
Response-Surface Methods in R, Using rsm
Updated to version 2.00, 5 December 2012

Russell V. Lenth
The University of Iowa

Abstract

This introduction to the R package rsm is a modified version of Lenth (2009), pub-
lished in the Journal of Statistical Software. The package rsm was designed to provide
R support for standard response-surface methods. Functions are provided to generate
central-composite and Box-Behnken designs. For analysis of the resulting data, the pack-
age provides for estimating the response surface, testing its lack of fit, displaying an en-
semble of contour plots of the fitted surface, and doing follow-up analyses such as steepest
ascent, canonical analysis, and ridge analysis. It also implements a coded-data structure
to aid in this essential aspect of the methodology. The functions are designed in hopes
of providing an intuitive and effective user interface. Potential exists for expanding the
package in a variety of ways.

Keywords: response-surface methods, regression, experimental design, first-order designs,
second-order designs.

1. Introduction

Response-surface methodology comprises a body of methods for exploring for optimum op-
erating conditions through experimental methods. Typically, this involves doing several ex-
periments, using the results of one experiment to provide direction for what to do next. This
next action could be to focus the experiment around a different set of conditions, or to collect
more data in the current experimental region in order to fit a higher-order model or confirm
what we seem to have found.

Different levels or values of the operating conditions comprise the factors in each experiment.
Some may be categorical (e.g., the supplier of raw material) and others may be quantitative
(feed rates, temperatures, and such). In practice, categorical variables must be handled sepa-
rately by comparing our best operating conditions with respect to the quantitative variables
across different combinations of the categorical ones. The fundamental methods for quanti-
tative variables involve fitting first-order (linear) or second-order (quadratic) functions of the
predictors to one or more response variables, and then examining the characteristics of the
fitted surface to decide what action is appropriate.

Given that, it may seem like response-surface analysis is simply a regression problem. How-
ever, there are several intricacies in this analysis and in how it is commonly used that are
enough different from routine regression problems that some special help is warranted. These
intricacies include the common use (and importance) of coded predictor variables; the assess-
ment of the fit; the different follow-up analyses that are used depending on what type of model

2 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

is fitted, as well as the outcome of the analysis; and the importance of visualizing the response
surface. Response-surface methods also involve some unique experimental-design issues, due
to the emphasis on iterative experimentation and the need for relatively sparse designs that
can be built-up piece-by-piece according to the evolving needs of the experimenter.

The rsm package for R (R Development Core Team 2009) provides several functions to facili-
tate classical response-surface methods, as described in texts such as Box and Draper (1987),
Khuri and Cornell (1996, Chapters 1–5), Wu and Hamada (2000, Chapter 9), Myers, Mont-
gomery, and Anderson-Cook (2009), Box, Hunter, and Hunter (2005, Chapters 11–12), and
Ryan (2007, Chapter 10). In its current form, rsm covers only the most standard first-and sec-
ond order designs and methods for one response variable; but it covers those reasonably well,
and it could be expanded in the future. Multiple-response optimization is not covered in this
package, but the desirability package (Kuhn 2009) may be used in conjunction with predic-
tions obtained using the rsm package. The rsm package is available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=rsm.

Here is a general overview of rsm. First, it provides functions and data types that provide for
the coding and decoding of factor levels, since appropriate coding is an important element of
response-surface analysis. These are discussed in Section 2. Second, it provides functions for
generating standard designs (currently, central-composite and Box-Behnken), and building
blocks thereof, and examining their variance function; see Section 3. Third (Section 4), it
extends R’s lm function to simplify the specification of standard response-surface models,
and provide appropriate summaries. Fourth (Section 5) it provides means of visualizing a
fitted response surface (or in fact any lm object). Finally (Section 6), it provides guidance
for further experimentation, e.g., along the path of steepest ascent. Most rsm functions take
advantage of R’s formula capabilities to provide intuitive and transparent ways of obtaining
the needed results.

To provide some context, there is good commercial software available to help with designing
and analyzing response-surface experiments. The most popular include Design-Expert (Stat-
Ease, Inc. 2009), JMP (SAS Institute, Inc. 2009), and Statgraphics (StatPoint Technologies,
Inc. 2009). These all provide for generating Box-Behnken and central-composite designs, fit-
ting first- and second-order response surfaces, and visualizing them. These programs generally
exceed rsm’s capabilities (for example, more types of designs, provisions for mixture experi-
ments, etc.); but rsm makes the most important methods available in R. To my knowledge,
the functionality of rsm’s ccd.pick function is not provided in other software, and rsm may
exceed the capabilities of these programs in the generality of central-composite designs that
it can create.

The goal of this article is to present an overview of rsm and how its functions may be used
to design and analyze response-surface experiments. While most important functions in the
package are illustrated, we do not provide comprehensive documentation here; instead, the
reader is referred to the manual and online documentation provided with the package. Fur-
ther note that rsm’s features were extended and somewhat modified in version 2.0, and the
vignette “Response-Surface Illustration” illustrates using the newer building-block approach
to generating designs and some other newer features.

2. Coding of data

http://CRAN.R-project.org/package=rsm

Russell V. Lenth 3

An important aspect of response-surface analysis is using an appropriate coding transforma-
tion of the data. The way the data are coded affects the results of canonical analysis (see
Section 4) and steepest-ascent analysis (see Section 6); for example, unless the scaling factors
are all equal, the path of steepest ascent obtained by fitting a model to the raw predictor val-
ues will differ from the path obtained in the coded units, decoded to the original scale. Using
a coding method that makes all coded variables in the experiment vary over the same range
is a way of giving each predictor an equal share in potentially determining the steepest-ascent
path. Thus, coding is an important step in response-surface analysis.

Accordingly, the rsm package provides for a coded.data class of objects, an extension of
data.frame. The functions coded.data, as.coded.data, decode.data, recode.data, code2val,
and val2code create or decode such objects. If a coded.data object is used in place of an
ordinary data.frame in the call to other rsm functions such as rsm (Section 4) or steepest

(Section 6), then appropriate additional output is provided that translates the results to the
original units. The print method for a coded.data object displays the coding formulas and
the data in either coded or decoded form.

