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1 Introduction

The Toolkit for Weighting and Analysis of Nonequivalent Groups, twang, was designed to make
causal estimates in the binary treatment setting. In twang versions 1.3 and later, we have
extended this software package to handle more than two treatment conditions through the new
mnps function, which stands for multinomial propensity scores. McCaffrey et al. (2013) describe
the methodology behind the mnps function; the purpose of this document is to describe the
syntax and features related to the implementation in twang.

At a high level, the mnps function decomposes the propensity score estimation into several
applications of the ps function, which was designed for the standard dichotomous treatment
setting. For this reason, users who are new to twang are encouraged to learn about the ps

function before using the mnps function. The other vignette that accompanies the package
(Ridgeway et al., 2012) provides an extensive overview of the ps function, and much of that
information will not be repeated here.

2 An ATE example

To demonstrate the package we utilize a random subset of the data described in McCaffrey et
al. (2013). This truncated dataset is called AOD, and is included in the package. There are three
treatment groups in the study, and the data include records for 200 youths in each treatment
group of an alcohol and other drug treatment evaluation. We begin by loading the package and
the data. Because there is a stochastic component to the subsequent model fits, we also set the
random seed to ensure full replicability.

> library(twang)

> data(AOD)

> set.seed(1)

For the AOD dataset, the variable treat contains the treatment indicators, which have possible
values community, metcbt5, and scy. The other variables included in the dataset are:

• suf12: outcome variable, substance use frequency at 12 month follow-up

∗The development of this software and tutorial was funded by National Institute of Drug Abuse grant number
1R01DA015697 (PI: McCaffrey).
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• illact: pretreatment covariate, illicit activities scale

• crimjust: pretreatment covariate, criminal justice involvement

• subprob: pretreatment covariate, substance use problem scale

• subdep: pretreatment covariate, substance use dependence scale

• white: pretreatment covariate, indicator for non-Hispanic white youth

In such an observational study, there are several quantities that one may be interested in
estimating. The estimands that are most commonly of interest are the average treatment effect
on the population (ATE) and the average treatment effect on the treated (ATT). The differences
between these quantities are explained at length in McCaffrey et al. (2013), but in brief the ATE
answers the question of how, on average, the outcome of interest would change if everyone in
the population of interest had been assigned to a particular treatment relative to if they had all
received another single treatment. The ATT answers the question of how the average outcome
would change if everyone who received one particular treatment had instead received another
particular treatment.

The main argument for the mnps function is a formula with the treatment variable on the
left-hand side of a tilde, and pre-treatment variables on the right-hand side, separated by plus
signs. Other key arguments are data, which simply tells the function the name of the dataframe
that contains the variables for the propensity score estimation; the estimand, which can either
be “ATT” or “ATE”; and verbose, which if set as TRUE instructs the function to print updates
on the model fitting process, which can take a few minutes.

> mnps.AOD <- mnps(treat ~ illact + crimjust + subprob + subdep + white,

+ data = AOD, estimand = "ATE", verbose = FALSE,

+ stop.method = c("es.mean", "ks.mean"),

+ n.trees = 3000)

The twang methods rely on tree-based regression models that are built in an iterative fashion.
As the iterations or number of regression trees added to the model increases, the model becomes
more complex. However, at some point, more complex models typically result in worse balance on
the pre-treatment variables and therefore are less useful in a propensity score weighting context.
The n.trees argument controls the maximum number of iterations.

Another key choice is the measure of balance that one uses when fitting these models. This is
specified in the stop.method argument. As with the ps function, four stop.method objects are
included in the package. They are es.mean, es.max, ks.mean, and ks.max. The four stopping
rules are defined by two components: a balance metric for covariates and rule for summarizing
across covariates. The balance metric summarizes the difference between two univariate distri-
butions of a single pre-treatment variable (e.g., illicit activities scale). The default stopping rules
in twang use two balance metrics: absolute standardized bias (also referred to as the absolute
standardized mean difference or the effect size (ES)) and the Kolmogorov-Smirnov (KS) statis-
tic. The stopping rule use two different rules for summarizing across covariates: the mean of the
covariate balance metrics (“mean”) or the maximum of the balance metrics (“max”). The first
piece of the stopping rule name identifies the balance metric (ES or KS) and the second piece
specifies the method for summarizing across balance metrics. For instance, es.mean uses the
effect size or the absolute standardized bias and summarizes across variables with the mean and
the ks.max uses the KS statistics to assess balances and summarizes using the maximum across
variables and the other two stopping rules use the remaining two combinations of balance metrics
and summary statistics. In this example, we chose to examine both es.mean and ks.mean, which
is the default.

