
SAS7BDAT Database Binary Format

by:

Matthew S. Shotwell, PhD

Assistant Professor

Department of Biostatistics

Vanderbilt University

matt.shotwell@vanderbilt.edu

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

Contents

� Introduction

� SAS7BDAT Header

� SAS7BDAT Pages

� SAS7BDAT Subheaders

� SAS7BDAT Packed Binary Data

� Platform Differences

� Compression Data

� Software Prototype

� ToDo

Introduction

The SAS7BDAT file is a binary database storage file. At the time of this writing, no description of
the SAS7BDAT file format was publicly available. Hence, users who wish to read and manipulate these
files were required to obtain a license for the SAS software, or third party software with support for
SAS7BDAT files. The purpose of this document is to promote interoperability between SAS and other
popular statistical software packages, especially R (http://www.r-project.org/).

The information below was deduced by examining the contents of many SAS7BDAT databases down-
loaded freely from internet resources (see data/sas7bdat.sources.RData). No guarantee is made re-
garding its accuracy. No SAS software, nor any other software requiring the purchase of a license was
used.

SAS7BDAT files consist of binary encoded data. Data files encoded in this format often have the
extension ’.sas7bdat’. The name ’SAS7BDAT’ is not official, but is used throughout this document to
refer to SAS database files formatted according to the descriptions below.

There appear to be significant differences in the SAS7BDAT format across operating systems and
computer hardware platforms (32bit vs. 64bit). See the section on platform differences for more de-
tails. The format described below applies to the majority of the collection of test files referenced in

1

mailto:matt.shotwell@vanderbilt.edu
http://creativecommons.org/licenses/by-sa/3.0/
http://www.r-project.org/

data/sas7bdat.sources.RData directory (i.e. files associated with 32bit and some 64bit builds of SAS
for Microsoft Windows).

The figure below illustrates the overall structure of the SAS7BDAT database. Each file consists of
a header (length := LH), followed by PC pages, each of length PS bytes (PC and PS are shorthand
for ’page count’ and ’page size’ respectively, and are used to denote these quantities throughout this
document).:

| LH | header

| PS | page 1

| PS | page 2

...

| PS | page PC

SAS7BDAT Header

The SAS7BDAT file header contains a binary file identifier (i.e., a magic number), the dataset name,
timestamp, the number pages (PC), their size (PS) and a variety of other values that pertain to the
database as a whole. The purpose of many header fields remain unknown, but are likely to include
specifications for data compression and encryption, password protection, and dates/times of creation
and/or modification. Most files encountered encode multi-byte values little-endian (least significant byte
first). However, at least one file has big-endian values. Hence, it appears that multi-byte values are
encoded using endianness of the platform where the file was written.

The offset table below describes the SAS7BDAT file header as a sequence of bytes. Information
stored in the table is indexed by its byte offset (first column) in the header and its length (second
column) in bytes. Byte lengths having the form ’%n’ should read: ’the number of bytes remaining up
to, but not including byte n’. The fourth column gives a shorthand description of the data contained
at the corresponding offset. For example, ’uint, page size := PS’ indicates that the data stored at the
corresponding location is a little-endian unsigned integer representing the page size, which we denote
PS. The description ???????????? indicates that the meaning of data stored at the corresponding
offset is unknown. The third column represents the author’s confidence (low, medium, high) in the
corresponding offset, length, and description. Each offset table in this document is formatted in a similar
fashion. Variables defined in an offset table are sometimes used in subsequent tables.

Header Offset Table

offset length conf. description

0 32 high binary, magic number

32 1 medium binary, Alignment := a1 (x33-4 else-0)

32 3 low ????????????

35 1 medium binary, Alignment := a2 (x33-4 else-0)

36 1 low ????????????

37 1 low int, endianness (x01-little x00-big)

38 1 low ????????????

39 1 low ascii, file format version (1-UNIX or 2-WIN)

40 8 low ????????????