As an example, consider the provided dataset ChemReact, which comes from Table 7.6 of
Myers et al. (2009).

R> library("rsm")

R> ChemReact

Time Temp Block Yield

1 80.00 170.00 B1 80.5

2 80.00 180.00 B1 81.5

3 90.00 170.00 B1 82.0

4 90.00 180.00 B1 83.5

5 85.00 175.00 B1 83.9

6 85.00 175.00 B1 84.3

7 85.00 175.00 B1 84.0

8 85.00 175.00 B2 79.7

9 85.00 175.00 B2 79.8

10 85.00 175.00 B2 79.5

11 92.07 175.00 B2 78.4

12 77.93 175.00 B2 75.6

13 85.00 182.07 B2 78.5

14 85.00 167.93 B2 77.0

In this experiment, the data in block B1 were collected first and analyzed, after which block B2

was added and a new analysis was done. The provided datasets ChemReact1 and ChemReact2

provide these separate blocks. The first block, ChemReact1, uses factor settings of Time =
85 ± 5 and Temp = 175 ± 5, with three center points. Thus, the coded variables are x1 =
(Time − 85)/5 and x1 = (Temp − 175)/5. To create a coded dataset with the appropriate
codings, provide this information via formulas:

R> CR1 <- coded.data(ChemReact1, x1 ~ (Time - 85)/5, x2 ~ (Temp - 175)/5)

R> CR1

4 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

Time Temp Yield

1 80 170 80.5

2 80 180 81.5

3 90 170 82.0

4 90 180 83.5

5 85 175 83.9

6 85 175 84.3

7 85 175 84.0

Data are stored in coded form using these coding formulas ...

x1 ~ (Time - 85)/5

x2 ~ (Temp - 175)/5

This listing looks much like the original data, but internally, the data are saved in coded form,
as can be seen by coercing it to a data.frame:

R> as.data.frame(CR1)

x1 x2 Yield

1 -1 -1 80.5

2 -1 1 81.5

3 1 -1 82.0

4 1 1 83.5

5 0 0 83.9

6 0 0 84.3

7 0 0 84.0

Any way of writing a linear transformation is acceptable; for example, we could have written
x1 ~ 0.2 * Time - 17. Observe that coded.data actually transforms the predictor values
and replaces those variables with their coded versions. To create a coded.data object from
data that are already coded, use as.coded.data.

The function decode.data decodes a coded.data object. We may also easily encode or
decode matrices or data frames of arbitrary values; for example,

R> code2val(data.frame(x1 = c(0.25, 0.5), x2 = c(-1.5, -0.5)), codings(CR1))

Time Temp

1 86.25 167.5

2 87.50 172.5

3. Generating a design

The functions ccd and bbd are available to generate standard response-surface designs. For
example, here we generate a 3-factor Box-Behnken design (Box and Behnken 1960) with two
center points:

Russell V. Lenth 5

R> bbd(3, n0 = 2, coding =

+ list(x1 ~ (Force - 20)/3, x2 ~ (Rate - 50)/10, x3 ~ Polish - 4))

run.order std.order Force Rate Polish

1 1 4 23 60 4

2 2 2 23 40 4

3 3 5 17 50 3

4 4 6 23 50 3

5 5 10 20 60 3

6 6 14 20 50 4

7 7 12 20 60 5

8 8 3 17 60 4

9 9 9 20 40 3

10 10 8 23 50 5

11 11 1 17 40 4

12 12 7 17 50 5

13 13 11 20 40 5

14 14 13 20 50 4

Data are stored in coded form using these coding formulas ...

x1 ~ (Force - 20)/3

x2 ~ (Rate - 50)/10

x3 ~ Polish - 4

By default, the variable names are x1, x2, . . . and the experiment is randomized. If there
are 4 or 5 factors, the design is blocked by default (this is not possible for other numbers of
factors), and the blocks are randomized separately.

One of the most popular response-surface designs is the central-composite design (CCD), due
to Box and Wilson (1951). A simple example is the chemical-reaction experiment presented
in the preceding section. These designs allow for sequential augmentation, so that we may
first experiment with just one block suitable for fitting a first-order model, and then add more
block(s) if a second-order fit is needed. The blocks in a CCD are of two types—one type,
called a “cube” block, contains design points from a two-level factorial or fractional factorial
design, plus center points; the other type, called a “star” block, contains axis points plus
center points.

In the following discussion, the term “design points” refers to the non-center points in a
block. The levels of the factors are coded, so that the cube blocks contain design points with
coordinate values all equal to ±1, and center points at (0, 0, . . . , 0). The design points in the
star blocks are at positions of ±α along each coordinate axis. The value of α, and choices of
replications of design points and center points, are often selected based on considerations of
rotatability (i.e., the variance of the prediction depends only on the distance from the center)
and orthogonality of blocks (so that the coefficients of the fitted response-surface equation
are not correlated with block effects).

Table 1 displays the parameters of a CCD, along with the names used by the function
ccd.pick to be described shortly. Suppose that there are k variables to be varied. For
the cube blocks, we start with a given 2k−p fractional factorial design (or full factorial, when

6 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

Parameter(s) Cube block(s) Star block(s)

Design points (±1,±1, . . . ,±1) (±α, 0, 0, . . . , 0), . . . , (0, 0, . . . ,±α)

Center points (0, 0, . . . , 0) (0, 0, . . . , 0)

Distinct design points 2k−p (altogether) 2k

Fractions of 2k−p blks.c (Not applicable)

Reps of each design point,
within each block

wbr.c wbr.s

Design pts each block n.c = wbr.c
blks.c · 2

k−p n.s = wbr.s · (2k)

Center points n0.c n0.s

Points in each block n.c + n0.c n.s + n0.s

Reps of each block bbr.c bbr.s

Total observations (N)
blks.c * bbr.c * (n.c + n0.c)

+ bbr.s * (n.s + n0.s)

Table 1: Parameters of a central-composite design, and names used by ccd.pick.

p = 0). We may either use this design as-is to define the design points in the cube block(s).
Alternatively, we may confound one or more effects with blocks to split this design into blks.c

smaller cube blocks, in which case each cube block contains 2k−p/blks.c distinct design points.
The star blocks always contain all 2k distinct design points—two on each axis.

