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1 Introduction

This vignette describes some of the basic functions available for detecting GC-biased gene conversion (gBGC)
using the RPHASTpackage. gBGC is a process in which GC/AT (strong/weak) heterozygotes are preferen-
tially resolved to the strong allele during gene conversion. This confers an advantage to G and C alleles that
mimics positive selection, without conferring any known functional advantage. Therefore, some regions of
the genome identified to be under positive selection may be better explained by gBGC. gBGC has also been
hypothesized to be an important contributor to variation in GC content and to the fixation of deleterious
mutations.

For more information on gBGC, we suggest the following review: Duret and Galtier (2009).
In section 2, we will describe how to perform nucleotide tests for gBGC and selection. For background

on these tests, please see: Kostka et˜al. (2012).
In section 3, we will describe how to perform tests for gBGC using a phylo-HMM. The background and

method behind this model is described here: Capra et˜al. (2013).

2 Basic nucleotide model

Here we show how to set up an evolutionary model with a 4x4 transition matrix that incorporates gBGC.
The idea is to start with a standard model of evolution, such as Jukes Cantor, HKY, or REV, but use an
additional gBGC parameter B that affects the rates of strong-to-weak and weak-to-strong mutations on a
particular branch of interest. We can also add a selection parameter S to this branch which models positive
(S > 0) or negative (S < 0) selection. Given an alignment, we can estimate B, S, or both together, and
assess the evidence of gBGC and/or selection using likelihood ratio tests. See Kostka et˜al. (2012) for a full
description of these models and tests. We will take an example from that paper and analyze HAR1.

The first step is to get a neutral model of evolution. For the HAR analysis we obtained a neutral model
based on fourfold-degenerate (4d) sites in ENCODE regions, and then re-scaled the branches for each HAR
according to the mutation rate in noncoding regions surrounding the HAR. There are examples showing how
to pull out a region of an alignment and estimate a model based on 4d sites in RPHAST’s vignette 1. Here
we will assume they have already been computed. The data for HAR1 and its neutral model are stored in
our package of example files. They can be loaded like with the following commands:

> require("rphast")

> exampleArchive <- system.file("extdata", "examples.zip", package="rphast")

> unzip(exampleArchive, c("HAR_001_neutral_SSREV.mod", "HAR_001.fa"))

> neutralMod <- read.tm("HAR_001_neutral_SSREV.mod")

> align <- read.msa("HAR_001.fa")

Four different models are described by Kostka et˜al. (2012):

1. null: This model has a single free parameter, called the “selection parameter” (or sel.global), which
scales the entire rate matrix relative to the neutral rates.
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2. selection only: This model has two free parameters. sel.global acts as in the null model. An additional
selection parameter, sel.ls (for lineage-specific selection), acts on a branch of interest. It is additive
with sel.global, so that the total selection on the branch of interest is sel.global + sel.ls.

3. gBGC only: This model has two free parameters. sel.global acts as in the null model, affecting all
branches. A parameter called bgc.ls models the effect of gBGC on a branch of interest. bgc.ls is usually
constrained to be ≥ 0, since there is no biological concept of a negative gBGC effect.

4. gBGC + selection: This is the full model, with all three free parameters as described above:
sel.global, sel.ls, and bgc.ls.

A single function will get the maximum likelihood estimates for these parameters in all four models:

> nuc.results <- bgc.nucleotide.tests(align, neutralMod, "hg18")

> nuc.results

likelihood sel.global sel.ls bgc.ls

null -364.6712 1.456037942 0 0

sel -302.2111 0.016192886 200 0

bgc -297.3033 0.021113519 0 200

sel+bgc -291.5415 0.007461312 200 200

The third argument tells RPHASTwhich branch of the tree to test for selection and/or gBGC. This func-
tion returns a data frame with a row for each model, giving the maximum likelihood and the corresponding
parameter estimates. Note that the estimates for sel.ls (lineage-specific selection) and sel.bgc are both 200
in the models where they are not constrained to be zero. This is because there are so many strong mutations
on the human branch of HAR1 that the parameters are being pushed to their upper boundary, which has a
default of 200. We can investigate this:

