a customer (user) concerning product (item) at-
tributes then we can recommend items which rank high for the user’s most desirable attributes.
Typically, the preference structure can be elicited by analyzing which items the user prefers.
For example, for movies the Internet Movie Database5 contains a wide range of attributes
to describe movies including genre, director, write, cast, storyline, etc. For music, Pandora,
a personalized online radio station, creates a stream of music via content-based recommen-
dations based on a system of hundreds of attributes to describe the essence of music at the
fundamental level including rhythm, feel, influences, instruments and many more (John, 2006).

∗This research was funded in part by the NSF Industry/University Cooperative Research Center for Net-Centric
Software & Systems.

1http://www.amazon.com
2http://www.netflix.com
3http://www.pandora.com
4http://www.netflixprize.com/
5http://www.imdb.com/

1

http://www.amazon.com
http://www.netflix.com
http://www.pandora.com
http://www.netflixprize.com/
http://www.imdb.com/

Software Description Language URL

Apache Ma-
hout

Machine learning li-
brary includes col-
laborative filtering

Java http://mahout.apache.org/

Cofi Collaborative filter-
ing library

Java http://www.nongnu.org/cofi/

Crab Components to cre-
ate recommender
systems

Python https://github.com/muricoca/crab

easyrec Recommender for
Web pages

Java http://easyrec.org/

LensKit Collaborative fil-
tering algorithms
from GroupLens
Research

Java http://lenskit.grouplens.org/

MyMediaLite Recommender sys-
tem algorithms.

C#/Mono http://mloss.org/software/view/282/

SVDFeature Toolkit for feature-
based matrix fac-
torization

C++ http://mloss.org/software/view/333/

Vogoo PHP
LIB

Collaborative filter-
ing engine for per-
sonalizing web sites

PHP http://sourceforge.net/projects/vogoo/

Table 1: Recommender System Software freely available for research.

In recommenderab we concentrate on the second category of recommender algorithms
called collaborative filtering. The idea is that given rating data by many users for many items
(e.g., 1 to 5 stars for movies elicited directly from the users), one can predict a user’s rating for
an item not known to her or him (see, e.g., Goldberg, Nichols, Oki, and Terry, 1992) or create
for a user a so called top-N lists of recommended items (see, e.g., Deshpande and Karypis,
2004). The premise is that users who agreed on the rating for some items typically also agree
on the rating for other items.

Several projects were initiated to implement recommender algorithms for collaborative
filtering. Table 1 gives an overview of open-source projects which provide code which can be
used by researchers. The extend of (currently available) functionality as well as the target
usage of the software packages vary greatly. Crab, easyrec, MyMediaLite and Vogoo PHP
LIB aim at providing simple recommender systems to be easily integrated into web sites.
SVDFeature focuses only on matrix factorization. Cofi provides a Java package which im-
plements many collaborative filtering algorithms (active development ended 2005). LensKit
is a relatively new software package with the aim to provide reference implementations for
common collaborative filtering algorithms. This software has not reached a stable version at
the time this paper was written (October, 2011). Finally, Apache Mahout, a machine learning
library aimed to be scalable to large data sets incorporated collaborative filtering algorithms
formerly developed under the name Taste.

The R extension package recommenderlab described in this paper has a completely different
goal to the existing software packages. It is not a library to create recommender applications
but provides a general research infrastructure for recommender systems. The focus is on
consistent and efficient data handling, easy incorporation of algorithms (either implemented
in R or interfacing existing algorithms), experiment set up and evaluation of the results.

This paper is structured as follows. Section 2 introduces collaborative filtering and some
of its popular algorithms. In section 3 we discuss the evaluation of recommender algorithms.
We introduce the infrastructure provided by recommenderlab in section 4. In section 5 we
illustrate the capabilities on the package to create and evaluate recommender algorithms. We
conclude with section 6.

2

http://mahout.apache.org/
http://www.nongnu.org/cofi/
https://github.com/muricoca/crab
http://easyrec.org/
http://lenskit.grouplens.org/
http://mloss.org/software/view/282/
http://mloss.org/software/view/333/
http://sourceforge.net/projects/vogoo/

2 Collaborative Filtering

Collaborative filtering (CF) uses given rating data by many users for many items as the basis
for predicting missing ratings and/or for creating a top-N recommendation list for a given
user, called the active user. Formally, we have a set of users U = {u1, u2, . . . , um} and a set
of items I = {i1, i2, . . . , in}. Ratings are stored in a m×n user-item rating matrix R = (rjk)
where each row represent a user uj with 1 ≥ j ≥ m and columns represent items ik with
1 ≥ k ≥ n. rjk represents the rating of user uj for item ik. Typically only a small fraction of
ratings are known and for many cells in R the values are missing. Many algorithms operate on
ratings on a specific scale (e.g., 1 to 5 (stars)) and estimated ratings are allowed to be within
an interval of matching range (e.g., [1, 5]). From this point of view recommender systems
solve a regression problem.

The aim of collaborative filtering is to create recommendations for a user called the active
user ua ∈ U . We define the set of items unknown to user ua as Ia = I \ {il ∈ I|ral = 1}.
The two typical tasks are to predict ratings for all items in Ia or to create a list of the best N
recommendations (i.e., a top-N recommendation list) for ua. Formally, predicting all missing
ratings is calculating a complete row of the rating matrix r̂a· where the missing values for
items in Ia are replaced by ratings estimated from other data in R. The estimated ratings are
in the same range as the original rating (e.g., in the range [1, 5] for a five star rating scheme).

Creating a top-N list (Sarwar, Karypis, Konstan, and Riedl, 2001) can be seen as a second
step after predicting ratings for all unknown items in Ia and then taking the N items with
the highest predicted ratings. A list of top-N recommendations for a user ua is an partially
ordered set TN = (X ,≥), where X ⊂ Ia and |X | ≤ N (| · | denotes the cardinality of the
set). Note that there may exist cases where top-N lists contain less than N items. This can
happen if |Ia| < N or if the CF algorithm is unable to identify N items to recommend. The
binary relation ≥ is defined as x ≥ y if and only if r̂ax ≥ r̂ay for all x, y ∈ X . Furthermore
we require that ∀x∈X∀y∈Ia

r̂ax ≥ r̂ay to ensure that the top-N list contains only the items
with the highest estimated rating.

Typically we deal with a very large number of items with unknown ratings which makes
first predicting rating values for all of them computationally expensive. Some approaches (e.g.,
rule based approaches) can predict the top-N list directly without considering all unknown
items first.

Collaborative filtering algorithms are typically divided into two groups, memory-based CF
and model-based CF algorithms (Breese, Heckerman, and Kadie, 1998). Memory-based CF
use the whole (or at least a large sample of the) user database to create recommendations.
The most prominent algorithm is user-based collaborative filtering. The disadvantages of
this approach is scalability since the whole user database has to be processed online for
creating recommendations. Model-based algorithms use the user database to learn a more
compact model (e.g, clusters with users of similar preferences) that is later used to create
recommendations.

In the following we will present the basics of well known memory and model-based collab-
orative filtering algorithms. Further information about these algorithms can be found in the
recent survey book chapter by Desrosiers and Karypis (2011).

2.1 User-based Collaborative Filtering

User-based CF (Goldberg et al., 1992; Resnick, Iacovou, Suchak, Bergstrom, and Riedl, 1994;
Shardanand and Maes, 1995) is a memory-based algorithm which tries to mimics word-of-
mouth by analyzing rating data from many individuals. The assumption is that users with
similar preferences will rate items similarly. Thus missing ratings for a user can be predicted
by first finding a neighborhood of similar users and then aggregate the ratings of these users
to form a prediction.