... continued on next page

2

offset length conf. description

48 8 low ????????????

56 8 low repeat of 32:32+8

64 20 low ????????????

84 8 high ascii ’SAS FILE’

92 64 high ascii, dataset name

156 8+a1 medium ascii, file type

164+a1 16 high 2x double, timestamp, secs since 1/1/60

180+a1 16 low ????????????

196+a2 4 high int, length of SAS7BDAT header := LH

200+a2 4 high int, page size := PS

204+a2 4 high int, page count := PC

208+a1+a2 8 low ????????????

216+a1+a2 8 high ascii, release

224+a1+a2 16 high ascii, host

240+a1+a2 16 high ascii, version

256+a1+a2 16 high ascii, OS maker

272+a1+a2 16 high ascii, OS name

288+a1+a2 48 low string with timestamps, license?

336+a1+a2 %LH medium filler/zeros

The 8 bytes beginning at offset 32 appear to hold information regarding the offset of the ’release’ and
’host’ information. The following table describes some of the possible polymorphisms, where the first
column contains the hex values for bytes 32-39, the second column shows bytes 216-239 (’.’ represents a
non-ASCII character or ’0’). The byte at offset 39 appears to distinguish the file format type, where ’1’
indicates that the file was generated on a UNIX-like system, such as Linux or SunOS, and ’2’ indicates
the file was generated on a Microsoft Windows platform. Additional data files are needed to investigate
these aspects further.

filename bytes 32-39 bytes 216-239

compress_no.sas7bdat 22 22 00 32 22 01 02 32 9.0101M3NET_ASRV........

compress_yes.sas7bdat 22 22 00 32 22 01 02 32 9.0101M3NET_ASRV........

lowbwt_i386.sas7bdat 22 22 00 32 22 01 02 32 9.0202M0W32_VSPRO.......

missing_values.sas7bdat 22 22 00 32 22 01 02 32 9.0202M0W32_VSPRO.......

obs_all_perf_1.sas7bdat 22 22 00 32 22 01 02 32 9.0101M3XP_PRO..........

adsl.sas7bdat 22 22 00 33 33 01 02 329.0202M3X64_ESRV....

eyecarex.sas7bdat 22 22 00 33 22 00 02 319.0000M0WIN.........

lowbwt_x64.sas7bdat 22 22 00 33 33 01 02 329.0202M2X64_VSPRO...

natlterr1994.sas7bdat 33 22 00 33 33 00 02 319.0101M3SunOS...

natlterr2006.sas7bdat 33 22 00 33 33 00 02 319.0101M3SunOS...

txzips.sas7bdat 33 22 00 33 33 01 02 319.0201M0Linux...

The binary representation for the hexadecimal values present in the table above are given below.

hexadecimal decimal binary

01 001 00000001

... continued on next page

3

hexadecimal decimal binary

02 002 00000010

22 034 00010010

31 049 00011001

32 050 00011010

33 051 00011011

Alignment

In files generated by 64 bit builds of SAS, ’alignment’ means that all data field offsets should be a factor of
8 bytes. For files generated by 32 bit builds of SAS, the alignment is 4 bytes. Because SAS7BDAT Packed
Binary Data potentially consist of doubles, it seems that all data rows are 64 bit aligned, regardless of
whether the file was written with a 32 bit or 64 bit build of SAS. Alignment of data structures according
to the platform word length (4 bytes for 32 bit, and 8 bytes for 64 bit architectures) facilitates efficient
operations on data stored in memory. It also suggests that parts of SAS7BDAT data file format are
platform dependent. One theory is that the SAS implementation utilizes a common C or C++ structure
or class to reference data stored in memory. When compiled, these structures are aligned according to
the word length of the target platform. Of course, when SAS was originally written, platform differences
may not have been forseeable. Hence, these inconsistencies may not have been intentional.

