
Using the sparseHessianFD package

Michael Braun
MIT Sloan School of Management

November 15, 2012

The sparseHessianFD package is a tool to compute Hessians efficiently when the
Hessian is sparse (that is, a large proportion of the cross-partial derivatives are
zero). The user needs to supply the objective function, its gradient, and the spar-
sity structure of the Hessian. The non-zero elements of the Hessian are computed
through finite differencing of the gradients in a way that exploits the sparsity
structure. The Hessian is stored in a compressed format (specifically, an object
of class dgCMatrix, as defined in the Matrix package). This allows sparse ma-
trix algorithms to run more quickly, with a smaller memory footprint, than their
dense-matrix counterparts. For example, the trustOptim package includes an
implementation of a trust region nonlinear optimizer that is designed to take ad-
vantage of the fact that a Hessian is sparse.

For dense Hessians, a standard way of approximating the Hessian involves taking
the differences between the gradient at point x 2 Rp and the gradient with a single
element of x perturbed by a small amount e. If r f (x) is the gradient of f (x), then
the i

thcolumn of the Hessian is equal to (r(x + ee

i

) � r f (x))/e, where e

i

is a
vector of zeros, with a 1 in the i

th element. This “forward differencing” method
involves computing a gradient p + 1 times. More accurate approximations require
even more evaluations of the gradient; central differencing requires 2p evaluations.
This method also requires the storage of p

2 elements, even if most of the elements
of the Hessian are zero.

The sparseHessianFD package uses a graph coloring algorithm to partition the p

variables into groups (“colors” in the graph theory literature), such that perturbing
x

i

will not affect the j

th element of the gradient for any j that is in the same group

1

as i. This will happen when the cross-partial derivative with respect to x

i

and
x

j

is zero, or, equivalently, that element (i, j) of the Hessian is zero. This means
that we can perturb all of the x’s in the same group in a single computation of
the gradient. When the number of groups is small, we can estimate the Hessian
much more quickly. Note that for a fully dense Hessian, the number of groups is
equal to p, and there is no advantage to using this algorithm. Also, the number of
groups depends crucially on exactly which elements of the Hessian are non-zero;
sparsity does not guarantee that this method can be used. However, for many
common sparsity patterns, the computational savings is dramatic.

As an example, suppose that we have, in a hierarchical model, N units, k het-
erogeneous parameters per unit, and r population-level parameters. Since the
cross-partial derivative between an element in b

i

and an element in b
j

is zero, any
element of b

i

and b
j

can be in the same group, but since the cross partials for el-
ements with a single b

i

are not zero, these elements cannot be in the same group.
Furthermore, if we assume that any b

i

could be correlated with the r population-
level parameters, and that the r population-level parameters may be correlated
amongst themselves, we can estimate the Hessian (with forward differences) with
no more than k + r + 1 gradient evaluations. Note that this number does not grow

with N. Thus, computing the Hessian for a log posterior density of a hierarchical
model with, say, 100 heterogeneous units, is no more expensive than for a dataset
with a million heterogeneous units, and the amount of storage required for the
sparse Hessian grows only linearly in N.

Curtis et al. (1974) introduce the idea of reducing the number of evaluations to
estimate sparse Jacobians, and Powell and Toint (1979) describe how to parti-
tion variables into appropriate groups, and how to recover Hessian information
through back-substitution. Coleman and Moré (1983) show that the task of group-
ing the variables amounts to a classic graph-coloring problem. Gebremedhin et al.
(2005) summarize more recent advances in this area. The actual computational
“engine” for sparseHessianFD is ACM TOMS Algorithm 636 (Coleman et al.
1985). The original Fortran code is in the file inst/include/misc/FDHS-DSSM.f.
The file src/FDHS-DSSM.c is a translation of the original Fortran code into C. The
copyright to both of these files is retained by the Association of Computational
Machinery under terms that are included in the LICENSE file in the package
source code. My contribution to the package is only the interface with R, and not

2

the computational algorithm itself.