Once the designs are decided, we may, if we like, replicate them within blocks. We may also
replicate the center points. The names wbr.c and wbr.s (for “within-block reps”) refer to the
number of replicates of each design point within each cube block or star block, respectively.
Thus, each cube block has a total of n.c = wbr.c · 2k−p/blks.c design points, and each star
block contains wbr.s · 2k design points. We may also replicate the center points—n0.c times
in each cube block, n0.s times within each star block.

Finally, we may replicate the blocks themselves; the numbers of such between-block replica-
tions are denoted bbr.c and bbr.s for cube blocks and star blocks, respectively. It is im-
portant to understand that each block is separately randomized, in effect a mini-experiment
within the larger experiment. Having between-block replications means repeating these mini-
experiments. We run an entire block before running another block.

The function ccd.pick is designed to help identify good CCDs. It simply creates a grid
of all combinations of design choices, computes the α values required for orthogonality and
rotatability, sorts them by a specified criterion (by default, a measure of the discrepancy
between these two αs), and presents the best few.

For example, suppose that we want to experiment with k = 5 factors, and we are willing
to consider CCDs with blks.c = 1, 2, or 4 cube blocks of sizes n.c = 8 or 16 each. With
this many factors, the number of different star points (2k = 10) is relatively small compared
with the size of some cube blocks (16), so it seems reasonable to consider either one or two

Russell V. Lenth 7

replications (wbr.s ∈ {1, 2}) of each point within each star block. Finally, suppose that we
want the total size of the experiment to be no more than N = 65 runs (see restrict in the
call below). Here are the ten best choices based on these criteria:

R> ccd.pick(5, n.c = c(8, 16), blks.c = c(1, 2, 4),

+ wbr.s = 1:2, restrict = "N<=65")

n.c n0.c blks.c n.s n0.s bbr.c wbr.s bbr.s N alpha.rot alpha.orth

1 16 6 1 10 1 1 1 1 33 2.000000 2.000000

2 16 8 1 10 2 1 1 1 36 2.000000 2.000000

3 16 10 1 10 3 1 1 1 39 2.000000 2.000000

4 16 5 2 20 1 1 2 1 63 2.000000 2.000000

5 16 8 2 10 7 1 1 1 65 2.378414 2.380476

6 8 4 4 10 7 1 1 1 65 2.378414 2.380476

7 16 1 2 10 2 1 1 1 46 2.378414 2.376354

8 16 5 2 10 5 1 1 1 57 2.378414 2.390457

9 16 4 2 10 4 1 1 1 54 2.378414 2.366432

10 8 2 4 10 4 1 1 1 54 2.378414 2.366432

The first design listed is also the smallest; it consists of one cube block of 16 runs, plus 6
center points; and one star block with the points replicated once and one center point; thus,
the total number of runs is N = (16 + 6) + (10 + 1) = 33. If we choose α = 2, this design is
both orthogonal and rotatable as seen by noting that alpha.rot and alpha.orth are both
equal to 2. The 16 design points in the cube block may be generated by a 25−1 fractional
factorial design.

While this is a small design, we have only one center point in the star block, not providing a
way to test lack of fit in the star portion. The second and third designs remedy this slightly,
but all these designs are fairly lopsided in that the cube block is much larger than the star
block. The next few designs require considerably more runs. Design number 4 is nicely
balanced in that it consists of three blocks of 21 runs each, and it is both rotatable and
orthogonal. However, we still have no lack-of-fit test in the star blocks. Designs 5 and 6 differ
only in whether they use two 25−1 cubes or four 25−2 cubes, but they provide several center
points for a lack-of-fit test. If we position the axis points at α = 2.38, the design is almost
orthogonal and almost rotatable. The remaining designs also come close to meeting both
criteria, but are also somewhat smaller, so that Designs 9 and 10 are essentially down-sized
versions of Designs 5 and 6.

The choice of which design is best depends on the tradeoff between economy and ability to
assess the fitted surface. Design 1 is the only one of these that is included in Table 7.6 of
Myers et al. (2009). It is good to be able to look at a broader range of choices.

Once we decide the design, the ccd function is used to generate it. (Alternatively, starting with
rsm version 2.0, the cube, star, foldover, and dupe functions are available for generating
and randomizing a CCD in separate blocks, and then they may be combined using djoin.)
We first illustrate the generation of Design 1 above. This design requires a 25−1 fraction
for the cube block. Typically, this is done by confounding the five-way interaction with the
mean; or equivalently, create a four-factor design, and generate the levels of the fifth as the
four-way interaction of the others. That is the approach implemented by ccd. Suppose that

8 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

we denote the design factors by A,B,C,D,E; let’s opt to use E = −ABCD as the generator.
The following call generates the design (results not shown):

R> des1 <- ccd (y1 + y2 ~ A + B + C + D,

+ generators = E ~ - A * B * C * D, n0 = c(6, 1))

The value of α was not specified, and by default it uses the α for orthogonality. The first
argument could have been just 4, but then the generator would have had to have been given
in terms of the default variable names x1, x2, The optional left-hand side in the formula
creates place-holders for response variable(s), to be filled-in with data later. As in bbd, we
could have added coding formulas to create a coded.data object.

Next, we illustrate the generation of Design 10. This design has four 25−2 cube blocks with
2 center points each, and one unreplicated star block with 4 center points. The non-center
points in the cube blocks comprise 4× 8 = 32 runs, so we most likely want to create them by
dividing the full 25 factorial into four fractional blocks. We can for example opt to generate
the blocks via the factors b1 = ABC and b2 = CDE, so that the blocks are determined
by the four combinations of b1 and b2. Then the block effects will be confounded with the
effects ABC, CDE, and also the b1b2 interaction ABC2DE = ABDE. It is important in
response-surface work to avoid confounding second-order interactions, and this scheme is thus
acceptable. Unlike Design 1, this design includes all 25 factor combinations, so we do not use
the generators argument; instead, we use blocks to do the fractionation:

R> des10 <- ccd(~ A + B + C + D + E,

+ blocks = Blk ~ c(A * B * C, C * D * E), n0 = c(2, 4))

Each block is randomized separately, but the order of the blocks is not randomized. In
practice, we may opt to run the blocks in a different sequence. With this design, just one of
the cube blocks is sufficient to estimate a first-order response surface.