The neighborhood is defined in terms of similarity between users, either by taking a given
number of most similar users (k nearest neighbors) or all users within a given similarity
threshold. Popular similarity measures for CF are the Pearson correlation coefficient and the
Cosine similarity. These similarity measures are defined between two users ux and uy as

simPearson(x,y) =

∑

i∈I
(xi x̄)(yi ȳ)

(|I| − 1) sd(x) sd(y)
(1)

3

u4

ua u3

u1

u6

u2

u5

sim

1

3

2

 k=3 neighborhood

4

5

6

? 4.0 4.0 2.0 1.0 2.0 ? ?

3.0 ? ? ? 5.0 1.0 ? ?

3.0 ? ? 3.0 2.0 2.0 ? 3.0

4.0 ? ? 2.0 1.0 1.0 2.0 4.0

1.0 1.0 ? ? ? ? ? 1.0

? 1.0 ? ? 1.0 1.0 ? 1.0

? ? 4.0 3.0 ? 1.0 ? 5.0

3.5 4.0 1.3 2.0

i1 i2 i3 i4 i5 i6 i7 i8

u1

u2

u3

u4

u5

u6

ua

ra

(a) (b)

Figure 1: User-based collaborative filtering example with (a) rating matrix and estimated ratings
for the active user, and (b) user neighborhood formation.

and

simCosine(x,y) =
x · y

‖x‖‖y‖
, (2)

where x = rx and y = ry represent the row vectors in R with the two users’ profile vectors.
sd(·) is the standard deviation and ‖ · ‖ is the l2-norm of a vector. For calculating similarity
using rating data only the dimensions (items) are used which were rated by both users.

Now the neighborhood for the active user N (a) ⊂ U can be selected by either a threshold
on the similarity or by taking the k nearest neighbors. Once the users in the neighborhood
are found, their ratings are aggregated to form the predicted rating for the active user. The
easiest form is to just average the ratings in the neighborhood.

r̂aj =
1

|N (a)|

∑

i∈N (a)

rij (3)

An example of the process of creating recommendations by user-based CF is shown in
Figure 1. To the left is the rating matrix R with 6 users and 8 items and ratings in the
range 1 to 5 (stars). We want to create recommendations for the active user ua shown at
the bottom of the matrix. To find the k-neighborhood (i.e., the k nearest neighbors) we
calculate the similarity between the active user and all other users based on their ratings in
the database and then select the k users with the highest similarity. To the right in Figure 1
we see a 2-dimensional representation of the similarities (users with higher similarity are
displayed closer) with the active user in the center. The k = 3 nearest neighbors (u4, u1 and
u3) are selected and marked in the database to the left. To generate an aggregated estimated
rating, we compute the average ratings in the neighborhood for each item not rated by the
active user. To create a top-N recommendation list, the items are ordered by predicted rating.
In the small example in Figure 1 the order in the top-N list (with N ≥ 4) is i2, i1, i7 and i5.
However, for a real application we probably would not recommend items i7 and i5 because of
their low ratings.

The fact that some users in the neighborhood are more similar to the active user than
others can be incorporated as weights into Equation (3).

r̂aj =
1

∑

i∈N (a) sai

∑

i∈N (a)

sairij (4)

sai is the similarity between the active user ua and user ui in the neighborhood.
For some types of data the performance of the recommender algorithm can be improved by

removing user rating bias. This can be done by normalizing the rating data before applying

4

- 0.1 0 0.3 0.2 0.4 0 0.1 2

0.1 - 0.8 0.9 0 0.2 0.1 0 ?

0 0.8 - 0 0.4 0.1 0.3 0.5 ?

0.3 0.9 0 - 0 0.3 0 0.1 ?

0.2 0 0.7 0 - 0.2 0.1 0 4

0.4 0.2 0.1 0.3 0.1 - 0 0.1 ?

0 0.1 0.3 0 0 0 - 0 ?

0.1 0 0.9 0.1 0 0.1 0 - 5

- 0.0 4.6 2.8 - 2.7 0.0 -

i
1

i
2

i
3

i
4

i
5

i
6

i
7

i
8

u
a

i
1

i
2

i
3

i
4

i
5

i
6

i
7

i
8

r
a

k=3S

Figure 2: Item-based collaborative filtering

the recommender algorithm. Any normalization function h : Rn×m 7→ R
n×m can be used

for preprocessing. Ideally, this function is reversible to map the predicted rating on the
normalized scale back to the original rating scale. Normalization is used to remove individual
rating bias by users who consistently always use lower or higher ratings than other users. A
popular method is to center the rows of the user-item rating matrix by

h(rui) = rui − r̄u,

where r̄u is the mean of all available ratings in row u of the user-item rating matrix R.
Other methods like Z-score normalization which also takes rating variance into account

can be found in the literature (see, e.g., Desrosiers and Karypis, 2011).
The two main problems of user-based CF are that the whole user database has to be kept

in memory and that expensive similarity computation between the active user and all other
users in the database has to be performed.

2.2 Item-based Collaborative Filtering

Item-based CF (Kitts, Freed, and Vrieze, 2000; Sarwar et al., 2001; Linden, Smith, and York,
2003; Deshpande and Karypis, 2004) is a model-based approach which produces recommenda-
tions based on the relationship between items inferred from the rating matrix. The assumption
behind this approach is that users will prefer items that are similar to other items they like.

The model-building step consists of calculating a similarity matrix containing all item-to-
item similarities using a given similarity measure. Popular are again Pearson correlation and
Cosine similarity. All pairwise similarities are stored in a n×n similarity matrix S. To reduce
the model size to n× k with k ≪ n, for each item only a list of the k most similar items and
their similarity values are stored. The k items which are most similar to item i is denoted
by the set S(i) which can be seen as the neighborhood of size k of the item. Retaining only
k similarities per item improves the space and time complexity significantly but potentially
sacrifices some recommendation quality (Sarwar et al., 2001).

To make a recommendation based on the model we use the similarities to calculate a
weighted sum of the user’s ratings for related items.

r̂ui =
1

∑

j∈S(i) sij

∑

j∈S(i)

sijruj (5)

Figure 2 shows an example for n = 8 items with k = 3. For the similarity matrix S only
the k = 3 largest entries are stored per row (these entries are marked using bold face). For
the example we assume that we have ratings for the active user for items i1, i5 and i8. The
rows corresponding to these items are highlighted in the item similarity matrix. We can now
compute the weighted sum using the similarities (only the reduced matrix with the k = 3

5

highest ratings is used) and the user’s ratings. The result (below the matrix) shows that i3
has the highest estimated rating for the active user.

Similar to user-based recommender algorithms, user-bias can be reduced by first normal-
izing the user-item rating matrix before computing the item-to-item similarity matrix.

Item-based CF is more efficient than user-based CF since the model (reduced similarity
matrix) is relatively small (N × k) and can be fully precomputed. Item-based CF is known
to only produce slightly inferior results compared to user-based CF and higher order mod-
els which take the joint distribution of sets of items into account are possible (Deshpande
and Karypis, 2004). Furthermore, item-based CF is successfully applied in large scale recom-
mender systems (e.g., by Amazon.com).

2.3 User and Item-Based CF using 0-1 Data

Less research is available for situations where no large amount of detailed directly elicited
rating data is available. However, this is a common situation and occurs when users do
not want to directly reveal their preferences by rating an item (e.g., because it is to time
consuming). In this case preferences can only be inferred by analyzing usage behavior. For
example, we can easily record in a supermarket setting what items a customer purchases.
However, we do not know why other products were not purchased. The reason might be one
of the following.

• The customer does not need the product right now.

• The customer does not know about the product. Such a product is a good candidate for
recommendation.

• The customer does not like the product. Such a product should obviously not be rec-
ommended.