Magic Number

The SAS7BDAT magic number is the following 32 byte (hex) sequence.:

00 00 00 00 00 00 00 00

00 00 00 00 c2 ea 81 60

b3 14 11 cf bd 92 08 00

09 c7 31 8c 18 1f 10 11

In all test files except one, the magic number above holds. The one anomalous file has the following
magic number:

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 18 1f 10 11

In addition, the file is associated with the SAS release “3.2TK”. Indeed, this file may not have been
written by SAS. Otherwise, the anomalous appears to be similar to other test files.

Other Notes

From Clint Cummins (yet to be incorporated properly into this document, or the prototype reader):

1A. If byte at offset 35 = 33h, there is a 4 byte filler 00 00 00 00 inserted at offset 164
(between “file type” and “time stamp”) 1B. If byte at offset 32 = 33h, there are 4 extra bytes
inserted somewhere between “time stamp” and “release”. All these files are Linux or SunOS
with IOA=8, and none of them have valid PS or PC at the expected positions. So all we
really know about them is where the release and host fields are.

SAS7BDAT Pages

Following the SAS7BDAT header are pages of data. Each page can be one of (at least) four types. The
first three are those that contain meta-information (e.g. field/column attributes), packed binary data, or
a combination of both. These types are denoted ’meta’, ’data’, and ’mix’ respectively. Meta-information
is required to correctly interpret the packed binary information. Hence, this information must be parsed

4

first. In test files (see data/sources.csv), ’meta’ and ’mix’ pages always precede ’data’ pages. In some
test data files, there is a fourth page type, denoted ’amd’ which appears to encode additional meta
information. This page usually occurs last, and appears to contain amended meta information.

The page offset table below describes each page type. Byte offsets appended with one of ’(meta/mix)’,
’(mix)’, or ’(data)’ indicate that the corresponding length and description apply only to pages of the listed
type. For now, the internal structure of the ’amd’ page type is considered identical to the ’meta’ page
type.

Page Offset Table

offset length conf. description

0 4 low ???????????? (sometimes repeated)

4 8 low ???????????? (not critical)

12 4 low ???????????? row/col related (not critical)

16 2 medium int, bit field page type

18 (meta/mix) 2 low ????????????

20 (meta/mix) 2 medium int, number of subheader pointers := L

22 (meta/mix) 2 low ????????????

24 (meta/mix) L*12 medium L subheader pointers, 24+L*12 := M

M (meta) %PS medium subheader data

M+M%8 (mix) %PS medium SAS7BDAT packed binary data

18 (data) 4 medium int, page row count

24 (data) %PS medium SAS7BDAT packed binary data

Page Type

There are at least four page types ’meta’, ’data’, ’mix’, and ’amd’. These types are encoded in the most
significant byte of a two byte bit field at offset 16. If no bit is set, the following page is of type ’meta’. If
the first, second, or third bits are set, then the page is of type ’data’, ’mix’, or ’amd’, respectively. Hence,
if the two bytes are interpreted as an unsigned integer, then the ’meta’, ’data’, ’mix’, and ’amd’ types
correspond to 0, 256, 512, and 1024, respectively. In compressed files, other bits (and sometimes multiple
bits) have been set (e.g., 1 << 16 | 1 << 13, which is -28672 signed, or 36864 unsigned). However,
the pattern is unclear.

If a page is of type ’meta’, ’mix’, or ’amd’, data beginning at offset byte 24 are a sequence of L 12-byte
subheader pointers, which point to an offset farther down the page. SAS7BDAT Subheaders stored at
these offsets hold meta information about the database, including the column names, labels, and types.

If a page is of type ’mix’, then packed binary data begin at the next 8 byte boundary
following the last subheader pointer. In this case, the data begin at offset 24+L*12 + (24+L*12)
% 8, where ’%’ is the modulo operator.

If a page is of type ’data’, then packed binary data begin at offset 24.