1 Using the package

Using sparseHessianFD involves constructing an object of class sparseHessianObj.
The class sparseHessianObj contains only one slot: an external pointer to an in-
stance of a C++ class that does all of the computation. This object stores all of
the information needs to compute the objective function, gradient and Hessian
for any argument vector x. The easiest way to compute this object is to use the
new.sparse.hessian.obj function. Its signature is:

obj <- get.new.sparse.hessian(x, fn, gr, hs, fd.method=0,

eps=sqrt(.machine$double.eps), ...)

The function fn returns f (x), the value of the objective function to be minimized,
gr that returns the gradient. Both functions can take additonal named arguments
which are passed through the ... argument in get.new.sparse.hessian. The
argument hs is a list that represents the sparsity structure of the Hessian. The hs

list contains two integer vectors,iRow and jCol, that contain the row and column
indices of the non-zero elements of the lower triangle of the Hessian. The length
of each of these vectors is equal to the number of non-zeros in the lower triangle
of the Hessian. Do not include any elements from the upper triangle. Entries
must be in order, first by column, and then by row within each column. Indexing
starts at 1. The package includes a convenience function, Matrix.to.Coord, that
converts a matrix with the appropriate sparsity structure to a list that can be used
as the hs argument.

Coleman et al. (1985) provides two approaches for computing a sparse Hessian: in-
direct (fd.method=0) and direct (fd.method=1). We refer the reader to that source
for an explanation of the difference. In short, the indirect method should be some-
what faster that the direct method, with comparable accuracy. The argument eps
is the perturbation about used in the finite differencing algorithm. Again, see
Coleman et al. (1985) for more details.

The algorithms in this package work best when the gradient is computed directly
(i.e., derived analytically or symbolically), or otherwise computed exactly (say,

3

by way of algorithmic differentiation). In general, we never recommend finite-
differenced gradients. Finite differencing takes a long time to run, and is subject
to numerical error, especially near the optimum when elements of the gradient
are close to zero. Using sparseHessianFD with finite-differenced gradients means
that the Hessian is “doubly differenced,” and the resulting lack of numerical pre-
cision makes those Hessians nearly worthless.

Once the sparseHessianObj object is constructed at an initial value of x, we can
then compute the function, gradient or Hessian for any other value of x. The
sparseHessianFD includes the following methods:

get.fn(x, obj)

get.gr(x, obj)

get.hessian(x, obj)

get.fngr(x, obj)

These functions return fn(x), gr(x), the Hessian of fn(x), and a list with both
fn(x) and gr(x), respectively. The Hessian is an object of class dgCMatrix. 1

These functions do not pass additional arguments to the original functions, since
that information is stored in obj.

Alternatively, we can access the function, gradient, and Hessian functions directly
from the object with:

obj$fn(x)

obj$gr(x)

obj$hessian(x)

obj$fngr(x)

2 Sparsity structure of the Hessian

In the following code, we construct a block diagonal matrix, and then use the
Matrix.to.Coord function to generate a list of the row and column indices of the
non-zero elements of the lower triangle.

1Even though the Hessian is symmetric, the dgCMatrix stores the entire matrix, and not just the
lower triangle. This is because of a current limitation in the RcppEigen package. As RcppEigen
functionality expands, we hope to return Hessians as dsCMatrix objects. This would effectively
halve the storage requirements for the Hessian.

4

require(Matrix)

M <- kronecker(Diagonal(4),Matrix(1,2,2))

print(M)

8 x 8 sparse Matrix of class "dgTMatrix"

[1,] 1 1

[2,] 1 1

[3,] . . 1 1

[4,] . . 1 1

[5,] 1 1 . .

[6,] 1 1 . .

[7,] 1 1

[8,] 1 1

H <- Matrix.to.Coord(M)

print(H)

$iRow

[1] 1 2 2 3 4 4 5 6 6 7 8 8

$jCol

[1] 1 1 2 3 3 4 5 5 6 7 7 8

To check that the indices do, in fact, represent the sparsity pattern of the lower
triangular Hessian, you can convert the list back to a pattern Matrix using the
Coord.to.Matrix function.

M2 <- Coord.to.Pattern.Matrix(H, 8,8)

print(M2)

8 x 8 sparse Matrix of class "ngCMatrix"

[1,] |

[2,] | |

[3,] . . |

[4,] . . | |

[5,] | . . .

