
Tutorial on using the spartan package to
analyse agent-based simulation results

For use with spartan package version 1.2 onwards

Technique 2: One-A-Time Parameter Analysis

1 Introduction

spartan, or (Simulation Parameter Analysis R Toolkit ApplicatioN) is an R package which
aids the understanding of the effect aleatory and epistemic uncertainty have on the output
from a simulation. This set of tutorials makes use of available example simulation output
to demonstrate how a variety of methods can be applied to further understand the results
that have been generated. Following through each example should make it easier to apply the
tookit to results generated by any agent-based computer simulation. This tutorial focuses on
understanding how robust the behaviour of a simulator is to parameter perturbtation.

2 The spartan Package

Computer simulations are becoming a popular technique to use in attempts to further our
understanding of complex systems. This package provides code for four techniques described
in available literature which aid the analysis of simulation results, at both single and multiple
timepoints in the simulation run. The first technique addresses aleatory uncertainty in the
system caused through inherent stochasticity, and determines the number of replicate runs
necessary to generate a representative result. The second examines how robust a simulation
is to parameter perturbation, through the use of a one-at-a-time parameter analysis technique.
Thirdly, a latin hypercube based sensitivity analysis technique is included which can elucidate
non-linear effects between parameters and indicate implications of epistemic uncertainty with
reference to the system being modelled. Finally, a further sensitivity analysis technique, the
extended Fourier Amplitude Sampling Test (eFAST) has been included to partition the variance
in simulation results between input parameters, to determine the parameters which have a
significant effect on simulation behaviour.

3 The Case Study

The example simulation results have been taken from an ongoing project which seeks to un-
derstand the formation of lymphoid tissue in the small intestine. This simulation outputs cell
behaviour measures at various points in the simulation and measures describing the develop-
ment of the tissue, which occurs through interactions between these cells. Techniques 2-4 of this
package allow us to explore how input parameter value affects the behaviour of these cells. We
need Technique 1 to tell us how many simulation runs we need for each condition explored to
ensure we have a robust representative result.

4 Scope

Do note that the idea of this tutorial is to demonstrate the application of the toolkit, and is not
intended to act as a full introduction to using Sensitivity Analysis techniques in the analysis of
simulation results. Where useful, links to further reading have been included.

1

5 Prerequisites

• The R statistical environment, version 2.13.1 or later.

• The spartan R package, downloaded from the Comprehensive R Archive Network (CRAN)
or from the project website.

• The lhs and gplots R packages, available for download from CRAN.

• The example simulation results, available from the project website.

• From version 1.2 of spartan, simulation results can be in either CSV or XML format. For
earlier versions, results must be pre-processed to be in CSV format.

6 Running Technique 2: One-A-Time (OAT) Parameter Anal-
ysis

The robustness of a simulation to parameter alteration can be determined through the use of
this approach. Following the method described by Read et al (2012), a set of parameters of in-
terest are identified, and a range of potential values each parameter could lie within is assigned.
The technique examines the sensitivity to a change in one parameter. Thus, the value of each
is perturbed independently, with all other parameters remaining at their calibrated value. In
this implementation, each parameter of interest is considered in turn. Initially the parameter
is assigned the minimum value within its allocated range. A number of simulation runs are
then performed under these conditions (this number that which has become apparent through
analysis of aleatory uncertainty, or use of Technique 1 within the spartan package). The value
of the parameter is then increased, and the runs repeated under this new criteria. This is re-
peated until the full range has been explored. For each value that the parameter was assigned,
the results of each simulation are examined and the median values of the output measures
calculated. This creates a set of median output values for each parameter value. This set is
then compared to a set of median output measures where the parameter was set to its calibrated
value, using the Vargha-Delaney A-Test (2000). This gives an indication of how different the two
sets of results are, and thus the change in simulation behaviour when the parameter is perturbed.

The spartan package includes methods to both create parameter value samples and to anal-
yse the simulation results. This tutorial covers both methods.

7 Parameter Sampling

The package contains a method which can produce a set of values for each parameter of interest.
Simulations should then be run on each of the generated parameter sets. This is done as follows:

1. Open a text editor (gedit or similar). Now we are going to declare the variables required
by the package to produce the parameter value sets. Type or copy in the text on Page 3.
Firstly, the spartan library is imported. The variables required for this analysis are then
declared in capital letters. The line underneath, beginning with a #, is a description of
that being declared. Make sure you set the FILEPATH variable correctly to match the
folder where you would like the parameter value sets to be output to.