2



A first step is to make sure that we let the models run for a sufficiently large number of
iterations in order to optimize the balance statistics of interest. We do this by seeing whether
any of the balance measures of interest still appear to be decreasing after the number of iterations
specified by the argument n.trees (10,000 iterations is the default).

> plot(mnps.AOD, plots = 1)
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In this figure, it appears that each of the balance measures are optimized with substantially
fewer than 3,000 iterations, so we do not have evidence that we should re-run the mnps() call
with a higher number of iterations or trees.

A key assumption in propensity score analyses is that each experimental unit has a non-zero
probability of receiving each treatment. The plausibility of this assumption may be assessed by
the overlap of the empirical propensity score distributions. This diagnostic is available using the
plots = 2 argument in the plot function. Here, the overlap assumption generally seems to be
met, although there should be some concern that adolescents in the metcbt5 and scy conditions
do not overlap well with the community group given the top most graphic. See McCaffrey et al.
(2013) for more details on this issue.
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> plot(mnps.AOD, plots = 2)
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As with the ps function for the binary treatment setting, the default plotting function for
mnps-class objects also displays information on commonly-used balance statistics. In particular,
it provides comparisons of the absolute standard differences (setting the plots argument equal
to 3) and t statistics (with the plots argument equal to 4), before and after weighting. However,
whereas there is a single plot for these balance diagnostics in the binary treatment setting, in the
multiple treatment case, one can either examine a plot for each of the treatment conditions, or
summarize the balance statistics in some way, across the treatment conditions. As a default, the
plot function for an mnps object returns the maximum of the balance statistics across treatment
groups for each of the covariates:
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> plot(mnps.AOD, plots = 3)
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If any of the differences had been statistically significant (before taking the maximum across
treatment groups), the corresponding hollow circles in this plot would be solid.

It is possible to adjust the summarizing function using the summaryFcn argument. For ex-
ample, one might consider the mean absolute standard differences rather than the maximum by
setting summaryFcn = mean. Note that the function name should be provided without quotes.
Regardless of the summary function, the circles at the end of the line segments will be hollow if
none of the differences is statistically significant, and will be solid if at least one is significant.
Another useful option is setting that argument equal to NULL which avoids the summary step
altogether, and displays the balance statistics for each of the treatment conditions separately:
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> plot(mnps.AOD, plots = 3, summaryFcn = NULL, figureRows = 3)
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The additional figureRows argument instructs the function to spread the plots over three
rows; by default the plots would be arranged in a single row rather than a column.

Setting the plots argument equal to 4 compares weighted and unweighted t-test or χ2 statistic
p-values for differences between each of the individual treatment groups and observations in
all other treatment groups. Note that KS p-values are not available for ATE in the multiple
treatment setting, and the plots argument therefore may not be set to 5.

6



> plot(mnps.AOD, plots = 4)
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Beyond graphics, there are several other functions that may be of interest to mnps users. The
first is means.table which provides a nice, simple summary of balance across the groups. When
estimand is set as ’ATE’, the table shows the population means for each pretreatment covariate
in the first column as well as each treatment group’s unweighted and ATE weighted means and
corresponding unweighted and weighted population standardized mean differences. As shown
in the table below, incorporation of the ATE propensity score weights improves each treatment
groups overall balance with the population means for each pretreatment covariate. The function
also includes an argument called includeSD whose default is FALSE; changing it to TRUE returns
standard deviations for each of the treatment conditions (not shown).