Mild and Reutterer (2003) and Lee, Jun, Lee, and Kim (2005) present and evaluate rec-
ommender algorithms for this setting. The same reasoning is true for recommending pages of
a web site given click-stream data. Here we only have information about which pages were
viewed but not why some pages were not viewed. This situation leads to binary data or more
exactly to 0-1 data where 1 means that we inferred that the user has a preference for an item
and 0 means that either the user does not like the item or does not know about it. Pan, Zhou,
Cao, Liu, Lukose, Scholz, and Yang (2008) call this type of data in the context of collaborative
filtering analogous to similar situations for classifiers one-class data since only the 1-class is
pure and contains only positive examples. The 0-class is a mixture of positive and negative
examples.

In the 0-1 case with rjk ∈ 0, 1 where we define:

rjk =

{

1 user uj is known to have a preference for item ik

0 otherwise.
(6)

Two strategies to deal with one-class data is to assume all missing ratings (zeros) are
negative examples or to assume that all missing ratings are unknown. In addition, Pan et al.
(2008) propose strategies which represent a trade-off between the two extreme strategies based
on wighted low rank approximations of the rating matrix and on negative example sampling
which might improve results across all recommender algorithms.

If we assume that users typically favor only a small fraction of the items and thus most
items with no rating will be indeed negative examples. then we have no missing values and
can use the approaches described above for real valued rating data. However, if we assume all
zeroes are missing values, then this lead to the problem that we cannot compute similarities
using Pearson correlation or Cosine similarity since the not missing parts of the vectors only
contains ones. A similarity measure which only focuses on matching ones and thus prevents
the problem with zeroes is the Jaccard index :

simJaccard(X ,Y) =
|X ∩ Y|

|X ∪ Y|
, (7)

where X and Y are the sets of the items with a 1 in user profiles ua and ub, respectively.
The Jaccard index can be used between users for user-based filtering and between items for
item-based filtering as described above.

6

2.4 Recommendations for 0-1 Data Based on Association Rules

Recommender systems using association rules produce recommendations based on a depen-
dency model for items given by a set of association rules (Fu, Budzik, and Hammond, 2000;
Mobasher, Dai, Luo, and Nakagawa, 2001; Geyer-Schulz, Hahsler, and Jahn, 2002; Lin, Al-
varez, and Ruiz, 2002; Demiriz, 2004). The binary profile matrix R is seen as a database
where each user is treated as a transaction that contains the subset of items in I with a rating
of 1. Hence transaction k is defined as Tk = {ij ∈ I|rjk = 1} and the whole transaction
data base is D = {T1, T2, . . . , TU} where U is the number of users. To build the dependency
model, a set of association rules R is mined from R. Association rules are rules of the form
X → Y where X ,Y ⊆ I and X ∩ Y = ∅. For the model we only use association rules with a
single item in the right-hand-side of the rule (|Y| = 1). To select a set of useful association
rules, thresholds on measures of significance and interestingness are used. Two widely applied
measures are:

support(X → Y) = support(X ∪ Y) = Freq(X ∪ Y)/|D|

confidence(X → Y) = support(X ∪ Y)/support(X) = P̂ (Y|X)

Freq(X) gives the number of transactions in the data base D that contains all items in X .
We now require support(X → Y) > s and confidence(X → Y) > c and also include a

length constraint |X ∪ Y| ≤ l. The set of rules R that satisfy these constraints form the
dependency model. Although finding all association rules given thresholds on support and
confidence is a hard problem (the model grows in the worse case exponential with the number
of items), algorithms that efficiently find all rules in most cases are available (e.g., Agrawal and
Srikant, 1994; Zaki, 2000; Han, Pei, Yin, and Mao, 2004). Also model size can be controlled
by l, s and c.

To make a recommendation for an active user ua given the set of items Ta the user likes
and the set of association rules R (dependency model), the following steps are necessary:

1. Find all matching rules X → Y for which X ⊆ Ta in R.

2. Recommend N unique right-hand-sides (Y) of the matching rules with the highest con-
fidence (or another measure of interestingness).

The dependency model is very similar to item-based CF with conditional probability-based
similarity (Deshpande and Karypis, 2004). It can be fully precomputed and rules with more
than one items in the left-hand-side (X), it incorporates higher order effects between more
than two items.

2.5 Other collaborative filtering methods

Over time several other model-based approaches have been developed. A popular simple item-
based approach is the Slope One algorithm (Lemire and Maclachlan, 2005). Another family
of algorithms is based on latent factors approach using matrix decomposition (Koren, Bell,
and Volinsky, 2009). These algorithms are outside the scope of this introductory paper.

3 Evaluation of Recommender Algorithms

Evaluation of recommender systems is an important topic and reviews were presented by
Herlocker, Konstan, Terveen, and Riedl (2004) and Gunawardana and Shani (2009). Typically,
given a rating matrix R, recommender algorithms are evaluated by first partitioning the users
(rows) in R into two sets Utrain ∪ Utest = U . The rows of R corresponding to the training
users Utrain are used to learn the recommender model. Then each user ua ∈ Utest is seen as
an active user, however, before creating recommendations some items are withheld from the
profile rua· and it measured either how well the predicted rating matches the withheld value
or, for top-N algorithms, if the items in the recommended list are rated highly by the user.
It is assumed that if a recommender algorithm performed better in predicting the withheld
items, it will also perform better in finding good recommendations for unknown items.

To determine how to split U into Utrain and Utest we can use several approaches (Kohavi,
1995).

7

Table 2: 2x2 confusion matrix

actual / predicted negative positive

negative a b

positive c d

• Splitting: We can randomly assign a predefined proportion of the users to the training
set and all others to the test set.

• Bootstrap sampling: We can sample from Utest with replacement to create the training
set and then use the users not in the training set as the test set. This procedure has
the advantage that for smaller data sets we can create larger training sets and still have
users left for testing.

• k-fold cross-validation: Here we split U into k sets (called folds) of approximately
the same size. Then we evaluate k times, always using one fold for testing and all other
folds for leaning. The k results can be averaged. This approach makes sure that each
user is at least once in the test set and the averaging produces more robust results and
error estimates.

The items withheld in the test data are randomly chosen. Breese et al. (1998) introduced
the four experimental protocols called Given 2, Given 5, Given 10 and All but 1. For the Given
x protocols for each user x randomly chosen items are given to the recommender algorithm
and the remaining items are withheld for evaluation. For All but x the algorithm gets all but
x withheld items.

In the following we discuss the evaluation of predicted ratings and then of top-N recom-
mendation lists.

3.1 Evaluation of predicted ratings

A typical way to evaluate a prediction is to compute the deviation of the prediction from the
true value. This is the basis for the Mean Average Error (MAE)

MAE =
1

|K|

∑

(i,j)∈K

|rij − r̂ij)|, (8)

where K is the set of all user-item pairings (i, j) for which we have a predicted rating r̂ij and
a known rating rij which was not used to learn the recommendation model.

Another popular measure is the Root Mean Square Error (RMSE).

RMSE =

√

∑

(i,j)∈K
(rij − r̂ij)2

|K|
(9)

RMSE penalizes larger errors stronger than MAE and thus is suitable for situations where
small prediction errors are not very important.

3.2 Evaluation Top-N recommendations

The items in the predicted top-N lists and the withheld items liked by the user (typically
determined by a simple threshold on the actual rating) for all test users Utest can be aggregated
into a so called confusion matrix depicted in table 2 (see Kohavi and Provost (1998)) which
corresponds exactly to the outcomes of a classical statistical experiment. The confusion
matrix shows how many of the items recommended in the top-N lists (column predicted
positive; d+ b) were withheld items and thus correct recommendations (cell d) and how many
where potentially incorrect (cell b). The matrix also shows how many of the not recommended
items (column predicted negative; a+ c) should have actually been recommended since they
represent withheld items (cell c).