It is also important to examine a design’s capabilities. First of all, is it adequate to fit the
needed first- or second-order model, and how effective is it in predicting the response surface?
The varfcn function (a new addition starting rsm version 2.0) is helpful in this regard. It cal-
culates a scaled version of the varaince of the fitted values over a specified set of design points.
By default, it computes this along paths through (1, 0, . . . , 0), (1, 1, . . . , 0), . . . , (1, 1, . . . , 1), or
on a grid with the first two variables. The right-hand side of the intended model must be
provided.

Figure 1 illustrates this for des10. It shows that the design is nearly rotatable (it would be
exactly so if we had chosen alpha = "rotatable" in the call to ccd). It can also be verified
that any two of the cube blocks plus the axis block is sufficient to estimate a second-order
response surface. Just one cube block plus the axis points, however, is not sufficient.

It is possible to imagine a CCD that consists of a fractional factorial divided into blocks.
For such a design, both generators and blocks would be needed. For smaller numbers of
factors, most CCDs require no fractionation of either type, and obviously these are simple to
generate.

Starting in version 1.40 of rsm, an inscribed argument is available in ccd. This scales the
entire design so that it fits within a unit cube—useful for situations when there are constraints
on the region of operability.

Russell V. Lenth 9

R> par(mfrow=c(1,2))

R> varfcn(des10, ~ Blk + SO(A,B,C,D,E), dist = seq(0, 3, by=.1))

R> varfcn(des10, ~ Blk + SO(A,B,C,D,E), dist = seq(0, 3, by=.1), contour = TRUE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10
20

30
40

50
60

70
80

des10: ~ Blk + SO(A, B, C, D, E)

Distance from center

S
ca

le
d

pr
ed

ic
tio

n
va

ria
nc

e

des10: ~ Blk + SO(A, B, C, D, E)

A

B

 50

 100

 100

 100

 100

 150

 150

 150

 150

 200

 20
0

 20
0

 200

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 1: Variance function plots for des10, with respect to a second-order model.

R> ccd(2, n0 = c(1,1), inscribed=TRUE, randomize=FALSE)

run.order std.order x1.as.is x2.as.is Block

1 1 1 -0.7071068 -0.7071068 1

2 2 2 0.7071068 -0.7071068 1

3 3 3 -0.7071068 0.7071068 1

4 4 4 0.7071068 0.7071068 1

5 5 5 0.0000000 0.0000000 1

6 1 1 -1.0000000 0.0000000 2

7 2 2 1.0000000 0.0000000 2

8 3 3 0.0000000 -1.0000000 2

9 4 4 0.0000000 1.0000000 2

10 5 5 0.0000000 0.0000000 2

Data are stored in coded form using these coding formulas ...

x1 ~ x1.as.is

x2 ~ x2.as.is

Note in this example that it is now the axis points that are at ±1, while the cube points are at
±
√

1/2. (Incidentally, this example also illustrates the default codings used when no coding
formulas are specified.)

There are several other types of designs that are useful for response surfaces, as mentioned in
several of the books referenced in this article. Provisions for generating those designs are an
area of future development in the rsm package.

10 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

4. Fitting a response-surface model

A response surface is fitted using the rsm function. This is an extension of lm, and works
almost exactly like it; however, the model formula for rsm must make use of the special
functions FO, TWI, PQ, or SO (for “first-order,”, “two-way interaction,” “pure quadratic,” and
“second-order,” respectively), because the presence of these specifies the response-surface por-
tion of the model. Other terms that don’t involve these functions may be included in the
model; often, these terms would include blocking factors and other categorical predictors.

To illustrate this, let us revisit the ChemReact data introduced in Section 2. We have one
response variable, Yield, and two coded predictors x1 and x2 as well as a blocking factor
Block. Supposing that the experiment was done in two stages, we first act as though the data
in the second block have not yet been collected; and fit a first-order response-surface model
to the data in the first block:

R> CR1.rsm <- rsm(Yield ~ FO(x1, x2), data = CR1)

R> summary(CR1.rsm)

Call:

rsm(formula = Yield ~ FO(x1, x2), data = CR1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.81429 0.54719 151.3456 1.143e-08 ***

x1 0.87500 0.72386 1.2088 0.2933

x2 0.62500 0.72386 0.8634 0.4366

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2) 2 4.6250 2.3125 1.1033 0.41534

Residuals 4 8.3836 2.0959

Lack of fit 2 8.2969 4.1485 95.7335 0.01034

Pure error 2 0.0867 0.0433

Direction of steepest ascent (at radius 1):

x1 x2

0.8137335 0.5812382

Corresponding increment in original units:

Time Temp

4.068667 2.906191

What we see in the summary is the usual summary for a lm object (with a subtle difference),
followed by some additional information particular to response surfaces. The subtle difference
is that the labeling of the regression coefficients is simplified (we don’t see “FO” in there). The

Russell V. Lenth 11

analysis-of-variance table shown includes a breakdown of lack of fit and pure error, and we
are also given information about the direction of steepest ascent. Since the dataset is a
coded.data object, the steepest-ascent information is also presented in original units. (While
rsm does not require a coded.data dataset, the use of one is highly recommended.)

In this particular example, the steepest-ascent information is of little use, because there is
significant lack of fit for this model (p ≈ 0.01). It suggests that we should try a higher-order
model. For example, we could add two-way interactions:

R> CR1.rsmi <- update(CR1.rsm, . ~ . + TWI(x1, x2))

R> summary(CR1.rsmi)

The results are not shown, but one finds there is still a small p value for lack-of-fit.