> means.table(mnps.AOD, stop.method = "es.mean", digits = 3)

pop.mean unwt.community.mean wt.community.mean unwt.community.smd

illact 0.082 0.097 0.097 0.022

crimjust -0.067 -0.065 -0.065 0.002

subprob -0.030 -0.060 -0.060 -0.045

subdep 0.025 0.046 0.046 0.030

white 0.172 0.160 0.160 -0.048

wt.community.smd unwt.metcbt5.mean wt.metcbt5.mean unwt.metcbt5.smd

illact 0.022 0.007 0.007 -0.067

crimjust 0.002 0.037 0.037 0.100

subprob -0.045 0.026 0.026 0.042

subdep 0.030 0.058 0.058 0.041

white -0.048 0.200 0.200 0.057

wt.metcbt5.smd unwt.scy.mean wt.scy.mean unwt.scy.smd wt.scy.smd

illact -0.067 0.120 0.120 0.044 0.044

crimjust 0.100 -0.174 -0.174 -0.102 -0.102

subprob 0.042 -0.013 -0.013 0.003 0.003

subdep 0.041 -0.058 -0.058 -0.071 -0.071

white 0.057 0.175 0.175 -0.009 -0.009

More extensive balance information is given by the bal.table function. For propensity score
analyses with multiple treatments, this function returns a lot of information. For each outcome
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category, and each stopping rule (in addition to the unweighted analysis) the bal.table function
gives balance statistics such as weighted and unweighted means by treatment group. Note in
this case that the “control” columns (labeled ct) refer to every treatment group except the one
that is considered the treatment for a particular output. For example, in the first table that
follows, tx refers to community treatment, and ct refers to all treatments except community.

> bal.table(mnps.AOD)

$community

$community$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.075 1.014 0.022 0.382 0.703 0.037 NA

crimjust -0.065 1.050 -0.068 1.041 0.002 0.036 0.971 0.038 NA

subprob -0.060 0.965 -0.016 0.985 -0.045 -0.782 0.434 0.058 NA

subdep 0.046 1.079 0.015 1.031 0.030 0.501 0.617 0.028 NA

white 0.160 0.368 0.178 0.383 -0.048 -0.847 0.397 0.018 NA

$community$es.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.085 1.001 0.078 0.998 0.007 0.139 0.889 0.024 NA

crimjust -0.092 1.018 -0.079 1.019 -0.012 -0.254 0.799 0.036 NA

subprob -0.013 0.938 -0.005 0.962 -0.009 -0.178 0.858 0.044 NA

subdep 0.015 1.046 0.011 1.027 0.004 0.083 0.934 0.023 NA

white 0.173 0.379 0.182 0.386 -0.024 -0.462 0.644 0.006 NA

$community$ks.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.083 1.001 0.077 1.000 0.006 0.136 0.892 0.025 NA

crimjust -0.080 1.018 -0.070 1.019 -0.009 -0.193 0.847 0.031 NA

subprob 0.001 0.948 0.002 0.965 -0.001 -0.023 0.982 0.032 NA

subdep 0.003 1.052 0.005 1.031 -0.001 -0.031 0.975 0.027 NA

white 0.168 0.375 0.179 0.384 -0.028 -0.577 0.564 0.010 NA

$metcbt5

$metcbt5$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.007 1.035 0.075 1.014 -0.067 -1.147 0.252 0.065 NA

crimjust 0.037 1.038 -0.068 1.041 0.100 1.743 0.082 0.077 NA

subprob 0.026 1.019 -0.016 0.985 0.042 0.716 0.474 0.047 NA

subdep 0.058 1.047 0.015 1.031 0.041 0.709 0.478 0.042 NA

white 0.200 0.401 0.178 0.383 0.057 0.958 0.338 0.022 NA

$metcbt5$es.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.052 0.997 0.069 1.000 -0.017 -0.363 0.717 0.038 NA

crimjust -0.065 1.003 -0.078 1.022 0.013 0.283 0.777 0.029 NA

subprob -0.016 0.997 -0.019 0.983 0.003 0.062 0.950 0.028 NA

subdep 0.021 1.037 0.017 1.028 0.004 0.085 0.932 0.030 NA

white 0.195 0.397 0.182 0.386 0.034 0.726 0.468 0.017 NA
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$metcbt5$ks.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.056 0.999 0.070 1.002 -0.014 -0.311 0.756 0.036 NA