2

library(spartan)

Import the package

FILEPATH<-"/media/FreeAgent/package_Test_Data/OAT/Sampling"

The folder where the results should be output to

PARAMETERS <- c("thresholdBindProbability","chemoThreshold",

"chemoUpperLinearAdjust","chemoLowerLinearAdjust",

"maxVCAMeffectProbabilityCutoff","vcamSlope")

Names of the parameters to generate parameter value samples for.

Should be within an array

BASELINE<-c(50,0.3,0.2,0.04,0.60,1.0)

The calibrated values, or baseline values, for each parameter

PMIN<-c(0,0.10,0.10,0.015,0.1,0.25)

The minimum value in the range for each parameter

PMAX<-c(100,0.9,0.50,0.08,1.0,5.0)

The maximum value in the range for each parameter

PINC<-c(10,0.1,0.05,0.005,0.05,0.25)

The increment to apply for each parameter when exploring the

value range

2. To get the value sets for each parameter, the following method is used. Copy the text
below into the R script file below the declarations you have made above:

oat_parameter_sampling(FILEPATH,PARAMETERS,BASELINE,PMIN,PMAX,

PINC)

3. Save the file with a suitable filename and .R extension (for example OAT Sampling.R)

4. If you are using Linux or Mac OS, open a command prompt, and navigate to the directory
where this file was saved. Type the following:

Rscript OAT_Sampling.R

If you are using Windows, open R and type the following into the R Command Prompt
(where [path to directory is the full path to where OAT Sampling.R is saved]:

source("C:\[\textit{path to directory}]\OAT_Sampling.R")

This will produce a CSV for for each parameter (so in the example case, 6 are generated),
with each having a name matching the parameter which is being perturbed. Simulations
should then be run on each parameter value set in each file, and analysed using the
technique in the next part of this tutorial.

8 Parameter Analysis

This section of the tutorial performs this analysis for the lymphoid tissue formation simulation.
In this case, we are going to examine two cell behaviour measures, Velocity and Displacement,
that are captured for a period representing one hour of real time, to determine how a change
in parameter value influences this behaviour. In the simulation results folders that you have
downloaded from the website, the file we are going to look at is trackedCells Close Endpoint.csv.
Due to size restrictions, the example simulation results set we will analyse only examines two
parameters, these being chemoLowerLinearAdjust and chemoUpperLinearAdjust. In the case
study, these control expression of a chemical attractant molecule.

3

1. Download the OAT example result set from the project website and extract the results.
NB: This is a large file, make sure it has completely downloaded else it will not extract

2. The first thing to note is the folder structure. To use this method, the simulation results
do need to be in a specific format (Figure 1 OAT folder structure). The structure has
three levels:

(i) Folders for each parameter being analysed (given that parameter name)

(ii) Folders for each value that the parameter has been assigned (again given that pa-
rameter value)

(iii) A folder for each of the simulation results where the simulation was run under those
conditions. Will match the number of runs required that was determined through
Aleatory Analysis (Technique 1). So, if this was 300, there would be 300 folders
numbered 1-300

3. With this data available, open a text editor (gedit or similar). Now we are going to
declare the variables required to run this analysis. Type or copy in the text on Page 5.
Firstly, the spartan library is imported. The variables required for this analysis are then
declared in capital letters. The line underneath, beginning with a #, is a description of
that being declared. Make sure you set the FILEPATH variable correctly to state where
the simulation results have been extracted to.

4

Figure 1: Simulation results folder structure that should exist for use with this tool

5

library(spartan)

Import the package

FILEPATH<-"/media/FreeAgent/package_Test_Data/OAT"

Folder containing the simulation results

PARAMETERS<-c("chemoLowerLinearAdjust","chemoUpperLinearAdjust")

Array of the parameters to be analysed

PMIN<-c(0.015,0.10)

The minimum value explored for each parameter

PMAX<-c(0.08,0.50)

The maximum value for each parameter

PINC<-c(0.005,0.05)

Amount the parameter value was incremened during sampling

BASELINE<-c(0.04,0.2)

Value assigned to each parameter at calibration (the baseline value)

NUMRUNSPERSAMPLE<-300

Number of runs performed for each parameter value set

MEASURES<-c("Velocity","Displacement")

The simulation output measures being examined

RESULTFILEFORMAT<-"csv"

Simulation result file format. Should be either CSV or XML

RESULTFILENAME<-"trackedCells_Close"

The output file containing the simulation results from that simulation run.