To go further, we need more data. Thus, let us pretend that we now collect the data in the
second block. Then here are the data from the combined blocks:

R> (CR2 <- djoin(CR1, ChemReact2))

Time Temp Yield Block

1 80.00 170.00 80.5 1

2 80.00 180.00 81.5 1

3 90.00 170.00 82.0 1

4 90.00 180.00 83.5 1

5 85.00 175.00 83.9 1

6 85.00 175.00 84.3 1

7 85.00 175.00 84.0 1

8 85.00 175.00 79.7 2

9 85.00 175.00 79.8 2

10 85.00 175.00 79.5 2

11 92.07 175.00 78.4 2

12 77.93 175.00 75.6 2

13 85.00 182.07 78.5 2

14 85.00 167.93 77.0 2

Data are stored in coded form using these coding formulas ...

x1 ~ (Time - 85)/5

x2 ~ (Temp - 175)/5

Notice that djoin figures out the fact that ChemReact2 is not coded but it has the appropriate
uncoded variables Time and Temp; so it codes those variables appropriately. Also, the Block

factor is added automatically.

We are now in the position of fitting a full second-order model to the combined data. This
can be done by adding PQ(x1, x2) to the above model with interaction, but the easier way
is to use SO, which is shorthand for a model with FO, TWI, and PQ terms. Also, we now need
to account for the block effect since the data are collected in separate experiments:

R> CR2.rsm <- rsm(Yield ~ Block + SO(x1, x2), data = CR2)

R> summary(CR2.rsm)

12 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

Call:

rsm(formula = Yield ~ Block + SO(x1, x2), data = CR2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.095427 0.079631 1056.067 < 2.2e-16 ***

Block2 -4.457530 0.087226 -51.103 2.877e-10 ***

x1 0.932541 0.057699 16.162 8.444e-07 ***

x2 0.577712 0.057699 10.012 2.122e-05 ***

x1:x2 0.125000 0.081592 1.532 0.1694

x1^2 -1.308555 0.060064 -21.786 1.083e-07 ***

x2^2 -0.933442 0.060064 -15.541 1.104e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 69.531 69.531 2611.0950 2.879e-10

FO(x1, x2) 2 9.626 4.813 180.7341 9.450e-07

TWI(x1, x2) 1 0.063 0.063 2.3470 0.1694

PQ(x1, x2) 2 17.791 8.896 334.0539 1.135e-07

Residuals 7 0.186 0.027

Lack of fit 3 0.053 0.018 0.5307 0.6851

Pure error 4 0.133 0.033

Stationary point of response surface:

x1 x2

0.3722954 0.3343802

Stationary point in original units:

Time Temp

86.86148 176.67190

Eigenanalysis:

$values

[1] -0.9233027 -1.3186949

$vectors

[,1] [,2]

x1 -0.1601375 -0.9870947

x2 -0.9870947 0.1601375

The lack of fit is now non-significant (p ≈ 0.69). The summary for a second-order model
provides results of a canonical analysis of the surface rather than for steepest ascent. The
analysis indicates that the stationary point of the fitted surface is at (0.37, 0.33) in coded
units—well within the experimental region; and that both eigenvalues are negative, indicating

Russell V. Lenth 13

that the stationary point is a maximum. This is the kind of situation we dream for in
response-surface experimentation—clear evidence of a nearby set of optimal conditions. We
should probably collect some confirmatory data near this estimated optimum at Time ≈ 87,
Temp ≈ 177, to make sure.

Another example that comes out a different way is a paper-helicopter experiment (Box et al.
2005, Table 12.5). This is another central-composite experiment, in four variables and two
blocks. The data are provided in the rsm dataset heli; these data are already coded. The
original variables are wing area A, wing shape R, body width W, and body length L. The goal
is to make a paper helicopter that flies for as long as possible. Each observation in the dataset
represents the results of ten replicated flights at each experimental condition. Here we study
the average flight time, variable name ave, using a second-order surface.

R> heli.rsm <- rsm(ave ~ block + SO(x1, x2, x3, x4), data = heli)

R> summary(heli.rsm)

Call:

rsm(formula = ave ~ block + SO(x1, x2, x3, x4), data = heli)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 372.800000 1.506375 247.4815 < 2.2e-16 ***

block2 -2.950000 1.207787 -2.4425 0.0284522 *

x1 -0.083333 0.636560 -0.1309 0.8977075

x2 5.083333 0.636560 7.9856 1.398e-06 ***

x3 0.250000 0.636560 0.3927 0.7004292

x4 -6.083333 0.636560 -9.5566 1.633e-07 ***

x1:x2 -2.875000 0.779623 -3.6877 0.0024360 **

x1:x3 -3.750000 0.779623 -4.8100 0.0002773 ***

x1:x4 4.375000 0.779623 5.6117 6.412e-05 ***

x2:x3 4.625000 0.779623 5.9324 3.657e-05 ***

x2:x4 -1.500000 0.779623 -1.9240 0.0749257 .

x3:x4 -2.125000 0.779623 -2.7257 0.0164099 *

x1^2 -2.037500 0.603894 -3.3739 0.0045424 **

x2^2 -1.662500 0.603894 -2.7530 0.0155541 *

x3^2 -2.537500 0.603894 -4.2019 0.0008873 ***

x4^2 -0.162500 0.603894 -0.2691 0.7917877

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

Response: ave

Df Sum Sq Mean Sq F value Pr(>F)

block 1 16.81 16.81 1.7281 0.209786

FO(x1, x2, x3, x4) 4 1510.00 377.50 38.8175 1.965e-07

TWI(x1, x2, x3, x4) 6 1114.00 185.67 19.0917 5.355e-06

PQ(x1, x2, x3, x4) 4 282.54 70.64 7.2634 0.002201

Residuals 14 136.15 9.72

14 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

Lack of fit 10 125.40 12.54 4.6660 0.075500

Pure error 4 10.75 2.69

Stationary point of response surface:

x1 x2 x3 x4

0.8607107 -0.3307115 -0.8394866 -0.1161465

Stationary point in original units:

A R W L

12.916426 2.434015 1.040128 1.941927

Eigenanalysis:

$values

[1] 3.258222 -1.198324 -3.807935 -4.651963

$vectors

[,1] [,2] [,3] [,4]

x1 0.5177048 0.04099358 0.7608371 -0.38913772

x2 -0.4504231 0.58176202 0.5056034 0.45059647

x3 -0.4517232 0.37582195 -0.1219894 -0.79988915

x4 0.5701289 0.72015994 -0.3880860 0.07557783

From the analysis of variance, it is clear that the second-order (TWI and PQ) terms contribute
significantly to the model, so the canonical analysis is relevant. Again, the stationary point is
fairly near the experimental region, but the eigenvalues are of mixed sign, indicating that it
is a saddle point (neither a maximum nor a minimum). We will do further analysis of these
results in subsequent sections.