crimjust -0.073 1.008 -0.081 1.026 0.008 0.178 0.859 0.026 NA

subprob -0.026 1.000 -0.023 0.984 -0.003 -0.067 0.947 0.025 NA

subdep 0.022 1.034 0.018 1.027 0.005 0.097 0.923 0.032 NA

white 0.197 0.398 0.182 0.386 0.037 0.791 0.429 0.018 NA

$scy

$scy$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.120 0.963 0.075 1.014 0.044 0.790 0.430 0.057 NA

crimjust -0.174 1.028 -0.068 1.041 -0.102 -1.788 0.074 0.062 NA

subprob -0.013 0.972 -0.016 0.985 0.003 0.045 0.964 0.037 NA

subdep -0.058 0.964 0.015 1.031 -0.071 -1.268 0.205 0.058 NA

white 0.175 0.381 0.178 0.383 -0.009 -0.151 0.880 0.003 NA

$scy$es.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.077 0.992 0.074 1.004 0.003 0.052 0.958 0.033 NA

crimjust -0.093 1.010 -0.069 1.024 -0.023 -0.492 0.623 0.036 NA

subprob -0.007 0.973 -0.014 0.979 0.007 0.149 0.881 0.029 NA

subdep -0.042 0.973 -0.010 1.011 -0.031 -0.675 0.500 0.044 NA

white 0.170 0.377 0.178 0.383 -0.020 -0.427 0.669 0.008 NA

$scy$ks.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.079 0.992 0.075 1.004 0.003 0.071 0.943 0.033 NA

crimjust -0.093 1.011 -0.070 1.025 -0.023 -0.489 0.625 0.036 NA

subprob -0.008 0.972 -0.014 0.978 0.006 0.127 0.899 0.029 NA

subdep -0.041 0.974 -0.009 1.012 -0.032 -0.682 0.495 0.044 NA

white 0.170 0.377 0.178 0.383 -0.019 -0.419 0.675 0.008 NA

Finally, there is also summary method for mnps objects which gives some information on
balance measures as well as the number of iterations (trees) selected for each model under each
stopping rule.

> summary(mnps.AOD)

Summary of mnps object:

Summary of community against others.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks

unw 200 400 200.0000 400.0000 0.04785366 0.02930366 0.05833333

es.mean.ATE 200 400 184.5124 389.3660 0.02360970 0.01110927 0.04353362

ks.mean.ATE 200 400 188.3758 392.3995 0.02786090 0.00917691 0.03192988

max.ks.p mean.ks iter

unw NA 0.03600000 NA

es.mean.ATE NA 0.02639685 1874

ks.mean.ATE NA 0.02507839 1082
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Summary of metcbt5 against others.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks

unw 200 400 200.0000 400.0000 0.10027943 0.06137739 0.07666667

es.mean.ATE 200 400 186.1874 394.2979 0.03442245 0.01425387 0.03800035

ks.mean.ATE 200 400 188.3648 395.4704 0.03674848 0.01331183 0.03562304

max.ks.p mean.ks iter

unw NA 0.05033333 NA

es.mean.ATE NA 0.02830985 880

ks.mean.ATE NA 0.02724992 581

Summary of scy against others.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks

unw 200 400 200.0000 400.0000 0.10238503 0.04578066 0.06166667

es.mean.ATE 200 400 189.5017 393.4114 0.03148452 0.01683214 0.04425948

ks.mean.ATE 200 400 190.0047 393.7790 0.03174088 0.01672060 0.04368363

max.ks.p mean.ks iter

unw NA 0.04333333 NA

es.mean.ATE NA 0.03013078 754

ks.mean.ATE NA 0.02992878 712

After examining the graphical and tabular diagnostics provided by twang, we can analyze
the outcome variable using the propensity scores generated by the mnps function. Although two
stop methods were specified initially (es.mean and ks.mean), at this point we have to commit
to a single set of weights. From the bal.table call above, we see that the balance properties
are very similar for the two stopping rules, and from the summary statement, we see that the
effective sample sizes (ess.treat) are similar as well. Hence, we expect the two stop methods
to give similar results; we choose to analyze the data with the es.mean weights.