Subheader Pointers

The subheader pointers encode information about the offset and length of subheaders relative to the
beginning of the page where the subheader pointer is located. The purpose of the last four bytes of the
subheader pointer are uncertain, but may indicate that additional subheader pointers are to be found on
the next page, or that the corresponding subheader is not crucial.

... continued on next page

5

offset length conf. description

offset length conf. description

0 4 high int, offset from page start to subheader

4 4 high int, length of subheader := H

8 1 low int, optional (0/1)?

9 1 low int, continue next page (0/1)?

10 2 low ????????????

H is sometimes zero, which indicates that no data is referenced by the corresponding subheader
pointer. When this occurs, the subheader pointer may be ignored.

SAS7BDAT Subheaders

Subheaders contain meta information regarding the SAS7BDAT database, including row and column
counts, column names, labels, and types. Each subheader is associated with a four-byte ’signature’ that
identifies the subheader type, and hence, how it should be parsed.

Row Size Subheader

The row size subheader holds information about row length (in bytes), their total count, and their count
on a page of type ’mix’.

offset length conf. description

0 4 medium binary, signature F7F7F7F7

4 16 low ????????????

20 4 medium int, row length (in bytes)

24 12 medium int, row count := r (12 bytes?)

36 4 medium int, partial column count := CC1

40 4 medium int, partial column count := CC2

44 8 low ????????????

52 4 low int, page size?

56 4 low ????????????

60 4 medium int, max row count on “mix” page

64 8 medium sequence of 8 FF, end of header

72 %H low filler

The partial column counts CC1 and CC2 usually sum to CC (i.e., CC1+CC2=CC). Usually, CC1 is
equal to CC, and CC2 is zero, but there are some exceptions. Their exact purpose is not clear.

Column Size Subheader

The column size subheader holds the column count.

offset length conf. description

0 4 medium binary, signature F6F6F6F6

4 8 medium int, column count := CC

6

Subheader Counts Subheader

This subheader contains information on the first and last appearances of at least 7 common subheader
types. Any of these subheaders may appear once or more. Multiple instances of a subheader provide
information for an exclusive subset of columns. The order in which data is read from multiple subheaders
corresponds to the reading order (left to right) of columns. The subheader counts subheader is always
304 bytes in length. The structure of this subheader was deduced and reported by Clint Cummins.

offset length conf. description

0 4 medium binary, signature 00FCFFFF

4 4 low length or offset, usually >= 48d (30h)

8 4 low usually 4d (4 decimal, 04000000 hex)

12 4 low usually 7d

76 8 low usually zeros

84 11*20 medium 11 subheader count vectors, 20 bytes each

Subheader Count Vectors

The subheader count vectors encode information for each of 7 common subheader types, and potentially
11 total subheader types.

offset length conf. description

0 4 medium binary signature (see list below)

4 4 medium int, page where this subheader first appears := PAGE1

8 2 medium int, position of subheader pointer in PAGE1 := LOC1

10 2 low ????????????

12 4 medium int, page where this subheader last appears := PAGEL

16 2 medium int, position of subheader pointer in PAGEL := LOCL

18 2 low ????????????

The LOC1 and LOCL give the positions of the corresponding subheader pointer in PAGE1 and
PAGEL, respectively. That is, if there are L subheader pointers on page PAGE1, then the corresponding
subheader pointer first occurs at the LOC1’th position in this array, enumerating from 1. If PAGE1=0,
the subheader is not present. If PAGE1=PAGEL and LOC1=LOCL, the subheader appears exactly
once. If PAGE1!=PAGEL or LOC1!=LOCL, the subheader appears 2 or more times. In all test files,
PAGE1 <= PAGEL, and the corresponding subheaders appear only once per page.

The first 7 binary signatures in the Subheader Count Vectors array are always:

hex decimal description

FCFFFFFF -4 Column Attributes

FDFFFFFF -3 Column Text

FFFFFFFF -1 Column Names

FEFFFFFF -2 Column List

FBFFFFFF -5 unknown signature #1

FAFFFFFF -6 unknown signature #2

F9FFFFFF -7 unknown signature #3

The remaining 4 out of 11 signatures are zeros in the observed source files. Presumably, these are for
subheaders not yet defined, or not present in the collection of test files.