[6,] | | . .

[7,] | .

[8,] | |

Notice that M2 is only lower-triangular. Even though M was symmetric, H con-
tains only the indices of the non-zero elements in the lower triangle. To recover the
pattern of the symmetric matrix, use the Coord.to.Sym.Pattern.Matrix function.

5

M3 <- Coord.to.Sym.Pattern.Matrix(H,8)

print(M3)

8 x 8 sparse Matrix of class "nsTMatrix"

[1,] | |

[2,] | |

[3,] . . | |

[4,] . . | |

[5,] | | . .

[6,] | | . .

[7,] | |

[8,] | |

3 An example

As an example,let’s compute the Hessian of the log posterior density of a hierar-
chical model. Suppose we have a dataset of N households, each with T opportu-
nities to purchase a particular product. Let y

i

be the number of times household i

purchases the product, out of the T purchase opportunities. Furthermore, let p

i

be
the probability of purchase; p

i

is the same for all T opportunities, so we can treat
y

i

as a binomial random variable. The purchase probability p

i

is heterogeneous,
and depends on both k continuous covariates x

i

, and a heterogeneous coefficient
vector b

i

, such that

p

i

=
exp(x

0
i

b
i

)

1 + exp(x

0
i

b
i

)
, i = 1 . . . N (1)

The coefficients can be thought of as sensitivities to the covariates, and they are
distributed across the population of households following a multivariate normal
distribution with mean µ and covariance S. We assume that we know S, but we
do not know µ. Instead, we place a multivariate normal prior on µ, with mean
0 and covariance W0, which is determined in advance. Thus, each b

i

, and µ are
k�dimensional vectors, and the total number of unknown variables in the model
is (N + 1)k.

6

The log posterior density, ignoring any normalization constants, is

log p(b1:N , µ|Y, X, S0, W0) =
N

Â
i=1

p

y

i

i

(1 � p

i

)T�y

i (b
i

� µ)0 S�1 (b
i

� µ) + µ0W�1
0 µ

(2)

Since the b
i

are drawn iid from a multivariate normal,
∂2 log p

∂b
i

b
j

= 0 for all i 6= j.

We also know that all of the b
i

are correlated with µ. Therefore, the Hessian will
be sparse with a “block-arrow” structure. For example, if N = 6 and k = 2, then
p = 14 and the Hessian will have the pattern as illustrated in Figure 1.

[1,] | | | |

[2,] | | | |

[3,] . . | | | |

[4,] . . | | | |

[5,] | | | |

[6,] | | | |

[7,] | | | |

[8,] | | | |

[9,] | | . . | |

[10,] | | . . | |

[11,] | | | |

[12,] | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

Figure 1: Sparsity pattern for hierarchical binary choice example.

There are 196 elements in this symmetric matrix, but only 169 are non-zero, and
only 76 values are unique. Although the reduction in RAM from using a sparse
matrix structure for the Hessian may be modest, consider what would happen if
N = 1000 instead. In that case, there are 2,002 variables in the problem, and more
than 4 million elements in the Hessian. However, only 12,004 of those elements
are non-zero. If we work with only the lower triangle of the Hessian (e.g., through
a Cholesky decomposition), we only need to work with only 7,003 values.

The file inst/examples/example.R demonstrates how to estimate the Hessian for
this model. The function, gradient, and “true” Hessian are computed using func-

7

tions in the file inst/examples/ex funcs.R). In example.R, we first simulate some
data. The hess.struct function returns the list than can be used for the hs argu-
ment in the get.new.sparse.hessian function.

We then create obj using the defaults for fd.method and eps. Finally, we compute
the function, gradient and Hessian using the two different methods on obj.

The get.hess function (defined in ex funcs.R) returns the exact Hessian, derived
analytically. You can see that the Hessian is the same as the one that is computed
by way of get.hessian.

4 Multivariate normal distribution with sparse precision
matrices

The rmvnorm and dmvnorm functions in the mvtnorm package (Genz et al. 2012)
are functions that sample from, and compute the density of, a multivariate normal
distribution with mean µ and covariance S. S must be a “base” matrix; that is,
dense. If the covariance matrix is sparse, these functions are inefficient for several
reasons.

