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1 Introduction

We will give a short tutorial on using standGL. We will give the tutorial for lin-
ear regression, though it is just as straightforward to run for logistic regression.

2 Example

We first load our data and set up the response. In this case X must be an n by p
matrix of covariate values by observation (n patients with p covariates) and y is
an n length vector of responses. index is a p length vector of group memberships.
For this example our data has 200 covariate measurements (divided into 5 groups
of 40) on 50 observations

> set.seed(10)

> library("standGL")

> load("VignetteExample.rdata")

> X <- data$covariates

> y <- data$response

> index <- data$groupMemberships

Say, we would also like to fit an intercept — in that case we include a new
column of 1s to our covariate matrix, and a new group to our index:

> X <- cbind(rep(1,length(y)), X)

> index <- c(0,index)

Now we must indicate that this new column is not to be penalized:

> is.pen <- c(0,rep(1,(length(unique(index)) - 1)))

> dim(X)

[1] 50 201

> length(y)

[1] 50

> length(is.pen)

1



[1] 6

We then call our functions to fit with the standardized group lasso penalty,
and cross validate.

> cv.fit <- cv.standGL(y,X,index, family="linear", is.pen = is.pen)
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> fit <- standGL(y,X,index, family="linear", is.pen = is.pen)

Once fit, we can view the optimal λ value and a cross validated error plot to
help evaluate our model.

> plot(cv.fit)
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> cv.fit$lambda.min
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[1] 1.609562

In this case, we see that the minimum was achieved by a fairly regularized
model. We can check which covariates our model chose to be active, and see
the coefficients of those covariates.

> our.Model <- which(cv.fit$lambdas == cv.fit$lambda.min)

> Active.Index <- which(fit$beta[,our.Model] != 0)

> Active.Coefficients <- fit$beta[Active.Index, our.Model]

> Active.Index

[1] 1 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

[20] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

[39] 119 120 121

We see that there our optimal model chose coefficients 82 to 121 to be active
(this corresponds to the third group) and fit an intercept term.

Now, because group sizes are large compared to the number of observations,
suppose that we are worried about overfitting within each group. In this case,
we can add some slight ridge penalty within group:

> cv.fit.ridge <- cv.standGL(y,X,index, family="ridge", is.pen = is.pen, alpha = 0.95)
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> fit.ridge <- standGL(y,X,index, family= "ridge", is.pen = is.pen, alpha = 0.95)

We have no strong theoretical rationale for choosing alpha= 0.95. We
note that alpha= 1 corresponds to the standardized group lasso with no ridge
penalty, and alpha= 0 corresponds to ridge regression with no group penalty.
Also, we have seen that, as in the elastic net, adding a slight amount of ridge
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regression helps keep our solution well behaved.

Again, we can view the optimal λ value and a cross validated error plot to
help evaluate our model.

> plot(cv.fit.ridge)
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> cv.fit.ridge$lambda.min

[1] 1.609562

Based on the cv-curve we see that the model here fits the data maybe slightly
better than the vanilla standardized group lasso (though the error bars certainly
overlap). If we desired we could also find the coefficients of our optimal model
as before.
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