From the confusion matrix several performance measures can be derived. For the data
mining task of a recommender system the performance of an algorithm depends on its ability

8

to learn significant patterns in the data set. Performance measures used to evaluate these
algorithms have their root in machine learning. A commonly used measure is accuracy, the
fraction of correct recommendations to total possible recommendations.

Accuracy =
correct recommendations

total possible recommendations
=

a+ d

a+ b+ c+ d
(10)

A common error measure is the mean absolute error (MAE, also called mean absolute
deviation or MAD).

MAE =
1

N

N
∑

i=1

|ǫi| =
b+ c

a+ b+ c+ d
, (11)

where N = a+b+c+d is the total number of items which can be recommended and |ǫi| is the
absolute error of each item. Since we deal with 0-1 data, |ǫi| can only be zero (in cells a and d
in the confusion matrix) or one (in cells b and c). For evaluation recommender algorithms for
rating data, the root mean square error is often used. For 0-1 data it reduces to the square
root of MAE.

Recommender systems help to find items of interest from the set of all available items.
This can be seen as a retrieval task known from information retrieval. Therefore, standard
information retrieval performance measures are frequently used to evaluate recommender per-
formance. Precision and recall are the best known measures used in information retrieval
(Salton and McGill, 1983; van Rijsbergen, 1979).

Precision =
correctly recommended items

total recommended items
=

d

b+ d
(12)

Recall =
correctly recommended items

total useful recommendations
=

d

c+ d
(13)

Often the number of total useful recommendations needed for recall is unknown since the
whole collection would have to be inspected. However, instead of the actual total useful
recommendations often the total number of known useful recommendations is used. Precision
and recall are conflicting properties, high precision means low recall and vice versa. To find
an optimal trade-off between precision and recall a single-valued measure like the E-measure
(van Rijsbergen, 1979) can be used. The parameter α controls the trade-off between precision
and recall.

E-measure =
1

α(1/Precision) + (1− α)(1/Recall)
(14)

A popular single-valued measure is the F-measure. It is defined as the harmonic mean of
precision and recall.

F-measure =
2Precision Recall

Precision + Recall
=

2

1/Precision + 1/Recall
(15)

It is a special case of the E-measure with α = .5 which places the same weight on both,
precision and recall. In the recommender evaluation literature the F-measure is often referred
to as the measure F1.

Another method used in the literature to compare two classifiers at different parameter
settings is the Receiver Operating Characteristic (ROC). The method was developed for signal
detection and goes back to the Swets model (van Rijsbergen, 1979). The ROC-curve is a plot
of the system’s probability of detection (also called sensitivity or true positive rate TPR which
is equivalent to recall as defined in formula 13) by the probability of false alarm (also called
false positive rate FPR or 1 − specificity , where specificity = a

a+b
) with regard to model

parameters. A possible way to compare the efficiency of two systems is by comparing the size
of the area under the ROC-curve, where a bigger area indicates better performance.

9

ratingMatrix

realRatingMatrix binaryRatingMatrix

evaluationScheme
contains *

Recommender confusionMatrix

evaluationResultList

evaluationResult

*

topNList
*

Figure 3: UML class diagram for package recommenderlab (Fowler, 2004).

4 Recommenderlab Infrastructure

recommenderlab is implemented using formal classes in the S4 class system. Figure 3 shows
the main classes and their relationships.

The package uses the abstract ratingMatrix to provide a common interface for rating data.
ratingMatrix implements many methods typically available for matrix-like objects. For ex-
ample, dim(), dimnames(), colCounts(), rowCounts(), colMeans(), rowMeans(), colSums()
and rowSums(). Additionally sample() can be used to sample from users (rows) and image()

produces an image plot.
For ratingMatrix we provide two concrete implementations realRatingMatrix and

binaryRatingMatrix to represent different types of rating matrices R. realRatingMatrix imple-
ments a rating matrix with real valued ratings stored in sparse format defined in package Ma-

trix. Sparse matrices inMatrix typically do not store 0s explicitly, however for realRatingMatrix

we use these sparse matrices such that instead of 0s, NAs are not explicitly stored.
binaryRatingMatrix implements a 0-1 rating matrix using the implementation of itemMatrix

defined in package arules. itemMatrix stores only the ones and internally uses a sparse rep-
resentation from package Matrix. With this class structure recommenderlab can be easily
extended to other forms of rating matrices with different concepts for efficient storage in the
future.

Class Recommender implements the data structure to store recommendation models. The
creator method

Recommender(data, method, parameter = NULL)

takes data as a ratingMatrix, a method name and some optional parameters for the method
and returns a Recommender object. Once we have a recommender object, we can predict top-
N recommendations for active users using

predict(object, newdata, n=10, type=c("topNList", "ratings"), ...).

Predict can return either top-N lists (default setting) or predicted ratings. object is
the recommender object, newdata is the data for the active users. For top-N lists n is the
maximal number of recommended items in each list and predict() will return an objects of
class topNList which contains one top-N list for each active user. For ratings n is ignored and
an object of realRatingMatrix is returned. Each row contains the predicted ratings for one
active user. Items for which a rating exists in newdata have a NA instead of a predicted rating.

The actual implementations for the recommendation algorithms are managed using the
registry mechanism provided by package registry. The registry called recommenderRegistry

and stores recommendation method names and a short description. Generally, the registry
mechanism is hidden from the user and the creator function Recommender() uses it in the
background to map a recommender method name to its implementation. However, the registry
can be directly queried by

recommenderRegistry$get_entries()

and new recommender algorithms can be added by the user. We will give and example for
this feature in the examples section of this paper.

To evaluate recommender algorithms package recommenderlab provides the infrastructure
to create and maintain evaluation schemes stored as an object of class evaluationScheme from
rating data. The creator function

10

evaluationScheme(data, method="split", train=0.9, k=10, given=3)

creates the evaluation scheme from a data set using a method (e.g., simple split, boot-
strap sampling, k-fold cross validation) with item withholding (parameter given). The func-
tion evaluate() is then used to evaluate several recommender algorithms using an eval-
uation scheme resulting in a evaluation result list (class evaluationResultList) with one en-
try (class evaluationResult) per algorithm. Each object of evaluationResult contains one or
several object of confusionMatrix depending on the number of evaluations specified in the
evaluationScheme (e.g., k for k-fold cross validation). With this infrastructure several recom-
mender algorithms can be compared on a data set with a single line of code.

In the following, we will illustrate the usage of recommenderlab with several examples.

5 Examples

This fist few example shows how to manage data in recommender lab and then we create and
evaluate recommenders. First, we load the package.

R> library("recommenderlab")

5.1 Coercion to and from rating matrices

For this example we create a small artificial data set as a matrix.

R> m <- matrix(sample(c(as.numeric(0:5), NA), 50,

+ replace=TRUE, prob=c(rep(.4/6,6),.6)), ncol=10,

+ dimnames=list(user=paste("u", 1:5, sep=''),

+ item=paste("i", 1:10, sep='')))

R> m

item

user i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 NA 2 3 5 NA 5 NA 4 NA NA

u2 2 NA NA NA NA NA NA NA 2 3

u3 2 NA NA NA NA 1 NA NA NA NA

u4 2 2 1 NA NA 5 NA 0 2 NA

u5 5 NA NA NA NA NA NA 5 NA 4

With coercion, the matrix can be easily converted into a realRatingMatrix object which
stores the data in sparse format (only non-NA values are stored explicitly).

R> r <- as(m, "realRatingMatrix")

R> r

5 x 10 rating matrix of class ‘realRatingMatrix’ with 19 ratings.

R> #as(r,"dgCMatrix")

The realRatingMatrix can be coerced back into a matrix which is identical to the original
matrix.