> classify.muts.bgc(align, neutralMod, branch="hg18")

branch W.to.S S.to.W W.to.W S.to.S

hg18 hg18 13.98254 4.947062e-09 1.619623e-06 6.282675e-10

The classify.muts.bgc function counts the expected number of each type of mutation (weak to strong, strong
to weak, weak to weak, strong to strong), given the observed nucleotides at the leaf nodes, and a neutral
model. Here, it indicates that there are about 14 weak to strong mutations expected on the human branch,
which is quite a lot given the low counts in other category, and that the alignment only has

> ncol.msa(align)

[1] 106

106 columns in the alignment.
We can adjust the boundaries:

> bgc.nucleotide.tests(align, neutralMod, "hg18", bgc.limits=c(0, 2000), sel.limits=c(-2000,2000))

likelihood sel.global sel.ls bgc.ls

null -364.6712 1.456037942 0.00000 0.000

sel -299.1694 0.005093476 423.76721 0.000

bgc -282.5656 0.001752459 0.00000 1296.724

sel+bgc -282.5557 0.002397168 -47.30931 1344.165

though it is important to keep in mind that if the boundaries are pushed too high, in some cases the function
may quit with an error due to numerical problems computing/exponentiating the rate matrix.
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2.1 Classifying the alignment

The likelihoods obtained by bgc.nucleotide.tests can be compared to each other to obtain likelihood
ratios. The likelihood ratios can be compared to a null distribution to assess the evidence for selection and
gBGC on the branch of interest.

In the paper, seven different likelihood ratios were computed:

> nullLike <- nuc.results["null", "likelihood"]

> selLike <- nuc.results["sel", "likelihood"]

> bgcLike <- nuc.results["bgc", "likelihood"]

> bgcSelLike <- nuc.results["sel+bgc", "likelihood"]

> lrs <- c(selLike - nullLike,

+ bgcLike - nullLike,

+ selLike - bgcLike,

+ bgcLike - selLike,

+ bgcSelLike - bgcLike,

+ bgcSelLike - selLike)

> lrs

[1] 62.460162 67.367943 -4.907781 4.907781 5.761773 10.669554

Now that we have all the likelihood ratios, the difficult part is figuring out the significance and choosing
the best model. In Kostka et˜al. (2012), null distributions were obtained by simulation separately for each
HAR, so that each of the seven likelihood ratios could be declared as significant or not. Given the significance
of each of the seven tests, a series of rules was used to assign the HAR to a category. See the paper for more
details. In the case of HAR1, the best fit is the model with gBGC but no selection. Therefore, HAR1 is
suspected to be a “false positive” HAR: the burst of substitutions observed on the human lineage is likely a
result of gBGC and not of functional importance.

3 gBGC Hidden Markov Model

In this section we’ll show how to set up a Hidden Markov Model (HMM) with four states: conserved, neutral,
conserved with gBGC, and neutral with gBGC. As always, the first step is to obtain an alignment and a
model of neutral evolution. Let’s use a 4-species alignment of a 100 kilobase chunk of chromosome 1, and
UCSC’s neutral model for autosomes which was created for the 44-way alignment displayed on the hg18
browser:

> unzip(exampleArchive, c("chr1_100k_4way.maf", "placentalMammals.mod"))

> align <- read.msa("chr1_100k_4way.maf")

> mod <- read.tm("placentalMammals.mod")

> mod$tree <- prune.tree(mod$tree, names(align), all.but=TRUE)

The function phastBias can then be used to set up the HMM and obtain gBGC tract predictions
and posterior probabilities for each state. However, there are many choices to make with regard to which
parameters will be estimated. There are several relevant parameters:

� B: the level of gBGC on the foreground branch

� scale: an overall scaling factor for the tree in all models

� ρ: a scaling factor for the branches in conserved models

� bgc.in: the transition rate into the gBGC state

� bgc.out: the transition rate out of the gBGC state
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� cons.in: the transition rate into the conserved state

� cons.out: the transition rate out of the conserved state

It is important not to try to estimate too many parameters; in the paper the only parameter we optimized
was bgc.out. We tried various values of B and chose B = 3, which was the lowest value we could use that
did not produce many false positives in simulations. We started with a neutral model and then held scale
to 1.0. We set ρ = 0.31, as this has been found to be a fairly robust estimate for the level of conservation
within conserved elements across several different species sets.