7

Column Text Subheader

The column text subheader contains all text associated with columns, including the column name, label,
and formatting. However, this subheader is not sufficient to parse these information. Other subheaders
(e.g. the column name subheader), which point to specific elements relative to this subheader are also
needed.

offset length conf. description

0 4 medium binary, signature FDFFFFFF

4 12 medium int, length of remaining subheader

16 60 medium ascii, proc name that generated data?

76 %H high ascii, combined column names, labels, formats

This subheader sometimes appears more than once; each is a separate array. If so, the “column name
index” field in column name pointers selects a particular text array - 0 for the first array, 1 for the
second, etc. Similarly, “column format index” and “column label index” fields also select a text array. For
compressed files, the type of compression is indicated within the field at offset 16 of the first column text
subheader. In particular, if the first eight bytes are ascii “SASYZCRL”, then the file was generated with
the option COMPRESS=YES, and data are apparently compressed using a simple run-length encoding
(RLE) algorithm.

Column Name Subheader

Column name subheaders contain a sequence of column name pointers to the offset of each column name
relative to a ‘column text subheader‘ . There may be multiple column name subheaders, indexing
into multiple column text subheaders.

offset length conf. description

0 4 medium binary, signature FFFFFFFF

4 8 medium int, length of remaining subheader

12 8*CMAX medium column name pointers (see below), CMAX=(H-12-8)/8

12+8*CMAX 8 low filler

Each column name subheader hold CMAX column name pointers. When there are multiple column
name subheaders, CMAX will be less than CC.

Column Name Pointers

offset length conf. description

0 2 medium int, column name index to select Column Text Subheader

2 2 medium int, column name offset w.r.t. FDFFFFFF

4 2 medium int, column name length

6 2 low binary, zeros

Column Attributes Subheader

The column attribute subheader holds information regarding the column offsets within a row, the column
widths, and the column types (either numeric or character). The column attribute subheader sometimes
occurs more than once (in test data). In these cases, column attributes are applied in the order they are

8

parsed.

offset length conf. description

0 4 medium binary, signature FCFFFFFF

4 8 medium int, length of remaining subheader

12 12*CMAX medium column attributes (see below), CMAX=(H-12-8)/12

12+12*CMAX 8 medium filler

Column Attributes

offset length conf. description

0 4 medium int, column offset in w.r.t. row

4 4 medium int, column width

8 2 low name length flag

10 1 medium int, column type (01-num, 02-chr)

11 1 low ????????????

Observed values of name length flag in the source files:

name length flag description

4 name length <= 8

1024 usually means name length <= 8 , but sometimes the length is 9-12

2048 name length > 8

2560 name length > 8

Column Format and Label Subheader

The column format and label subheader contains pointers to a column format and label relative to the
‘column text subheader‘ . Since the column label subheader only contains information regarding a
single column, there are typically as many of these subheaders as columns. The structure of column
format pointers was contributed by Clint Cummins.

offset length conf. description

0 4 medium binary, signature FEFBFFFF

4 30 low ????????????

34 2 medium int, column format index to select Column Text Subheader

36 2 medium int, column format offset wrt FDFFFFFF

38 2 medium int, column format length

40 2 medium int, column label index to select Column Text Subheader

42 2 medium int, column label offset wrt FDFFFFFF

44 2 medium int, column label length

46 6 low ????????????

9

Column List Subheader

The purpose of this subheader is not clear. But the structure is partly identified. Information related to
this subheader was contributed by Clint Cummins.

offset length conf. description

0 4 medium binary, signature FEFFFFFF

4 2 medium int, length of remaining subheader

6 6 low ????????????

12 2 medium int, length of remaining subheader

14 2 low ????????????