R> identical(as(r, "matrix"),m)

[1] TRUE

It can also be coerced into a list of users with their ratings for closer inspection or into a
data.frame with user/item/rating tuples.

R> as(r, "list")

$u1

i2 i3 i4 i6 i8

2 3 5 5 4

$u2

i1 i9 i10

11

2 2 3

$u3

i1 i6

2 1

$u4

i1 i2 i3 i6 i8 i9

2 2 1 5 0 2

$u5

i1 i8 i10

5 5 4

R> head(as(r, "data.frame"))

user item rating

5 u1 i2 2

7 u1 i3 3

9 u1 i4 5

10 u1 i6 5

13 u1 i8 4

1 u2 i1 2

The data.frame version is especially suited for writing rating data to a file (e.g., by
write.csv()). Coercion from data.frame and list into a rating matrix is also provided.

5.2 Normalization

An important operation for rating matrices is to normalize the entries to, e.g., remove rating
bias by subtracting the row mean from all ratings in the row. This is can be easily done using
normalize().

R> r_m <- normalize(r)

R> r_m

5 x 10 rating matrix of class ‘realRatingMatrix’ with 19 ratings.

Normalized using center on rows.

Small portions of rating matrices can bi visually inspected using image().

R> image(r, main = "Raw Ratings")

R> image(r_m, main = "Normalized Ratings")

Figure 4 shows the resulting plots.

5.3 Binarization of data

A matrix with real valued ratings can be transformed into a 0-1 matrix with binarize() and
a user specified threshold (min_ratings) on the raw or normalized ratings. In the following
only items with a rating of 4 or higher will become a positive rating in the new binary rating
matrix.

R> r_b <- binarize(r, minRating=4)

R> as(r_b, "matrix")

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

[1,] 0 0 0 1 0 1 0 1 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 1 0 0 0 0

[5,] 1 0 0 0 0 0 0 1 0 1

12

Raw Ratings

Dimensions: 5 x 10
Items (Columns)

U
se

rs
 (

R
ow

s)

1

2

3

4

5

2 4 6 8 10

0

1

2

3

4

5

Normalized Ratings

Dimensions: 5 x 10
Items (Columns)

U
se

rs
 (

R
ow

s)

1

2

3

4

5

2 4 6 8 10

−2

−1

0

1

2

3

Figure 4: Image plot the artificial rating data before and after normalization.

5.4 Inspection of data set properties

We will use the data set Jester5k for the rest of this section. This data set comes with rec-

ommenderlab and contains a sample of 5000 users from the anonymous ratings data from the
Jester Online Joke Recommender System collected between April 1999 and May 2003 (Gold-
berg, Roeder, Gupta, and Perkins, 2001). The data set contains ratings for 100 jokes on a
scale from -10 to 10. All users in the data set have rated 36 or more jokes.

R> data(Jester5k)

R> Jester5k

5000 x 100 rating matrix of class ‘realRatingMatrix’ with 362106 ratings.

Jester5k contains 362106 ratings. For the following examples we use only a subset of the
data containing a sample of 1000 users. For random sampling sample() is provided for rating
matrices.

R> r <- sample(Jester5k, 1000)

R> r

1000 x 100 rating matrix of class ‘realRatingMatrix’ with 72911 ratings.

This subset still contains 72911 ratings. Next, we inspect the ratings for the first user. We
can select an individual user with the extraction operator.

R> rowCounts(r[1,])

u20165

100

R> as(r[1,], "list")

$u20165

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12

5.63 -4.03 8.93 -9.51 1.99 8.93 7.72 0.29 1.60 6.80 7.09 -9.90

j13 j14 j15 j16 j17 j18 j19 j20 j21 j22 j23 j24

-6.12 -4.32 -7.96 7.23 -7.57 -5.00 7.18 3.93 -8.74 -4.51 8.64 7.14

j25 j26 j27 j28 j29 j30 j31 j32 j33 j34 j35 j36

-9.66 -9.08 9.27 6.07 9.22 -3.88 8.93 7.33 -8.74 1.31 2.62 2.82

j37 j38 j39 j40 j41 j42 j43 j44 j45 j46 j47 j48

2.91 7.28 -9.56 8.59 -9.85 -9.42 3.54 4.95 1.02 -1.41 6.75 3.83

13

Histogram of getRatings(r)

getRatings(r)

F
re

qu
en

cy

−10 −5 0 5 10

0
50

0
10

00
15

00

Figure 5: Raw rating distribution for as sample of Jester.

j49 j50 j51 j52 j53 j54 j55 j56 j57 j58 j59 j60

-3.64 2.28 -0.92 0.05 -4.42 6.94 8.88 -4.76 -6.60 -6.60 -6.65 -4.71

j61 j62 j63 j64 j65 j66 j67 j68 j69 j70 j71 j72

0.34 8.45 -9.71 7.77 3.98 2.77 2.86 -4.13 3.40 4.27 -0.15 5.58

j73 j74 j75 j76 j77 j78 j79 j80 j81 j82 j83 j84

0.05 -7.57 3.69 4.71 8.88 1.89 4.47 7.48 8.16 0.24 9.17 3.20

j85 j86 j87 j88 j89 j90 j91 j92 j93 j94 j95 j96

3.25 3.83 0.15 9.03 6.41 -3.30 8.64 6.80 9.03 8.54 0.68 8.88

j97 j98 j99 j100

9.08 -9.61 0.10 -4.13

R> rowMeans(r[1,])

u20165

1.473

The user has rated 100 jokes, the list shows the ratings and the user’s rating average is
1.4731 .

Next, we look at several distributions to understand the data better. getRatings() ex-
tracts a vector with all non-missing ratings from a rating matrix.

R> hist(getRatings(r), breaks=100)

In the histogram in Figure 5 shoes an interesting distribution where all negative values
occur with a almost identical frequency and the positive ratings more frequent with a steady
decline towards the rating 10. Since this distribution can be the result of users with strong
rating bias, we look next at the rating distribution after normalization.

R> hist(getRatings(normalize(r)), breaks=100)

R> hist(getRatings(normalize(r, method="Z-score")), breaks=100)

Figure 6 shows that the distribution of ratings ins closer to a normal distribution after
row centering and Z-score normalization additionally reduces the variance further.

Finally, we look at how many jokes each user has rated and what the mean rating for each
Joke is.

R> hist(rowCounts(r), breaks=50)

R> hist(colMeans(r), breaks=20)

14

Histogram of getRatings(normalize(r))

getRatings(normalize(r))

F
re

qu
en

cy

−15 −10 −5 0 5 10 15

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Histogram of getRatings(normalize(r, method = "Z−score"))

getRatings(normalize(r, method = "Z−score"))

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
50

0
10

00
15

00
20

00
25

00
30

00

Figure 6: Histogram of normalized ratings using row centering (left) and Z-score normalization
(right).

Histogram of rowCounts(r)

rowCounts(r)

F
re

qu
en

cy

40 50 60 70 80 90 100

0
50

10
0

15
0

20
0

25
0

Histogram of colMeans(r)

colMeans(r)

F
re

qu
en

cy

−4 −2 0 2 4

0
2

4
6

8
10

12
14

Figure 7: Distribution of the number of rated items per user (left) and of the average ratings per
joke (right).

15

Figure 7 shows that there are unusually many users with ratings around 70 and users who
have rated all jokes. The average ratings per joke look closer to a normal distribution with a
mean above 0.

5.5 Creating a recommender

A recommender is created using the creator function Recommender(). Available recommenda-
tion methods are stored in a registry. The registry can be queried. Here we are only interested
in methods for real-valued rating data.

R> recommenderRegistry$get_entries(dataType = "realRatingMatrix")

$IBCF_realRatingMatrix

Recommender method: IBCF

Description: Recommender based on item-based collaborative filtering (real data).