1. We need to store the entire covariance matrix densely, even if most of the
elements are non-zero;

2. There are Cholesky decomposition algorithms that are optimized for sparse
matrices that rmvnorm and dmvnorm cannot exploit;

3. These functions will perform a new decomposition every time it is called;
and

4. We often have the precision matrix readily available (e.g., the Hessian at a
posterior mode), which we would need to invert explicitly if we wanted to
use rmvnorm or dmvnorm.

The sparseHessianFD package includes two functions that are more efficient for
cases in which we have a sparse covariance or precision matrix: rmvn.sparse

and dmvn.sparse. In the Matrix package, chol calls Cholesky decomposition
algorithm that is optimized for sparse matrices, so we can use that to decompose

8

the covariance or precision matrix before calling rmvn.sparse or dmvn.sparse.
However, the return value of chol is an upper triangular matrix, so you will need
to remember to transpose and coerce it to a lower triangular matrix.

The details for using these functions are in the package documentation. There is
also an example in the file inst/examples/mvn.R. This example simulates a block
diagonal covariance matrix and uses that to draw from a multivariate normal.
We also compare the results and run times with calls to rmvnorm and dmvnorm.
Even for modestly-sized distributions, the sparse functions in sparseHessianFD
are dramatically faster than their dense counterparts from mvtnorm.

5 Discussion points

For many functions, like log posterior densities, deriving and coding a gradient
analytically is straightforward (either by hand, or using a symbolic computation
tool like Mathematica). Analytic Hessians can be very messy to derive and code,
and even then, storing and working with a p ⇥ p matrix is expensive when p is
large. The sparseHessianFD package is useful when the Hessian is sparse and the
sparsity structure is known in advance, even when p is massively large. The speed
at which sparseHessianFD computes the Hessian depends crucially on the spar-
sity structure. For block diagonal Hessians, as in the example above, computation
time will grow with the size of each heterogeneous parameter, and the number of
population-level parameters, but not with the number of heterogeneous units. As
N grows, the number of non-zero elements in the Hessian grows linearly, and the
number of gradient differences that need to be computed is constant.

We should note that finite differencing is not the current “state of the art” for
estimating sparse Hessians. Algorithmic differentiation (AD) packages can be
faster and more exact (and of course they can compute the gradient as well). A
critical requirement of an AD package when we need to differentiate scalar-valued
functions with large p is that it support “reverse-mode” differentiation. For C++,
CppAD and Adol-C are popular choices, and others may be available for Matlab
and Python. However, to my knowledge there is not yet AD library available for
R, or at least one that supports reverse mode.

9

What this means is that even though finite differencing introduces numerical error
into calculations of the Hessian, it is still the best alternative when programming
in R. The sparseHessianFD package, as an interface to ACM TOMS Algorithm
636 (Coleman et al. 1985) takes away much of the pain when the Hessian is sparse
and the sparsity structure is known.

References

Thomas F Coleman and Jorge J Moré. Estimation of Sparse Jacobian Matrices and
Graph Coloring Problems. SIAM Journal on Numerical Analysis, 20(1):187–209,
February 1983.

Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Software for Estimating
Sparse Hessian Matrices. ACM Transaction on Mathematical Software, 11(4):363–
377, December 1985.

A R Curtis, M J D Powell, and J K Reid. On the Estimation of Sparse Jacobian
Matrices. Journal of the Institute of Mathematics and its Applications, 13:117–119,
1974.

Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What Color is
your Jacobian? Graph Coloring for Computing Derivatives. SIAM Review, 47(4):
629–705, 2005.

Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian
Scheipl, and Torsten Hothorn. mvtnorm: Multivariate Normal and t Distributions,
2012. URL http://CRAN.R-project.org/package=mvtnorm. R package version
0.9-9992.

M J D Powell and Ph. L. Toint. On the Estimation of Sparse Hessian Matrices.
SIAM Journal on Numerical Analysis, 16(6):1060–1074, December 1979.

10