In order to analyze the data using the weights, it is recommended that one use the survey

package, which performs weighted analyses. We can add the weights to the dataset using the
get.weights function and specify the survey design as follows:

> require(survey)

> AOD$w <- get.weights(mnps.AOD, stop.method = "es.mean")

> design.mnps <- svydesign(ids=~1, weights=~w, data=AOD)

As shown in the ps vignette, we can then perform the propensity score-adjusted regression
using the svyglm function:

> glm1 <- svyglm(suf12 ~ as.factor(treat), design = design.mnps)

> summary(glm1)

Call:

svyglm(formula = suf12 ~ as.factor(treat), design = design.mnps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = AOD)

Coefficients:

Estimate Std. Error t value

(Intercept) -0.09913 0.06736 -1.472

as.factor(treat)metcbt5 0.14858 0.10502 1.415

as.factor(treat)scy 0.06464 0.09998 0.647
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Pr(>|t|)

(Intercept) 0.142

as.factor(treat)metcbt5 0.158

as.factor(treat)scy 0.518

(Dispersion parameter for gaussian family taken to be 1.002082)

Number of Fisher Scoring iterations: 2

Using this small subset of the data, we are unable to detect differences in the treatment group
means. However, the coefficient for the metcbt5 term represents the causal effect of metcbt5 vs.
community and the coefficient for the scy term represents the causal effect of scy vs. community
assuming there are no unobserved confounders. In the context of this application, the signs of
the estimates correspond to higher substance use frequency for youths exposed to metcbt5 or
scy relative to community. More details on how to obtain all relevant pairwise differences can
be found in McCaffrey et al. (2013).

3 An ATT example

It is also possible to explore treatment effects on the treated (ATTs) using the mnps function.
A key difference in the multiple treated setting is that we must be clear as to which treatment
condition “the treated” refers to. This is done through the treatATT argument. Here, we define
the treatment group of interest to be the community group; thus, we are trying to draw inferences
about the relative effectiveness of the three treatment groups for individuals like those who were
enrolled in the community program.

> mnps.AOD.ATT <- mnps(treat ~ illact + crimjust + subprob + subdep + white,

+ data = AOD, estimand = "ATT", treatATT = "community",

+ verbose = FALSE, n.trees = 3000)

The same array of visual and numerical summaries are available as they were in the ATE
analysis.

> plot(mnps.AOD.ATT, plots = 1)
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> plot(mnps.AOD.ATT, plots = 3)
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Although the same basic graphical descriptions are available as in the ATE case, note that
the population means above are replaced with the means of the treatATT category in the
means.table call.

> means.table(mnps.AOD.ATT, digits = 3)

community.mean unwt.metcbt5.mean wt.metcbt5.mean unwt.metcbt5.smd

illact 0.052 0.097 0.097 0.087

crimjust -0.014 -0.065 -0.065 -0.097

subprob -0.017 -0.060 -0.060 -0.088

subdep 0.052 0.046 0.046 -0.011

white 0.180 0.160 0.160 -0.109

wt.metcbt5.smd unwt.scy.mean wt.scy.mean unwt.scy.smd wt.scy.smd

illact 0.011 0.097 0.097 -0.021 -0.001

crimjust -0.032 -0.065 -0.065 0.104 -0.023

subprob 0.002 -0.060 -0.060 -0.048 -0.043

subdep -0.011 0.046 0.046 0.096 0.076

white -0.071 0.160 0.160 -0.041 -0.008

The bal.table output is similar to the ATE case. However, for ATT, we do not need tables
that give balance for the treatATT category against itself.

> bal.table(mnps.AOD.ATT)

$metcbt5

$metcbt5$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.007 1.035 0.087 0.870 0.385 0.100 0.270

crimjust -0.065 1.050 0.037 1.038 -0.097 -0.980 0.328 0.105 0.221

subprob -0.060 0.965 0.026 1.019 -0.088 -0.861 0.390 0.090 0.394

subdep 0.046 1.079 0.058 1.047 -0.011 -0.113 0.910 0.055 0.924

white 0.160 0.368 0.200 0.401 -0.109 -1.041 0.298 0.040 0.997

$metcbt5$ks.mean.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.086 1.023 0.011 0.102 0.919 0.042 0.995

crimjust -0.065 1.050 -0.032 0.997 -0.032 -0.313 0.754 0.051 0.959
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subprob -0.060 0.965 -0.062 0.988 0.002 0.018 0.986 0.039 0.997