$POPULAR_realRatingMatrix

Recommender method: POPULAR

Description: Recommender based on item popularity (real data).

$RANDOM_realRatingMatrix

Recommender method: RANDOM

Description: Produce random recommendations (real ratings).

$UBCF_realRatingMatrix

Recommender method: UBCF

Description: Recommender based on user-based collaborative filtering (real data).

Next, we create a recommender which generates recommendations solely on the popularity
of items (the number of users who have the item in their profile). We create a recommender
from the first 1000 users in the Jester5k data set.

R> r <- Recommender(Jester5k[1:1000], method = "POPULAR")

R> r

Recommender of type ‘POPULAR’ for ‘realRatingMatrix’

learned using 1000 users.

The model can be obtained from a recommender using getModel().

R> names(getModel(r))

[1] "topN" "ratings" "normalize" "aggregation"

R> getModel(r)$topN

Recommendations as ‘topNList’ with n = 100 for 1 users.

In this case the model has a top-N list to store the popularity order and further elements
(average ratings, if it used normalization and the used aggregation function).

Recommendations are generated by predict() (consistent with its use for other types of
models in R). The result are recommendations in the form of an object of class TopNList. Here
we create top-5 recommendation lists for two users who were not used to learn the model.

R> recom <- predict(r, Jester5k[1001:1002], n=5)

R> recom

Recommendations as ‘topNList’ with n = 5 for 2 users.

The result contains two ordered top-N recommendation lists, one for each user. The
recommended items can be inspected as a list.

R> as(recom, "list")

16

[[1]]

[1] "j89" "j72" "j47" "j93" "j76"

[[2]]

[1] "j89" "j93" "j76" "j88" "j96"

Since the top-N lists are ordered, we can extract sublists of the best items in the top-N .
For example, we can get the best 3 recommendations for each list using bestN().

R> recom3 <- bestN(recom, n = 3)

R> recom3

Recommendations as ‘topNList’ with n = 3 for 2 users.

R> as(recom3, "list")

[[1]]

[1] "j89" "j72" "j47"

[[2]]

[1] "j89" "j93" "j76"

Many recommender algorithms can also predict ratings. This is also implemented using
predict() with the parameter type set to "ratings".

R> recom <- predict(r, Jester5k[1001:1002], type="ratings")

R> recom

2 x 100 rating matrix of class ‘realRatingMatrix’ with 97 ratings.

R> as(recom, "matrix")[,1:10]

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

u20089 0.2971 -0.3217 -0.5655 -2.374 NA NA NA NA -1.432 0.4778

u11691 NA NA -0.5655 -2.374 NA NA NA NA -1.432 NA

Predicted ratings are returned as an object of realRatingMatrix. The prediction contains
NA for the items rated by the active users. In the example we show the predicted ratings for
the first 10 items for the two active users.

5.6 Evaluation of predicted ratings

Next we will look at the evaluation of recommender algorithms. recommenderlab implements
several standard evaluation methods for recommender systems. Evaluation starts with cre-
ating an evaluation scheme that determines what and how data is used for training and
evaluation. Here we create an evaluation scheme which splits the first 1000 users in Jester5k
into a training set (90%) and a test set (10%). For the test set 15 items will be given to the
recommender algorithm and the other items will be held out for computing the error.

R> e <- evaluationScheme(Jester5k[1:1000], method="split", train=0.9, given=15)

R> e

Evaluation scheme with 15 items given

Method: ‘split’ with 1 run(s).

Training set proportion: 0.900

Good ratings: >=NA

Data set: 1000 x 100 rating matrix of class ‘realRatingMatrix’ with 72358 ratings.

We create two recommenders (user-based and item-based collaborative filtering) using the
training data.

R> r1 <- Recommender(getData(e, "train"), "UBCF")

R> r1

Recommender of type ‘UBCF’ for ‘realRatingMatrix’

learned using 900 users.

17

R> r2 <- Recommender(getData(e, "train"), "IBCF")

R> r2

Recommender of type ‘IBCF’ for ‘realRatingMatrix’

learned using 900 users.

Next, we compute predicted ratings for the known part of the test data (15 items for each
user) using the two algorithms.

R> p1 <- predict(r1, getData(e, "known"), type="ratings")

R> p1

100 x 100 rating matrix of class ‘realRatingMatrix’ with 8500 ratings.

R> p2 <- predict(r2, getData(e, "known"), type="ratings")

R> p2

100 x 100 rating matrix of class ‘realRatingMatrix’ with 8423 ratings.

Finally, we can calculate the error between the prediction and the unknown part of the
test data.

R> error <- rbind(

+ calcPredictionError(p1, getData(e, "unknown")),

+ calcPredictionError(p2, getData(e, "unknown"))

+)

R> rownames(error) <- c("UBCF","IBCF")

R> error

MAE MSE RMSE

UBCF 3.738 22.32 4.724

IBCF 4.706 35.00 5.916

In this example user-based collaborative filtering produces a smaller prediction error.

5.7 Evaluation of a top-N recommender algorithm

For this example we create a 4-fold cross validation scheme with the the Given-3 protocol,
i.e., for the test users all but three randomly selected items are withheld for evaluation.

R> scheme <- evaluationScheme(Jester5k[1:1000], method="cross", k=4, given=3,

+ goodRating=5)

R> scheme

Evaluation scheme with 3 items given

Method: ‘cross-validation’ with 4 run(s).

Good ratings: >=5.000000

Data set: 1000 x 100 rating matrix of class ‘realRatingMatrix’ with 72358 ratings.

Next we use the created evaluation scheme to evaluate the recommender method popular.
We evaluate top-1, top-3, top-5, top-10, top-15 and top-20 recommendation lists.

R> results <- evaluate(scheme, method="POPULAR", n=c(1,3,5,10,15,20))

POPULAR run

1 [0.012sec/0.196sec]

2 [0.012sec/0.2sec]

3 [0.012sec/0.192sec]

4 [0.012sec/0.188sec]

R> results

Evaluation results for 4 runs using method ‘POPULAR’.

The result is an object of class EvaluationResult which contains several confusion matrices.
getConfusionMatrix() will return the confusion matrices for the 4 runs (we used 4-fold cross
evaluation) as a list. In the following we look at the first element of the list which represents
the first of the 4 runs.

18

●

●

●

●

●

●

0.05 0.10 0.15

0.
1

0.
2

0.
3

0.
4

FPR

T
P

R

1

3

5

10

15

20

Figure 8: ROC curve for recommender method POPULAR.

R> getConfusionMatrix(results)[[1]]

n TP FP FN TN PP recall precision FPR TPR

1 0.444 0.556 16.56 79.44 1 0.02612 0.4440 0.00695 0.02612

3 1.200 1.800 15.80 78.20 3 0.07059 0.4000 0.02250 0.07059

5 1.992 3.008 15.01 76.99 5 0.11718 0.3984 0.03760 0.11718

10 3.768 6.232 13.23 73.77 10 0.22165 0.3768 0.07790 0.22165

15 5.476 9.524 11.52 70.48 15 0.32212 0.3651 0.11905 0.32212

20 6.908 13.092 10.09 66.91 20 0.40635 0.3454 0.16365 0.40635

For the first run we have 6 confusion matrices represented by rows, one for each of the
six different top-N lists we used for evaluation. n is the number of recommendations per list.
TP, FP, FN and TN are the entries for true positives, false positives, false negatives and true
negatives in the confusion matrix. The remaining columns contain precomputed performance
measures. The average for all runs can be obtained from the evaluation results directly using
avg().