5. Displaying a response surface

While the canonical analysis gives us a handle on the behavior of a second-order response
surface, an effective graph is a lot easier to present and explain. To that end, rsm includes a
function for making contour plots of a fitted response surface. This function is not restricted
to rsm results, however; it can be used for plotting any regression surface produced by lm.
For more detailed information, see the associated vignette “Surface Plots in the rsm Package.”
We provide the lm or rsm object, a formula for which predictors to use, and various optional
parameters. Consider the paper-helicopter example in the preceding section; there are four
response-surface predictors, making six pairs of predictors. If we want to visualize the behavior
of the fitted surface around the stationary point, we can provide that location as the at

argument:

R> par(mfrow = c(2, 3))

R> contour(heli.rsm, ~ x1 + x2 + x3 + x4, image = TRUE,

+ at = summary(heli.rsm)$canonical$xs)

The plots are shown in Figure 2. The image argument causes each plot to display a color
image overlaid by the contour lines. When multiple plots like this are produced, the color

Russell V. Lenth 15

11.5 12.0 12.5 13.0 13.5

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

A
Slice at A = 12.92, R = 2.43

R

 345

 355
 360

 360

 365

 365

 370

11.5 12.0 12.5 13.0 13.5
0.

8
1.

0
1.

2
1.

4
1.

6

A
Slice at A = 12.92, W = 1.04

W

 345

 350

 355

 355

 360

 360

 365

 365

 370

11.5 12.0 12.5 13.0 13.5

1.
0

1.
5

2.
0

2.
5

3.
0

A
Slice at A = 12.92, L = 1.94

L

 3
35

 3

45

 3
50

 35
5

 3
60

 365

 3
65

 370

 370

 375

 375

2.0 2.2 2.4 2.6 2.8 3.0

0.
8

1.
0

1.
2

1.
4

1.
6

R
Slice at R = 2.43, W = 1.04

W

 335

 345 350

 355

 355

 360

 360

 365

 365

 370

 370

2.0 2.2 2.4 2.6 2.8 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

R
Slice at R = 2.43, L = 1.94

L

 358

 360
 362

 364

 364

 366

 366

 368

 368

 370

 370

0.8 1.0 1.2 1.4 1.6

1.
0

1.
5

2.
0

2.
5

3.
0

W
Slice at W = 1.04, L = 1.94

L

 345
 350

 355
 360

 365 365

 370

 370

Figure 2: Fitted response-surface contour plots near the stationary point for the helicopter
experiment.

levels are held consistent across all plots. Note that the at condition does not set the center
of the coordinate systems (the default variable ranges are derived from the data); it sets the
values at which to hold variables other than those on one of the coordinate axes, as shown in
the subtitles.

6. Direction for further experimentation

In many first-order cases, as well as second-order cases where we find a saddle point or the
stationary point is distant, the most useful further action is to decide in which direction to
explore further. In the case of first-order models, one can follow the direction of steepest
ascent. As already seen in Section 4, the summary method for rsm objects provides some
information about this path. More detailed information is available via the steepest function;
for example,

R> steepest(CR1.rsm, dist = c(0, 0.5, 1))

Path of steepest ascent from ridge analysis:

dist x1 x2 | Time Temp | yhat

1 0.0 0.000 0.000 | 85.000 175.000 | 82.814

2 0.5 0.407 0.291 | 87.035 176.455 | 83.352

3 1.0 0.814 0.581 | 89.070 177.905 | 83.890

In general, we can specify any set of distances along the path. The decoded coordinate values

16 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

are displayed if the model was fitted to a coded.data dataset.

At this point it is worth emphasizing that, although the fitted values are also displayed,
one must be careful to understand that these are only predictions and that, as the distance
increases, they are very poor predictions and should be taken with a grain of salt. What
one should do is to conduct actual experimental runs at points along this path, and use the
observed response values, not these predictions, for guidance on where to locate the next
factorial experiment.

In the second-order case, the steepest function still works, but it uses the ridge analysis
method (Hoerl 1959; Draper 1963), which is the analog of steepest ascent in the sense that for
a specified distance d, it finds the point at which the predicted response is a maximum among
all predictor combinations at radius d. This method makes sense when the stationary point is
some distance away; but when this point is nearby, it makes more sense to start at the saddle
point (rather than the origin) and follow the most steeply rising ridge in both directions. This
path is obtained using the canonical.path function. In this function, distance is a signed
quantity, according to the direction along the ridge.

In the heli example, we do have a nearby stationary point. Here are some points within a
radius of 5 along the canonical path:

R> canonical.path(heli.rsm, dist = seq(-5, 5, by = 0.5))