The default phastBias arguments are set to the values used Capra et˜al. (2013). However, different
topologies or neutral models may perform better with different parameter settings. The choice for the
parameter B is particularly important and may need some tuning. Higher values of B will give fewer,
shorter, higher-confidence gBGC tracts, whereas lower values of B will yield a more inclusive but lower-
confidence set of tracts. If B is too low, the HMM will not be able to distinguish between the gBGC and
non-gBGC states, and may predict the entire alignment to be a “gBGC tract”. The other parameters seem
more forgiving and in most cases should not have to be adjusted.

Let’s run phastBias on our alignment and examine the results:

> hmm.results <- phastBias(align, mod, foreground="hg18")

> hmm.results

phastBias results: list with the following elements:

foreground: branch tested for gBGC

value: hg18

likelihood: total posterior likelihood

value: -282593.657755

bgc: gBGC strength parameter B

value: 3.000000

bgc.in: rate into gBGC state

value: 0.000018

bgc.out: rate out of gBGC state

value: 0.001000

mu: rate out of conserved state

value: 0.022222

nu: rate into conserved state

value: 0.009524

scale: overall tree scale

value: 1.000000

rho: conserved state tree scale

value: 0.310000

tracts: features object with gBGC tracts

value: features object with 1 rows covering 1471 bases

post.prob: posterior probability for each state in each column

value: data.frame with 100000 rows and 5 columns

not.informative: features object with regions of alignment not informative for gBGC on foreground branch

value: data.frame with 232 rows and 7 columns

phastBias returns an R list object containing the likelihood, all the final parameter values, posterior
probabilities for each state at every site, and predicted gBGC tracts. The tracts are obtained by thresholding
the posterior probability that each site is in one of the gBGC states at 0.5. In this example, only one tract
is predicted:

> hmm.results$tracts

4



Features object

hg18 phastBias gBGC_tract 1082696 1084166 1281.756 . . .

> coverage.feat(hmm.results$tracts)

[1] 1471

The alignment in this region can be extracted and analyzed:

> tractAlign <- split.by.feature.msa(align, hmm.results$tracts)[[1]]

> classify.muts.bgc(tractAlign, mod, "hg18")

branch W.to.S S.to.W W.to.W S.to.S

hg18 hg18 16.40768 2.259461 7.027347 0.3196058

> classify.muts.bgc(align, mod, "hg18")

branch W.to.S S.to.W W.to.W S.to.S

hg18 hg18 414.0602 573.2176 113.0958 49.16901

So we can see that there is indeed an excess of W→S mutations on the human branch within the tract,
but not within the entire alignment.

We can also create a plot of the posteriors and the tract:

> tracks <- list(as.track.feat(hmm.results$tracts, name="gBGC tracts"),

+ as.track.wig(score=(hmm.results$post.prob[,"gBGC_neutral"] +

+ hmm.results$post.prob[,"gBGC_conserved"]),

+ name="gBGC posterior",

+ coord=hmm.results$post.prob$coord),

+ as.track.feat(hmm.results$not.informative, name="not informative"))

> plot.track(tracks)

>

The plot produced by this code can be seen in Figure 1.
We can also manually inspect the alignment to see the W→S changes on the human branch; however the

display only works for alignments of about a 100 bases (more if the display is wider). So, we cannot see the
entire alignment at once, but we can see a part of it:

> plot.msa(tractAlign, xlim=c(1083115, 1083175), pretty=TRUE)

The region plotted here contains four W→S mutations on the human lineage in a 60 bp stretch and is
shown in figure 2.

3.1 Non-informative columns

The regions labeled in the phastBias results as “not informative” for gBGC require some explanation. A
column may be uninformative for gBGC if it has missing data in certain leaf nodes of the tree. In this
example, there must be non-missing data in the human, chimp, and at least one outgroup for a substitution
to be unambiguously assigned to the human branch. phastBias does not allow evidence for gBGC to
accumulate at columns where there is insufficient information. Otherwise, the phylo-HMM tends to assign
these regions to the gBGC state, because without information to differentiate the foreground and background
branches, the W→S substitutions can be assigned to the foreground branch, and the S→W substitutions
to a background branch. Therefore, regions that are not informative for gBGC are essentially masked (by
replacing the gBGC states with non-gBGC states at these sites). These sites may still be assigned to gBGC
tracts, but only due to evidence in informative surrounding sites. phastBias returns a features object
annotating non-informative regions so that the user can be aware of how many sites did not contribute to
the final result.
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4 Appendix: nucleotide model details

Here we show in detail how the bgc.nucleotide.tests function works. It may shed some light on how models
are set up and manipulated in RPHAST, and how you might customize your own tests.