R> avg(results)

n TP FP FN TN PP recall precision FPR TPR

1 0.455 0.545 16.76 79.24 1 0.02644 0.4550 0.00683 0.02644

3 1.248 1.752 15.97 78.03 3 0.07251 0.4160 0.02196 0.07251

5 2.037 2.963 15.18 76.82 5 0.11835 0.4074 0.03714 0.11835

10 3.906 6.094 13.31 73.69 10 0.22693 0.3906 0.07638 0.22693

15 5.656 9.344 11.56 70.44 15 0.32855 0.3771 0.11711 0.32855

20 7.070 12.930 10.15 66.85 20 0.41078 0.3535 0.16206 0.41078

Evaluation results can be plotted using plot(). The default plot is the ROC curve which
plots the true positive rate (TPR) against the false positive rate (FPR).

R> plot(results, annotate=TRUE)

For the plot where we annotated the curve with the size of the top-N list is shown in
Figure 8. By using "prec/rec" as the second argument, a precision-recall plot is produced
(see Figure 9).

19

●

●

●

●

●

●

0.1 0.2 0.3 0.4

0.
36

0.
38

0.
40

0.
42

0.
44

recall

pr
ec

is
io

n

1

3

5

10

15

20

Figure 9: Precision-recall plot for method POPULAR.

R> plot(results, "prec/rec", annotate=TRUE)

5.8 Comparing recommender algorithms

The comparison of several recommender algorithms is one of the main functions of recom-

menderlab. For comparison also evaluate() is used. The only change is to use evaluate()

with a list of algorithms together with their parameters instead of a single method name. In
the following we use the evaluation scheme created above to compare the five recommender
algorithms: random items, popular items, user-based CF, item-based CF, and association rule
based recommendations. Note that when running the following code, the CF based algorithms
are very slow.

R> scheme <- evaluationScheme(Jester5k[1:1000], method="split", train = .9,

+ k=1, given=20, goodRating=5)

R> scheme

Evaluation scheme with 20 items given

Method: ‘split’ with 1 run(s).

Training set proportion: 0.900

Good ratings: >=5.000000

Data set: 1000 x 100 rating matrix of class ‘realRatingMatrix’ with 72358 ratings.

R> algorithms <- list(

+ "random items" = list(name="RANDOM", param=NULL),

+ "popular items" = list(name="POPULAR", param=NULL),

+ "user-based CF" = list(name="UBCF", param=list(method="Cosine",

+ nn=50, minRating=5))

+)

R> ## run algorithms

R> results <- evaluate(scheme, algorithms, n=c(1, 3, 5, 10, 15, 20))

RANDOM run

1 [0.004sec/0.068sec] POPULAR run

20

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

0.
4

FPR

T
P

R

● random items
popular items
user−based CF

●

●

●

●

●

●

1
3

5

10

15

20

1
3
5

10

15
20

Figure 10: Comparison of ROC curves for several recommender methods for the given-3 evaluation
scheme.

1 [0.012sec/0.08sec] UBCF run

1 [0.008sec/0.312sec]

The result is an object of class evaluationResultList for the five recommender algorithms.

R> results

List of evaluation results for 3 recommenders:

Evaluation results for 1 runs using method ‘RANDOM’.

Evaluation results for 1 runs using method ‘POPULAR’.

Evaluation results for 1 runs using method ‘UBCF’.

Individual results can be accessed by list subsetting using an index or the name specified
when calling evaluate().

R> names(results)

[1] "random items" "popular items" "user-based CF"

R> results[["user-based CF"]]

Evaluation results for 1 runs using method ‘UBCF’.

Again plot() can be used to create ROC and precision-recall plots (see Figures 10 and
11). Plot accepts most of the usual graphical parameters like pch, type, lty, etc. In addition
annotate can be used to annotate the points on selected curves with the list length.

R> plot(results, annotate=c(1,3), legend="topleft")

R> plot(results, "prec/rec", annotate=3)

For this data set and the given evaluation scheme the user-based and item-based CF
methods clearly outperform all other methods. In Figure 10 we see that they dominate the
other method since for each length of top-N list they provide a better combination of TPR
and FPR.

For comparison we will check how the algorithms compare given less information using
instead of a given-3 a given-1 scheme.

21

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

recall

pr
ec

is
io

n

● random items
popular items
user−based CF

●

● ●
● ● ●

1 3 5 10 15
20

Figure 11: Comparison of precision-recall curves for several recommender methods for the given-3
evaluation scheme.

R> Jester_binary <- binarize(Jester5k, minRating=5)

R> Jester_binary <- Jester_binary[rowCounts(Jester_binary)>20]

R> Jester_binary

1797 x 100 rating matrix of class ‘binaryRatingMatrix’ with 65642 ratings.

R> scheme_binary <- evaluationScheme(Jester_binary[1:1000], method="split", train=.9, k=1, given=20)

R> scheme_binary

Evaluation scheme with 20 items given

Method: ‘split’ with 1 run(s).

Training set proportion: 0.900

Good ratings: >=NA

Data set: 1000 x 100 rating matrix of class ‘binaryRatingMatrix’ with 36468 ratings.

R> algorithms_binary <- list(

+ "random items" = list(name="RANDOM", param=NULL),

+ "popular items" = list(name="POPULAR", param=NULL),

+ "user-based CF" = list(name="UBCF", param=list(method="Jaccard", nn=50))

+)

R> results_binary <- evaluate(scheme_binary, algorithms_binary, n=c(1,3,5,10,15,20))

RANDOM run

1 [0sec/0.064sec] POPULAR run

1 [0sec/0.532sec] UBCF run

1 [0sec/0.8sec]

R> plot(results_binary, annotate=c(1,3), legend="bottomright")

From Figure 12 we see that given less information, the performance of item-based CF
suffers the most and the simple popularity based recommender performs almost a well as
user-based CF and association rules.

22

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

0.
4

FPR

T
P

R

● random items
popular items
user−based CF●

●

●

●

●

●

1
3

5

10

15

20

1

3

5

10

15

20

Figure 12: Comparison of ROC curves for several recommender methods for the given-1 evaluation
scheme.

Similar to the examples presented here, it is easy to compare different recommender algo-
rithms for different data sets or to compare different algorithm settings (e.g., the influence of
neighborhood formation using different distance measures or different neighborhood sizes).

5.9 Implementing a new recommender algorithm

Adding a new recommender algorithm to recommenderlab is straight forward since it uses
a registry mechanism to manage the algorithms. To implement the actual recommender
algorithm we need to implement a creator function which takes a training data set, trains
a model and provides a predict function which uses the model to create recommendations
for new data. The model and the predict function are both encapsulated in an object of
class Recommender.

For example the creator function in Table 3 is called BIN_POPULAR(). It uses the (training)
data to create a model which is a simple list (lines 4–7 in Table 3). In this case the model is
just a list of all items sorted in decreasing order of popularity. The second part (lines 9–22) is
the predict function which takes the model, new data and the number of items of the desired
top-N list as its arguments. Predict used the model to compute recommendations for each
user in the new data and encodes them as an object of class topNList (line 16). Finally, the
trained model and the predict function are returned as an object of class Recommender (lines
20–21). Now all that needs to be done is to register the creator function. In this case it is
called POPULAR and applies to binary rating data (lines 25–28).

To create a new recommender algorithm the code in Table 3 can be copied. Then lines 5,
6, 20, 26 and 27 need to be edited to reflect the new method name and description. Line 6
needs to be replaced by the new model. More complicated models might use several entries
in the list. Finally, lines 12–14 need to be replaced by the recommendation code.

6 Conclusion

In this paper we described the R extension package recommenderlab which is especially geared
towards developing and testing recommender algorithms. The package allows to create eval-

23

Table 3: Defining and registering a new recommender algorithm.