dist x1 x2 x3 x4 | A R W L | yhat

1 -5.0 -1.728 1.921 1.419 -2.967 | 11.3632 3.01946 1.60475 0.5165 | 453.627

2 -4.5 -1.469 1.696 1.193 -2.682 | 11.5186 2.96096 1.54825 0.6590 | 438.150

3 -4.0 -1.210 1.471 0.967 -2.397 | 11.6740 2.90246 1.49175 0.8015 | 424.302

4 -3.5 -0.951 1.246 0.742 -2.112 | 11.8294 2.84396 1.43550 0.9440 | 412.094

5 -3.0 -0.692 1.021 0.516 -1.827 | 11.9848 2.78546 1.37900 1.0865 | 401.504

6 -2.5 -0.434 0.795 0.290 -1.541 | 12.1396 2.72670 1.32250 1.2295 | 392.534

7 -2.0 -0.175 0.570 0.064 -1.256 | 12.2950 2.66820 1.26600 1.3720 | 385.203

8 -1.5 0.084 0.345 -0.162 -0.971 | 12.4504 2.60970 1.20950 1.5145 | 379.502

9 -1.0 0.343 0.120 -0.388 -0.686 | 12.6058 2.55120 1.15300 1.6570 | 375.429

10 -0.5 0.602 -0.105 -0.614 -0.401 | 12.7612 2.49270 1.09650 1.7995 | 372.986

11 0.0 0.861 -0.331 -0.839 -0.116 | 12.9166 2.43394 1.04025 1.9420 | 372.172

12 0.5 1.120 -0.556 -1.065 0.169 | 13.0720 2.37544 0.98375 2.0845 | 372.987

13 1.0 1.378 -0.781 -1.291 0.454 | 13.2268 2.31694 0.92725 2.2270 | 375.428

14 1.5 1.637 -1.006 -1.517 0.739 | 13.3822 2.25844 0.87075 2.3695 | 379.499

15 2.0 1.896 -1.232 -1.743 1.024 | 13.5376 2.19968 0.81425 2.5120 | 385.206

16 2.5 2.155 -1.457 -1.969 1.309 | 13.6930 2.14118 0.75775 2.6545 | 392.538

17 3.0 2.414 -1.682 -2.195 1.594 | 13.8484 2.08268 0.70125 2.7970 | 401.498

18 3.5 2.673 -1.907 -2.421 1.879 | 14.0038 2.02418 0.64475 2.9395 | 412.088

19 4.0 2.932 -2.132 -2.646 2.164 | 14.1592 1.96568 0.58850 3.0820 | 424.295

20 4.5 3.190 -2.358 -2.872 2.449 | 14.3140 1.90692 0.53200 3.2245 | 438.140

21 5.0 3.449 -2.583 -3.098 2.734 | 14.4694 1.84842 0.47550 3.3670 | 453.615

Box et al. (2005, Table 12.7 and Figure 12.6) reports some results of experimentation along
this path. They found the most promising location for the next experiment was at a distance
of about 3.5 (−3.5 on their scale as their signs are reversed from ours).

Russell V. Lenth 17

7. Stationary and rising-ridge situations

Canonical analysis becomes unstable in cases where the matrix B of second-order coefficients
is singular or nearly so. As an example, consider the dataset codata provided with rsm and
used as an example in Box et al. (2005). It comes in coded form, but to relate things to the
actual variables, let’s add the codings:

R> CO = as.coded.data(codata, x1 ~ (Ethanol - 0.2)/0.1, x2 ~ A.F.ratio - 15)

R> names(CO)[3] = "CO.conc"

R> head(CO)

Ethanol A.F.ratio CO.conc

1 0.1 14 61.9

2 0.1 14 65.6

3 0.2 14 80.9

4 0.2 14 78.0

5 0.3 14 89.7

6 0.3 14 93.8

Data are stored in coded form using these coding formulas ...

x1 ~ (Ethanol - 0.2)/0.1

x2 ~ A.F.ratio - 15

This is a 32 design in one block. We fit a second-order model and obtain the canonical
analysis:

R> CO.rsm = rsm(CO.conc ~ SO(x1,x2), data = CO)

R> canonical(CO.rsm)

$xs

x1 x2

-14.81387 15.44149

$eigen

$eigen$values

[1] 0.1868328 -8.8868328

$eigen$vectors

[,1] [,2]

x1 0.6893497 -0.7244288

x2 -0.7244288 -0.6893497

Note that the stationary point is at about (−15, 15) in coded units—very distant from the
design center. Also, one eigenvalue is very small relative to the other. rsm now provides a
threshold option whereby eigenvalues smaller than the threshold are not used. Note the
results when we discard the smaller eigenvalue:

R> canonical(CO.rsm, threshold = .2)

18 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

x1 = (Ethanol − 0.2)/0.1
Slice at x1 = 0, x2 = 0

x2
 =

 A
.F

.r
at

io
 −

 1
5

 −80

 −80

 −80

 −80

 −80

 −80

 −60

 −60

 −40

 −40

 −20

 −20

 0

 20

 40

 60

 80

−15 −10 −5 0

0
5

10
15

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Figure 3: Fitted response surface for CO.rsm, and the canonical paths with (blue) and with-
out(red) a threshold. The design region is shown as a green box.

$xs

x1 x2

-0.06302658 -0.05997463

$eigen

$eigen$values

[1] 0.000000 -8.886833

$eigen$vectors

[,1] [,2]

x1 0.6893497 -0.7244288

x2 -0.7244288 -0.6893497

This sets the smaller eigenvalue to zero. By ignoring it, the stationary point is (−.06,−.06)—
much, much closer to the design center.

The following statements produce an illustrative plot, shown in Figure 3.

R> contour(CO.rsm, x2 ~ x1, bounds = list(x1=c(-16,2), x2=c(-2,16)),

+ zlim=c(-100,100), col="gray", decode = FALSE)

R> lines(c(-1,1,1,-1,-1), c(-1,-1,1,1,-1), col="green") # design region

R> points(x2 ~ x1, data=canonical.path(CO.rsm), col="red", pch=1+6*(dist==0))

R> points(x2 ~ x1, data=canonical.path(CO.rsm, threshold=.2),

+ col="blue", pch=1+6*(dist==0))

Russell V. Lenth 19

It displays the fitted response surface, as well as the results from canonical.path with and
without the threshold (blue and red points, respectively). The region of the design is shown
as a green box. The stationary point (different symbol) is seen to be a saddle point near
the upper-left corner when not thresholded, and near the design center whern thresholded.
Otherwise, the canonical paths are much the same but with different origins. Both form a
path along the rising ridge that occurs in the vicinity of the design.

It is important to note that the stationary point obtained by thresholding is not really a
stationary point, but rather a nearby point that represents a center for the most important
canonical directions. In this example, the true stationary point is very distant, and the
thresholded stationary point is the nearest place on a rising ridge that emanates from the
true stationary point. The thresholded canonical.path results give us a much more usable
set of factor settings to explore than the ones without a threshold.