subdep 0.046 1.079 0.057 1.048 -0.011 -0.104 0.917 0.050 0.963

white 0.160 0.368 0.186 0.390 -0.071 -0.662 0.509 0.026 1.000

$metcbt5$es.mean.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.087 1.024 0.010 0.094 0.925 0.041 0.995

crimjust -0.065 1.050 -0.032 0.998 -0.032 -0.317 0.752 0.051 0.957

subprob -0.060 0.965 -0.062 0.989 0.003 0.025 0.980 0.039 0.998

subdep 0.046 1.079 0.058 1.049 -0.012 -0.112 0.911 0.051 0.959

white 0.160 0.368 0.187 0.391 -0.073 -0.680 0.497 0.027 1.000

$scy

$scy$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.120 0.963 -0.021 -0.223 0.823 0.060 0.866

crimjust -0.065 1.050 -0.174 1.028 0.104 1.048 0.295 0.080 0.545

subprob -0.060 0.965 -0.013 0.972 -0.048 -0.481 0.631 0.090 0.394

subdep 0.046 1.079 -0.058 0.964 0.096 1.012 0.312 0.085 0.466

white 0.160 0.368 0.175 0.381 -0.041 -0.401 0.688 0.015 1.000

$scy$ks.mean.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.098 1.036 -0.001 -0.006 0.995 0.050 0.960

crimjust -0.065 1.050 -0.041 0.973 -0.023 -0.235 0.814 0.039 0.998

subprob -0.060 0.965 -0.018 0.979 -0.043 -0.402 0.688 0.045 0.987

subdep 0.046 1.079 -0.036 0.994 0.076 0.744 0.457 0.074 0.664

white 0.160 0.368 0.163 0.370 -0.008 -0.077 0.939 0.003 1.000

$scy$es.mean.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

illact 0.097 1.045 0.100 1.005 -0.002 -0.023 0.982 0.056 0.902

crimjust -0.065 1.050 -0.064 0.995 -0.002 -0.016 0.988 0.052 0.941

subprob -0.060 0.965 -0.027 0.967 -0.034 -0.336 0.737 0.055 0.904

subdep 0.046 1.079 -0.018 0.993 0.059 0.596 0.551 0.069 0.707

white 0.160 0.368 0.176 0.382 -0.045 -0.433 0.665 0.016 1.000

The process to analyze the outcome variable is also similar:

> require(survey)

> AOD$w.ATT <- get.weights(mnps.AOD.ATT, stop.method = "es.mean")

> design.mnps.ATT <- svydesign(ids=~1, weights=~w.ATT, data=AOD)

> glm1 <- svyglm(suf12 ~ as.factor(treat), design = design.mnps.ATT)

> summary(glm1)

Call:

svyglm(formula = suf12 ~ as.factor(treat), design = design.mnps.ATT)

Survey design:
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svydesign(ids = ~1, weights = ~w.ATT, data = AOD)

Coefficients:

Estimate Std. Error t value

(Intercept) -0.10505 0.06383 -1.646

as.factor(treat)metcbt5 0.20071 0.10409 1.928

as.factor(treat)scy 0.08076 0.09901 0.816

Pr(>|t|)

(Intercept) 0.1003

as.factor(treat)metcbt5 0.0543 .

as.factor(treat)scy 0.4150

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.9746663)

Number of Fisher Scoring iterations: 2

Note in this case that the estimated treatment effect of community on those exposed to the
community treatment is slightly stronger than in the ATE case (high numbers are bad for the
outcome variable). Although not statistically significant, such differences are compatible with
the notion that the youths who actually received the community treatment responded more
favorably to it than the “average” youth would have (where the average is taken across the whole
collection of youths enrolled in the study).

The discussion in McCaffrey et al. (2013) may be useful for determining whether the ATE or
ATT is of greater interest in a particular application.

4 Conclusion

Often, more than two treatments are available to study participants. If the study is not ran-
domized, analysts may be interested in using a propensity score approach. Previously, few tools
existed to aide the analysis of such data, perhaps tempting analysts to ignore all but two of the
treatment conditions. We hope that this extension to the twang package will encourage more
appropriate analyses of observational data with more than two treatment conditions.
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