1 ## always recommends the top-N popular items (without known items)

2 REAL_POPULAR <- function(data, parameter = NULL) {

3

4 p <- .get_parameters(list(

5 normalize="center",

6 aggregation=colSums ## could also be colMeans

7), parameter)

8

9 ## normalize data

10 if(!is.null(p$normalize)) data <- normalize(data, method=p$normalize)

11

12 topN <- new("topNList",

13 items = list(order(p$aggregation(data), decreasing=TRUE)),

14 itemLabels = colnames(data),

15 n= ncol(data))

16

17 ratings <- new("realRatingMatrix", data = dropNA(t(colMeans(data))))

18

19 model <- c(list(topN = topN, ratings = ratings), p)

20

21 predict <- function(model, newdata, n=10,

22 type=c("topNList", "ratings"), ...) {

23

24 type <- match.arg(type)

25

26 if(type=="topNList") {

27 topN <- removeKnownItems(model$topN, newdata, replicate=TRUE)

28 topN <- bestN(topN, n)

29 return(topN)

30 }

31

32 ## type=="ratings"

33 if(!is.null(model$normalize))

34 newdata <- normalize(newdata, method=model$normalize)

35

36 ratings <- removeKnownRatings(model$ratings, newdata, replicate=TRUE)

37 ratings <- denormalize(ratings, factors=getNormalize(newdata))

38 return(ratings)

39 }

40

41 ## construct and return the recommender object

42 new("Recommender", method = "POPULAR", dataType = class(data),

43 ntrain = nrow(data), model = model, predict = predict)

44 }

45

46 ## register recommender

47 recommenderRegistry$set_entry(

48 method="POPULAR", dataType = "realRatingMatrix", fun=REAL_POPULAR,

49 description="Recommender based on item popularity (real data).")

24

uation schemes following accepted methods and then use them to evaluate and compare rec-
ommender algorithms. recommenderlab currently includes several standard algorithms and
adding new recommender algorithms to the package is facilitated by the built in registry mech-
anism to manage algorithms. In the future we will add more and more of these algorithms to
the package and we hope that some algorithms will also be contributed by other researchers.

References

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB, pages 487–499, Santiago, Chile, September
1994.

A. Ansari, S. Essegaier, and R. Kohli. Internet recommendation systems. Journal of Marketing
Research, 37:363–375, 2000.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for col-
laborative filtering. In Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth
Conference, pages 43–52, 1998.

A. Demiriz. Enhancing product recommender systems on sparse binary data. Data Minining
and Knowledge Discovery, 9(2):147–170, 2004. ISSN 1384-5810.

M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Transa-
tions on Information Systems, 22(1):143–177, 2004. ISSN 1046-8188.

C. Desrosiers and G. Karypis. A Comprehensive Survey of Neighborhood-based Recommenda-
tion Methods. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, chapter 4, pages 107–144. Springer US, Boston, MA, 2011. ISBN 978-
0-387-85819-7.

M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-
Wesley Professional, third edition, 2004.

X. Fu, J. Budzik, and K. J. Hammond. Mining navigation history for recommendation. In
IUI ’00: Proceedings of the 5th international conference on Intelligent user interfaces, pages
106–112. ACM, 2000. ISBN 1-58113-134-8.

A. Geyer-Schulz, M. Hahsler, and M. Jahn. A customer purchase incidence model applied
to recommender systems. In R. Kohavi, B. Masand, M. Spiliopoulou, and J. Srivastava,
editors, WEBKDD 2001 - Mining Log Data Across All Customer Touch Points, Third In-
ternational Workshop, San Francisco, CA, USA, August 26, 2001, Revised Papers, Lecture
Notes in Computer Science LNAI 2356, pages 25–47. Springer-Verlag, July 2002.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an
information tapestry. Communications of the ACM, 35(12):61–70, 1992. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/138859.138867.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative
filtering algorithm. Information Retrieval, 4(2):133–151, 2001.

A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of recommendation
tasks. Journal of Machine Learning Research, 10:2935–2962, 2009.

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation.
Data Mining and Knowledge Discovery, 8:53–87, 2004.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems, 22(1):5–53,
January 2004. ISSN 1046-8188. doi: 10.1145/963770.963772.

J. John. Pandora and the music genome project. Scientific Computing, 23(10):40–41, 2006.

25

B. Kitts, D. Freed, and M. Vrieze. Cross-sell: a fast promotion-tunable customer-item rec-
ommendation method based on conditionally independent probabilities. In KDD ’00:
Proceedings of the sixth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 437–446. ACM, 2000. ISBN 1-58113-233-6. doi: http:
//doi.acm.org/10.1145/347090.347181.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 1137–1143, 1995.

R. Kohavi and F. Provost. Glossary of terms. Machine Learning, 30(2–3):271–274, 1998.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42:30–37, 2009. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2009.263.

J.-S. Lee, C.-H. Jun, J. Lee, and S. Kim. Classification-based collaborative filtering using
market basket data. Expert Systems with Applications, 29(3):700–704, October 2005.

D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative
filtering. In Proceedings of SIAM Data Mining (SDM’05), 2005.

W. Lin, S. A. Alvarez, and C. Ruiz. Efficient adaptive-support association rule mining for
recommender systems. Data Mining and Knowledge Discovery, 6(1):83–105, 2002. ISSN
1384-5810.

G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76–80, 2003.

T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst, and M. D. Cohen. Intelligent
information-sharing systems. Communications of the ACM, 30(5):390–402, 1987. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/22899.22903.

A. Mild and T. Reutterer. An improved collaborative filtering approach for predicting cross-
category purchases based on binary market basket data. Journal of Retailing and Consumer
Services, 10(3):123–133, 2003.

B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on associ-
ation rule discovery from web usage data. In Proceedings of the ACM Workshop on Web
Information and Data Management (WIDM01), Atlanta, Georgia, 2001.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collab-
orative filtering. In IEEE International Conference on Data Mining, pages 502–511, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open archi-
tecture for collaborative filtering of netnews. In CSCW ’94: Proceedings of the 1994 ACM
conference on Computer supported cooperative work, pages 175–186. ACM, 1994. ISBN
0-89791-689-1. doi: http://doi.acm.org/10.1145/192844.192905.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New
York, 1983.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for
e-commerce. In EC ’00: Proceedings of the 2nd ACM conference on Electronic commerce,
pages 158–167. ACM, 2000. ISBN 1-58113-272-7.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recom-
mendation algorithms. In WWW ’01: Proceedings of the 10th international conference on
World Wide Web, pages 285–295. ACM, 2001. ISBN 1-58113-348-0.

J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation applications. Data
Mining and Knowledge Discovery, 5(1/2):115–153, 2001.

26

U. Shardanand and P. Maes. Social information filtering: Algorithms for automating ’word
of mouth’. In Conference proceedings on Human factors in computing systems (CHI’95),
pages 210–217, Denver, CO, May 1995. ACM Press/Addison-Wesley Publishing Co.

C. van Rijsbergen. Information retrieval. Butterworth, London, 1979.

M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and
Data Engineering, 12(3):372–390, May/June 2000.

27

	Introduction
	Collaborative Filtering
	User-based Collaborative Filtering
	Item-based Collaborative Filtering
	User and Item-Based CF using 0-1 Data
	Recommendations for 0-1 Data Based on Association Rules
	Other collaborative filtering methods

	Evaluation of Recommender Algorithms
	Evaluation of predicted ratings
	Evaluation Top-N recommendations

	Recommenderlab Infrastructure
	Examples
	Coercion to and from rating matrices
	Normalization
	Binarization of data
	Inspection of data set properties
	Creating a recommender
	Evaluation of predicted ratings
	Evaluation of a top-N recommender algorithm
	Comparing recommender algorithms
	Implementing a new recommender algorithm

	Conclusion