The rest of this section provides some technical backing, in case you’re interested. Let b and
B denote the first and second-order coefficients of the fitted second-order surface, so that the
fitted value at a coded point x is ŷ(x) = b0 +b′x+ x′Bx. The stationary point xs solves the
equation 2Bxs + b = 0, i.e., xs = −1

2B
−1b. The canonical analysis yields the decomposition

B = UΛΛΛU′ = λ1u1u
′
1 + λ2u2u

′
2 + · · ·+ λkuku

′
k

where there are k predictors, the uj form orthonormal columns of U, and the λj are the
eigenvalues, and ΛΛΛ = diag(λ1, λ2, . . . , λk). It also happens to be true that

B−1 = UΛΛΛ−1U′ = 1
λ1
u1u

′
1 + 1

λ2
u2u

′
2 + · · ·+ 1

λk
uku

′
k

Thus, a really small value of λj hardly affects B, but has a huge influence on B−1.

Now, for some m < k, let ΛΛΛ∗ be the m × m diagonal matrix with only some subset of m
eigenvalues; and let U∗ be the k ×m matrix with the corresponding uj . If we excluded the
smallest absolute eigenvalues, then B∗ = U∗ΛΛΛ∗U

′
∗ ≈ B. Moreover, by orthogonality, U′B =

ΛΛΛU′ and U′∗B = ΛΛΛ∗U
′
∗. The stationary point satisfies 2Bx+b = 0 so that 2U′∗Bx+U′∗b = 0.

Accordingly, we propose to define a pseudo-stationary point x∗ such that 2U′∗Bx∗+U′∗b = 0;
i.e., 2ΛΛΛ∗U

′
∗x∗ + U′∗b = 0.

This comprises m equations in k > m unknowns. To make it unique, we opt to choose the
solution that is closest to the origin; that is, minimize x′x subject to the constraint that
2ΛΛΛ∗U

′
∗x + U′∗b = 0. Using variational methods (Lagrange multipliers), we find that the

resulting solution is x∗ = −1
2U∗ΛΛΛ

−1
∗ U′∗b. In other words, we simply exclude some terms

corresponding to small λi in the above expression for B−1. This is the stationary point
returned in rsm’s canonical and related functions when a threshold is used to exclude some
small eigenvalues.

8. Discussion

The current version of rsm provides only the most standard tools for first- and second-order
response-surface design and analysis. The package can be quite useful for those standard
situations, and it implements many of the analyses presented in textbooks. However, clearly
a great deal of work has been done in response-surface methods that is not represented here.
Even a quick glance at a review article such as Myers, Montgomery, Vining, Borror, and

20 Response-Surface Methods in R, Using rsm Updated to version 2.00, 5 December 2012

Kowalski (2004)—or even an older one such as Hill and Hunter (1989)—reveals that there is a
great deal that could be added to future editions of rsm. There are many other useful designs
besides central composites and Box-Behnken designs. We can consider higher-order models
or the use of predictor transformations. Mixture designs are not yet provided for. There
are important relationships between these methods and robust parameter design, and with
computer experiments. The list goes on. However, we now at least have a good collection of
basic tools for the R platform, and that is a starting point.

References

Box GEP, Behnken DW (1960). “Some New Three Level Designs for the Study of Quantitative
Variables.” Technometrics, 2, 455–475.

Box GEP, Draper NR (1987). Empirical Model-Building and Response Surfaces. John Wiley
& Sons, New York.

Box GEP, Hunter WG, Hunter JS (2005). Statistics for Experimenters: An Introduction to
Design, Data Analysis, and Model Building. 2nd edition. John Wiley & Sons, New York.

Box GEP, Wilson KB (1951). “On the Experimental Attainment of Optimum Conditions.”
Journal of the Royal Statistical Society B, 13, 1–45.

Draper NR (1963). “‘Ridge Analysis’ of Response Surfaces.” Technometrics, 5, 469–479.

Hill WJ, Hunter WG (1989). “A Review of Response Surface Methodology: A Literature
Review.” Technometrics, 8, 571–590.

Hoerl AE (1959). “Optimum Solution of Many Variables Equations.” Chemical Engineering
Progress, 55, 67–78.

Khuri AI, Cornell JA (1996). Responses Surfaces: Design and Analyses. 2nd edition. Marcel
Dekker, Monticello, NY.

Kuhn M (2009). desirability: Desirability Function Optimization and Ranking. R package
version 1.02, URL http://CRAN.R-project.org/package=desirability.

Lenth RV (2009). “Response-Surface Methods in R, Using rsm.” Journal of Statistical Soft-
ware, 32(7), 1–17. URL http://www.jstatsoft.org/v32/i07/.

Myers RH, Montgomery DC, Anderson-Cook CM (2009). Response Surface Methodology:
Product and Process Optimization Using Designed Experiments. 3nd edition. John Wiley
& Sons, New York.

Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM (2004). “Response Surface
Methodology: A Retrospective and Literature Survey.” Journal of Quality Technology, 36,
53–78.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

http://CRAN.R-project.org/package=desirability
http://www.jstatsoft.org/v32/i07/
http://www.R-project.org/
http://www.R-project.org/

Russell V. Lenth 21

Ryan TP (2007). Modern Experimental Design. John Wiley & Sons, New York.

SAS Institute, Inc (2009). JMP 8: Statistical Discovery Software. Cary, NC. URL http:

//www.jmp.com/.

Stat-Ease, Inc (2009). Design-Expert 7 for Windows: Software for Design of Experiments
(DOE). Minneapolis, MN. URL http://www.statease.com/.

StatPoint Technologies, Inc (2009). Statgraphics Centurion: Data Analysis and Statistical
Software. Warrenton, VA. URL http://www.statgraphics.com/.

Wu CFJ, Hamada M (2000). Experiments: Planning, Analysis, and Parameter Design Opti-
mization. John Wiley & Sons, New York.

Affiliation:

Russell V. Lenth
Department of Statistics
The University of Iowa
Iowa City, IA 52242, United States of America
E-mail: russell-lenth@uiowa.edu
URL: http://www.stat.uiowa.edu/~rlenth/

http://www.jmp.com/
http://www.jmp.com/
http://www.statease.com/
http://www.statgraphics.com/
mailto:russell-lenth@uiowa.edu
http://www.stat.uiowa.edu/~rlenth/

	Introduction
	Coding of data
	Generating a design
	Fitting a response-surface model
	Displaying a response surface
	Direction for further experimentation
	Stationary and rising-ridge situations
	Discussion