Let’s first re-load the data from HAR1:

> align <- read.msa("HAR_001.fa")

> neutralMod <- read.tm("HAR_001_neutral_SSREV.mod")

> neutralMod

ALPHABET: A C G T

ORDER: 0

SUBST_MOD: SSREV

BACKGROUND: 0.344340 0.155660 0.155660 0.344340

RATE_MAT:

-0.841926 0.150247 0.347464 0.344214

0.332367 -1.349681 0.248678 0.768636

0.768636 0.248678 -1.349681 0.332367

0.344214 0.347464 0.150247 -0.841926

TREE: (((((((hg18:0.000346,panTro2:0.000472):0.001592,rheMac2:0.00197):0.006272,(rn4:0.005314,mm8:0.004734):0.015904):0.001382,canFam2:0.01183):0.013684,monDom4:0.020957):0.005875,ornAna1:0.025088):0.005614,galGal3:0.03459);

The null model consists of the neutral model, with a selection parameter that applies to the entire tree.
This selection parameter can be added to the neutral model like so:

> neutralMod$selection <- 0

If neutralMod$selection is NULL, then it is implicitly zero, but will not be considered a model parameter and
will not be optimized by phyloFit. If it is not NULL, then phyloFit will optimize it, unless the“sel”parameter
is specified as part of the no.opt argument to phyloFit. So, we can optimize the selection parameter like so:

> nullMod <- phyloFit(align, init.mod=neutralMod, no.opt=c("backgd", "branches", "ratematrix"))

> nullMod

ALPHABET: A C G T

ORDER: 0

SUBST_MOD: SSREV

SELECTION_PAR: 1.456038

TRAINING_LNL: -364.671214

BACKGROUND: 0.344340 0.155660 0.155660 0.344340

RATE_MAT:

-1.598604 0.285281 0.659747 0.653576

0.631079 -2.562701 0.472177 1.459445

1.459445 0.472177 -2.562701 0.631079

0.653576 0.659747 0.285281 -1.598604

TREE: (((((((hg18:0.000346,panTro2:0.000472):0.001592,rheMac2:0.00197):0.006272,(rn4:0.005314,mm8:0.004734):0.015904):0.001382,canFam2:0.01183):0.013684,monDom4:0.020957):0.005875,ornAna1:0.025088):0.005614,galGal3:0.03459);

Note that we tell phyloFit not to optimize the background frequencies, the branch lengths, or the rate matrix
parameters. The selection parameter is therefore the only parameter being optimized. In this model, the
selection parameter is equivalent to re-scaling the branch lengths, but it is parameterized differently, so that
it can interact with the gBGC parameter in later models. You can see the difference between re-scaling the
tree:

> phyloFit(align, init.mod=neutralMod, scale.only=TRUE, no.opt=c("backgd", "ratematrix", "sel"))
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ALPHABET: A C G T

ORDER: 0

SUBST_MOD: SSREV

SELECTION_PAR: 0.000000

TRAINING_LNL: -364.671213

BACKGROUND: 0.344340 0.155660 0.155660 0.344340

RATE_MAT:

-0.841926 0.150247 0.347464 0.344214

0.332366 -1.349680 0.248678 0.768636

0.768636 0.248678 -1.349680 0.332366

0.344214 0.347464 0.150247 -0.841926

TREE: (((((((hg18:0.000656854,panTro2:0.000896055):0.00302229,rheMac2:0.00373989):0.0119069,(rn4:0.0100882,mm8:0.00898713):0.0301925):0.00262362,canFam2:0.0224583):0.025978,monDom4:0.0397852):0.0111532,ornAna1:0.0476276):0.0106577,galGal3:0.0656664);

Note that this gives the same likelihood as in nullMod, but this time the branch lengths have changed.
It is about the same as rescaling the original tree using the selection parameter estimated above like so:

> rescale.tree(neutralMod$tree, nullMod$selection/(1-exp(-nullMod$selection)))

[1] "(((((((hg18:0.000656966,panTro2:0.000896208):0.0030228,rheMac2:0.00374053):0.0119089,(rn4:0.0100899,mm8:0.00898866):0.0301977):0.00262407,canFam2:0.0224622):0.0259824,monDom4:0.039792):0.0111551,ornAna1:0.0476357):0.0106596,galGal3:0.0656776);"