16 2 low int, usually equals CC

18 2 medium int, length of column list := CL

20 2 low int, usually 1

22 2 low int, usually equals CC

24 6 low ????????????

30 2*CL medium column list values (see below)

30+2*CL 8 low usually zeros

Column List Values

These values are 2 byte, little-endian signed integers. Each value is between -CC and CC. The significance
of signedness and ordering is unknown. The values do not correspond to a sorting order of columns.

SAS7BDAT Packed Binary Data

SAS7BDAT packed binary data are stored by rows, where the size of a row (in bytes) is defined by the
row size subheader. When multiple rows occur on a single page, they are immediately adjacent. When a
database contains many rows, it is typical that the collection of rows (i.e. their data) is evenly distributed
to a number of ’data’ pages. However, in test files, no single row’s data is broken across two or more
pages. A single data row is parsed by interpreting the binary data according to the collection of column
attributes contained in the column attributes subheader. Binary data can be interpreted in two ways,
as ASCII characters, or as floating point numbers. The column width attribute specifies the number of
bytes associated with a column. For character data, this interpretation is straight-forward. For numeric
data, interpretation of the column width is more complex.

The common binary representation of floating point numbers has three parts; the sign (s), exponent
(e), and mantissa (m). The corresponding floating point number is s * m * b ^ e, where b is the base
(2 for binary, 10 for decimal). Under the IEEE 754 floating point standard, the sign, exponent, and
mantissa are encoded by 1, 11, and 52 bits respectively, totaling 8 bytes. In SAS7BDAT file, numeric
quantities can be 3, 4, 5, 6, 7, or 8 bytes in length. For numeric quantities of less than 8 bytes, the
remaining number of bytes are truncated from the least significant part of the mantissa. Hence, the
minimum and maximum numeric values are identical for all byte lengths, but shorter numeric values
have reduced precision.

Reduction in precision is characterized by the largest integer such that itself and all smaller integers
have an exact representation, denoted M. At best, all integers greater than M are approximated to the
nearest multiple of b. The table of numeric binary formats below lists M values and describes how bits
are distributed among the six possible column widths in SAS7BDAT files, and lists.

Numeric Binary Formats

10

size bytes sign exponent mantissa M

24bit 3 1 11 12 8192

32bit 4 1 11 20 2097152

40bit 5 1 11 28 536870912

48bit 6 1 11 36 137438953472

56bit 7 1 11 44 35184372088832

64bit 8 1 11 52 9007199254740990

Dates, Currency, and Formatting

Column formatting infomation is encoded within the Column Text Subheader and Column Format and
Label Subheader. Columns with formatting information have special meaning and interpretation. For
example, numeric values may represent dates, encoded as the number of seconds since midnight, January
1, 1960. The format string for fields encoded this way is “DATETIME”. Using R, these values may be
converted using the as.POSIXct or as.POSIXlt functions with argument origin="1960-01-01". The
most common date format strings correspond to numeric fields, and are interpreted as follows:

Format Interpretation R Function

DATE Number of days since January 1, 1960 chron::chron

TIME Number of seconds since midnight as.POSIXct

DATETIME Number of seconds since January 1, 1960 as.POSIXct

There are many additional format strings for numeric and character fields.

Platform Differences

The test files referenced in data/sas7bdat.sources.RData were examined over a period of time. Files
with non-Microsoft Windows markings were only observed late into the writing of this document. Conse-
quently (but not intentionally), the SAS7BDAT description above is specific to SAS datasets generated
on the most commonly observed platform: Microsoft Windows. SAS7BDAT files generated on other
platforms have differenct structure.

In particular, the files natlerr1944.sas7bdat, natlerr2006.sas7bdat appear to be generated on
the ’SunOS’ platform. The header in these files appear to be 8196 bytes, rather than the 1024 seen on
Microsoft Windows platforms.