Note no file extension

OUTPUTCOLSTART<-10

Use this if simulation results are in CSV format.

The column within the csv results file where the results start. This is useful

as it restricts what is read in to R, getting round potential errors where the

first column contains an agent label (as R does not read in CSV files where the

first column contains duplicates)

OUTPUTCOLEND<-11

Use this if simulation results are in CSV format.

Last column of the output measure results

ALTERNATIVEFILENAME<-NULL

Not used in this case, but this is useful in cases where two result files may

exist (for example if tracking cells close to an area, and those further away

two output files could be used). Here, results in a second file are processed

if the first is blank or does not exist.

MEDIANSFILEFORMAT<-"csv"

File format of median results file that will be generated in this tutorial.

Should be either XML or CSV. This is used as, for some applications, a simulation

results set for processing may have been generated using methods other than

spartan, and may not be in CSV format.

MEDIANSFILENAME<-"EgSet_Medians"

For each parameter value being analysed, a file is created containing the median

of each output measure, of each simulation run for that value. This sets the

name of this file. Note no file extension

ATESTRESULTSFILENAME<-"EgSet_ATests"

The results of the A-Test comparisons of each parameter value against that of the

parameters baseline value are output as a file. This sets the name of this file.

Note no file extension. Current versions of spartan output to CSV files, though

this may change in later versions.

6

ATESTSIGLEVEL<-0.21

A-Test result value either side of 0.5 at which the difference between two sets of

results is significant

MEASURE_SCALE<-c("microns/min","microns")

What each measure represents. Used in graphing results

TIMEPOINTS<-NULL; TIMEPOINTSCALE<-NULL

Not used in this case, but when a simulation is analysed at multiple timepoints

(see later in tutorial)

4. Now to run the first of the four methods (we are going to do each individually in the tutorial
so the functionality becomes apparent but in reality you will run all three methods one
after another in the same text file). Copy the below into the text file under the above
declarations:

oat_processParamSubsets(FILEPATH,PARAMETERS,PMIN,PMAX,PINC,

NUMRUNSPERSAMPLE,MEASURES,RESULTFILEFORMAT,RESULTFILENAME,

ALTERNATIVEFILENAME,OUTPUTCOLSTART,OUTPUTCOLEND,

MEDIANSFILEFORMAT,MEDIANSFILENAME)

This examines each parameter that is to be analysed in turn, starting with the minimum
value it has been assigned and works through all values up to and including the maximum
in the range. For each value, the median of each output measure is calculated for each run
that has been performed, and these stored in a file within the folder for this parameter
value (file given the name set in MEDIANSFILENAME). For example, if the parameter
value is 0, and 300 runs have been performed where this is the case, a file is created
containing the median of both the Velocity and Displacement output measure for each
of the 300 runs. This will be in CSV or XML format, dependent on the format set by
parameter MEDIANFILEFORMAT. This set of medians can then be compared with the
known simulation behaviour at the baseline.

5. Save the file with a suitable filename and .R extension (for example OAT Analysis.R)

6. For linux or Mac OS, open a command prompt, and navigate to the directory where this
file was saved. Type the following:

Rscript OAT_Analysis.R

If you are using Windows, open R and type the following into the R Command Prompt
(where [path to directory is the full path to where OAT Analysis.R is saved]:

source("C:\[\textit{path to directory}]\OAT_Analysis.R")

Navigate through the folder structure and make yourself familiar with the format of the
file produced. This will help when applying the toolkit to other simulations.