So now we have the null model stored in nullMod. We can get the likelihood in a couple of ways:

> nullMod$likelihood

[1] -364.6712

> likelihood.msa(align, nullMod)

[1] -364.6712

and we can see what the estimate for the selection parameter is:

> nullMod$selection

[1] 1.456038

Next we want to estimate the model with selection added onto the foreground branch. In this case we
will use the human branch. To do this, we need to modify the initial model so that there is a separate
model on the human branch. This is referred to as an “lineage-specific” (LS) model in RPHAST. An LS
model can specify an entirely different substitution model (such as REV, HKY85, JC, etc), or it can specify
certain parameters which should be estimated separately for this model. In this case we want the selection
parameter to be estimated separately on the human branch than the rest of the tree. We do this like so:

> initSelMod <- add.ls.mod(neutralMod, "hg18", separate.params="sel")

This adds a separate selection parameter to the human branch. The initial selection parameter is 0, though
we could have specified a different initial value like this:

> initSelMod2 <- add.ls.mod(neutralMod, "hg18", separate.params="sel", selection=2)

Now that the initial model is set up, we can use phyloFit to get the maximum likelihood estimate for both
selection parameters (global and hg18):

> selMod <- phyloFit(align, init.mod=initSelMod, no.opt=c("backgd", "branches", "ratematrix"))

> # print the likelihood:

> selMod$likelihood
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[1] -302.2111

> # print the global selection parameter:

> selMod$selection

[1] 0.01619289

> # print the human selection parameter:

> selMod$ls.mod$selection

[1] 200

Note that when selection is defined in the main model as well as in an LS model, the total selection on the
LS model is the sum of the selection parameters in the LS and main models. You can check by applying the
selection parameter to the rate matrix manually:

> apply.bgc.sel(neutralMod$rate.matrix, sel=(selMod$selection+selMod$ls.mod$selection)) -

+ selMod$ls.model$rate.matrix

[,1] [,2] [,3] [,4]

0 1.759027e-04 -3.139098e-05 -7.259535e-05 -7.191633e-05

1 1.814338e-04 -1.307919e-04 -5.195608e-05 1.314125e-06

2 1.314125e-06 -5.195608e-05 -1.307919e-04 1.814338e-04

3 -7.191633e-05 -7.259535e-05 -3.139098e-05 1.759027e-04

which is within rounding error of zero.
The next model is the model with gBGC on the human branch, but no additional selection parameter

on the human branch. There is no concept of a global gBGC parameter, since gBGC is a transient effect, so
the gBGC parameter B is implicitly 0 in the main model. We can add gBGC to the human branch in the
same way we added selection:

> initBgcMod <- add.ls.mod(neutralMod, "hg18", separate.params="bgc[0,2000]")

The “[0,2000]” assigns boundaries to the bgc parameter (the same can be done any parameters specified
in separate.params, and probably should have been done for the selection parameter above, as phyloFit
estimated it at the default maximum of 200).

Then we can maximize the likelihood using phyloFit in the same way:

> bgcMod <- phyloFit(align, init.mod=initBgcMod, no.opt=c("backgd", "branches", "ratematrix"))

> #print the likelihood, global selection, and bgc parameters:

> bgcMod$likelihood

[1] -282.5656

> bgcMod$selection

[1] 0.001752459

> bgcMod$ls.mod$bgc

[1] 1296.724

The final model incorporates both lineage-specific gBGC and selection. We can set it up, and maximize
the likelihood, like so:
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> initBgcSelMod <- add.ls.mod(neutralMod, "hg18", separate.params=c("bgc[0,2000]", "sel[-1000,1000]"))

> bgcSelMod <- phyloFit(align, init.mod=initBgcSelMod, no.opt=c("backgd", "branches", "ratematrix"))

> # print likelihood, global selection, lineage-specific selection, and bgc parameters:

> bgcSelMod$likelihood

[1] -282.5557

> bgcSelMod$selection

[1] 0.002397168

> bgcSelMod$alt.mod$selection

NULL

> bgcSelMod$alt.mod$bgc

NULL

>

Now that we have likelihoods from all four models, we can compare them as described in Section 2.
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Figure 1: phastBias result plot
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Figure 2: 60 bp region of the alignment in the phastBias tracts containing 4 W→S substitution on the human
branch.
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