The files cfrance2.sas7bdat, cfrance.sas7bdat, coutline.sas7bdat, gfrance2.sas7bdat, gfrance.sas7bdat,
goutline.sas7bdat, xfrance2.sas7bdat, xfrance.sas7bdat, xoutline.sas7bdat appear to be gen-
erated on a ’Linux’ system.

Text may appear in non-ASCII compatible, partially ASCII compatible, or multi-byte encodings. In
particular, Kasper Sorenson discovered some text that appears to be encoded using the Windows-1252
’code page’.

Compression Data

The table below presents the results of compression tests on a collection of 142 SAS7BDAT data files
(sources in data/). The ’type’ field represents the type of compression, ’ctime’ is the compression time
(in seconds), ’dtime’ is the decompression time, and the ’compression ratio’ field holds the cumulative
disk usage (in megabytes) before and after compression. Although the xz algorithm requires significantly
more time to compress these data, the decompression time is on par with gzip.

11

type ctime dtime compression ratio

gzip -9 76.7s 2.6s 541M / 30.3M = 17.9

bzip2 -9 92.7s 11.2s 541M / 19.0M = 28.5

xz -9 434.2s 2.7s 541M / 12.8M = 42.3

Software Prototype

The prototype program for reading SAS7BDAT formatted files is implemented entirely in R (see file
src/sas7bdat.R). Files not recognized as having been generated under a Microsoft Windows platform
are rejected (for now). Implementation of the read.sas7bdat function should be considered a ’reference
implementation’, and not one designed with performance in mind.

There are certain advantages and disadvantages to developing a prototype of this nature in R.
Advantages:

1. R is an interpreted language with built-in debugger. Hence, experimental routines may be
implemented and debugged quickly and interactively, without the need of external compiler
or debugger tools (e.g. gcc, gdb).

2. R programs are portable across a variety of computing platforms. This is especially important
in the present context, because manipulating files stored on disk is a platform-specific task.
Platform-specific operations are abstracted from the R user.

Disadvantages:

1. Manipulating binary (raw) data in R is a relatively new capability. The best tools and
practices for binary data operations are not as developed as those for other data types.

2. Interpreted code is often much less efficient than compiled code. This is not major disadvan-
tage for prototype implementations because human code development is far less efficient than
the R interpreter. Gains made in efficient code development using an interpreted language
far outweigh benefit of compiled languages.

ToDo

� what are CC1 and CC2 for?

� experiment further with ’amendment page’ concept

� consider header bytes -by- SAS host

� check that only one page of type“mix”is observed. If so insert“In all test cases (data/sources.csv),
there are exactly zero or one pages of type ’mix’.” under the Page Offset Table header.

� identify all missing value representations: missing numeric values appear to be represented as
’0000000000D1FFFF’ (nan) for numeric ’double’ quantities.

� identify purpose of unknown header quantities

� determine other bytes in subheader with signature FEFBFFFF

� identify how non-ASCII encoding is specified

� identify SAS7BDAT compression and encryption methods (this is not the same as ’cracking’, or
breaking encryption): data files may be compressed using the RLE (CHAR) and RDC (BINARY)
algorithms.

� implement options to read just header (and subheader) information without data, and an option
to read just some data fields, and not all fields.

12

	Contents
	Introduction
	SAS7BDAT Header
	Header Offset Table
	Alignment
	Magic Number
	Other Notes

	SAS7BDAT Pages
	Page Offset Table
	Page Type
	Subheader Pointers

	SAS7BDAT Subheaders
	Row Size Subheader
	Column Size Subheader
	Subheader Counts Subheader
	Subheader Count Vectors

	Column Text Subheader
	Column Name Subheader
	Column Name Pointers

	Column Attributes Subheader
	Column Attributes

	Column Format and Label Subheader
	Column List Subheader
	Column List Values

	SAS7BDAT Packed Binary Data
	Numeric Binary Formats
	Dates, Currency, and Formatting

	Platform Differences
	Compression Data
	Software Prototype
	ToDo