7. We are now going to run the second method, which gives an indication of the change in
behaviour caused by this parameter value change. In the same file in the text editor, add
the following method call, then save the file.

oat_analyseAllParams(FILEPATH,PARAMETERS,BASELINE,PMIN,

PMAX,PINC,MEASURES,MEDIANSFILEFORMAT,MEDIANSFILENAME,

ATESTRESULTSFILENAME)

7

Again, this method examines each parameter in turn. The aim is to compare the median
sets generated above with those obtained when the parameter was set to its calibrated,
baseline, value. As an example, consider one of the parameters we are analysing in the
example set, chemoLowerLinearAdjust. This has a baseline value of 0.04. The simulation
has two output measures, Velocity and Displacement. The method will read in the median
results generated by the first method where the parameter value is its calibrated value.
Then, it will, in turn, read in the median results for every other parameter value. So, for
example, the minium value for chemoLowerLinearAdjust is 0.015. The method will read
in the medians for all simulation runs for this value. For each output measure, the sets of
median values are then compared using the Vargha-Delaney A-Test (2000), which indicates
’how different’ the two sets of results are, or the effect the parameter value change has
had on the simulation result. The next value for this parameter is then considered, and
the same process followed. Once this is all complete, the A-Test scores for each parameter
value comparison are output to a CSV file.

8. Return to the command prompt and run the R script using the same command as pre-
viously. This will then generate a results file for each parameter, within that parameters
folder, summarising the A-Test results for all values it has been assigned. These files will
take the name set in the R variable ATESTRESULTSFILENAME. Navigate to one of the
parameter folders and make sure you are familiar with the structure of this file.

9. Go back to the text editor. We are now going to use the two methods within the package
to represent the results generated previously in a graphical format. Add the following to
the script text file:

oat_graphATestsForSampleSize(FILEPATH,PARAMETERS,PMIN,

PMAX,PINC,MEASURES,ATESTSIGLEVEL,

ATESTRESULTSFILENAME,TIMEPOINTS,TIMEPOINTSCALE)

oat_plotResultDistribution(FILEPATH,PARAMETERS,PMIN,

PMAX,PINC,MEASURES,MEASURE_SCALE,MEDIANSFILEFORMAT,

MEDIANSFILENAME,TIMEPOINTS,TIMEPOINTSCALE)

10. Return to the command prompt and run the R script using the same command as previ-
ously.

The first of these methods produces a graph for each parameter, which shows the A-
Test scores for each value it has been assigned, when compared to its calibrated value.
This plot will show all simulation output measures on the same graph. An example of the
graphs that should have been produced can be seen in Figures 2 and 3. This helps identify
any trends that become apparent when the value of a parameter is changed. For example,
a notable change in simulation behaviour is identified when the value of chemoLowerLin-
earAdjust is perturbed (Figure 2). Or on the other hand, it may become apparent that the
value of the parameter can be set to any value in the range and there be no notable change
in simulation behaviour. This is the case with the chemoUpperLinearAdjust parameter,
in Figure 3.

The final method again produces a graph for each parameter, but this time also for each
simulation output measure. This generates a box plot showing the distribution of simula-
tion results for that measure, for each parameter value, again making it easy to identify
any trends in simulation behaviour against parameter value. When run, your script should
have produced the graph seen in Figure 4.

8

●

●

●

●

●
●

●

●

●
● ●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A−Test Scores when adjusting parameter
chemoLowerLinearAdjust

Parameter Value

A
 T

es
t S

co
re

0.015 0.025 0.035 0.045 0.055 0.065 0.075

●

Measures

Velocity
Displacement

no difference

large difference

large difference

Figure 2: Graph showing the A-Test scores for all parameter values assigned to
chemoLowerLinearAdjust

●

● ● ●

● ●
● ●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A−Test Scores when adjusting parameter
chemoUpperLinearAdjust

Parameter Value

A
 T

es
t S

co
re

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

●

Measures

Velocity
Displacement

no difference

large difference

large difference

Figure 3: Graph showing the A-Test scores for all parameter values assigned to
chemoUpperLinearAdjust

9

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●
●
●
●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

● ●
●●

●

●

●

●

0.015 0.025 0.035 0.045 0.055 0.065 0.075

20
40

60
80

10
0

Distribution of Displacement Responses
 when altering parameter chemoLowerLinearAdjust

Parameter Value

M
ed

ia
n

ch
em

oL
ow

er
Li

ne
ar

A
dj

us
t (

m
ic

ro
ns

)

Figure 4: Graph showing the distribution of Displacement results when parameter
chemoLowerLinearAdjust is perturbed

9 Running OAT Technique for Multiple Timepoints

The package also has the capability to perform the above analysis for simulation results taken
at different timepoints. This may give an indication of when a parameter perturbation becomes
influential. Again, we will examine this with an example, yet there is not much to change from
the example seen previously

In this case study, we have captured the cell behaviour measures at multiple timepoints in
the simulation, specifically 12, 36, 48,and 60 hours. Thus we have the output files tracked-
Cells Close 12.csv, trackedCells Close 36.csv etc. To use this method over multiple timepoints,
you should have (a) the same folder structure as in the previous example, and (b) an output
file for each timepoint, with the timepoint appended to the filename after an underscore. It is
worth writing a script to put your output in this format before looking at this method if this is
not already the case.

We explain how this works through an example, which adapts what we did previously. Re-
sults at the 12, 36, 48, and 60 hour timepoints are contained within the example dataset used
in the previous example.

10

1. Open the R script that you generated above in a text editor.

2. We now need to change the value of some of the variables. These are:

TIMEPOINTS, TIMEPOINTSCALE

Change the values so they match the below:

TIMEPOINTS<-c(12,36,48,60)

TIMEPOINTSCALE<-"Hours"

This alteration sets TIMEPOINTS to an array of timepoints being analysed, and TIME-
POINTSCALE to a string stating what these timepoints represent. The latter is used for
graphing results in the final part of the method.

Each R method will now process each timepoint in turn and append the timepoint being
analysed onto the input and output file names, so that distinct results are output for each.
For example, when the 12 hour timepoint is being examined, the file addresses will become
trackedCells Close 12.csv, EgSet Medians 12.csv, etc.

3. In the text editor, delete the four R methods used previously (under the variable declara-
tions) and add these methods in their place:

oat_processParamSubsets_overTime(FILEPATH,PARAMETERS,

PMIN,PMAX,PINC,NUMRUNSPERSAMPLE,MEASURES,

RESULTFILEFORMAT,RESULTFILENAME,ALTERNATIVEFILENAME,

OUTPUTCOLSTART,OUTPUTCOLEND,MEDIANSFILEFORMAT,

MEDIANSFILENAME,TIMEPOINTS)

oat_analyseAllParams_overTime(FILEPATH,PARAMETERS,BASELINE,

PMIN,PMAX,PINC,MEASURES,MEDIANSFILEFORMAT,

MEDIANSFILENAME,ATESTRESULTSFILENAME,TIMEPOINTS)

oat_graphATestsForSampleSize_overTime(FILEPATH,PARAMETERS,

PMIN,PMAX,PINC,ATESTRESULTSFILENAME,MEASURES,

ATESTSIGLEVEL,TIMEPOINTS,TIMEPOINTSCALE)

oat_plotResultDistribution_overTime(FILEPATH,PARAMETERS,

PMIN,PMAX,PINC,MEDIANSFILEFORMAT,MEDIANSFILENAME,

MEASURES,MEASURE_SCALE,TIMEPOINTS,TIMEPOINTSCALE)

The subtle change you will notice is that TIMEPOINTS and TIMEPOINTSCALE are now
added to the top two methods. When each method is called, the method goes through
each timepoint in turn. It will prepare the input and output filenames as stated above
(adding the timepoint), then uses the same method as used in our first example (where
only the end time point was analysed). Thus, whereas the first example produced output
for one timepoint, R will now generate the same but for a number of different timepoints.
To note the timepoint that was analysed, the graphs will have the timepoint appended to
the filename in the same way as described previously.

4. Save the text file and run the script in R using the same command as previously

11

10 Further Reading

The following references may be useful in understanding this technique in more detail:

• Read, M., Andrews, P.S., Timmis, J. & Kumar, V. (2012) Techniques for Grounding
Agent-Based Simulations in the Real Domain : a case study in Experimental Autoim-
mune Encephalomyelitis. Mathematical and Computer Modelling of Dynamical Systems,
18(1):67-86.

• Vargha, A. & Delaney, H.D. (2000) A critique and improvement of the CL Common Lan-
guage Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioural
Statistics, 25, p.pp.101-132.

• The spartan Manual, spartan-Manual.pdf, within the spartan package describes in more
detail each method within the package

12

