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Abstract

A species’ distribution can be characterized by either occurrence probability or population density, defined
for all locations in some spatial extent. Defining distribution in terms of these two parameters avoids the
ambiguity surrounding the indices of occurrence or abundance produced by many presence-only algorithms.
The unmarked package contains methods of fitting occurrence and abundance models, and can be used to
produce distribution maps with the help of R’s GIS capabilities, as is demonstrated in this vignette. Unlike
many other tools for modeling species distributions, the models in unmarked account for bias due to spatial
and temporal heterogeneity in detection probability. Furthermore, unmarked includes models of population
dynamics, allowing one to map quantities such as local colonization or extinction probability.

Mapping Occurrence Probability

In this example, we use the occu function to fit the single-season occupancy model of (MacKenzie et al., 2002)
to data on the European crossbill (Loxia curvirostra) collected in 267 1-km2 sample quadrats in Switzerland,
1999 (Schmid et al., 2004). We then use the model to compute the expected probability of occurrence at
each pixel in a raster defining the Swiss landscape.

First we load the crossbill data, which contains the detection/non-detection data and covariates. The
dataset actually contains data from multiple years, but we are only going to analyze data from the first year,
1999. A multi-year analysis of occupancy dynamics could be accomplished using the colext function, and
in addition to mapping occurrence probability, it would be possible to also map colonization and extinction
probabilities. The following commands format the data.

> data(crossbill)

> umf <- unmarkedFrameOccu(

y=as.matrix(crossbill[,c("det991", "det992", "det993")]),

siteCovs=crossbill[,c("ele", "forest")],

obsCovs=list(date=crossbill[,c("date991", "date992", "date993")]))

> sc <- scale(siteCovs(umf))

> siteCovs(umf) <- sc

> head(umf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 ele forest date.1 date.2 date.3

1 0 0 0 -1.15390803 -1.14710440 34 59 65

2 0 0 0 -1.15390803 -0.49668159 17 33 65

3 NA NA NA -0.21745379 -0.09920098 NA NA NA

4 0 0 0 -0.37352950 -0.93029679 29 59 65

5 0 0 0 -0.06137809 0.00920282 24 45 65

6 NA NA NA -0.99783232 -1.18323900 NA NA NA

7 0 0 0 -0.68568091 -1.03870060 26 54 74

8 0 0 0 -0.84175662 0.91256783 23 43 71

9 0 0 0 -0.99783232 -1.07483520 21 36 56

10 0 0 0 -0.99783232 -0.78575839 37 62 75

Notice that the site covariates, elevation and forest, were standardized using the scale function. Stan-
dardization isn’t always necessary, but it can make it easier to find the maximum likelihood estimates. When
standardizing covariates and then making predictions, it is important to retain the original sample mean
and standard deviation. The reason for this is explained below.
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Figure 1: Elevation in Switzerland

Fitting a model is now straight-forward. In many cases, we would fit several models corresponding to
competing hypotheses, but for simplicity, we stick with this single model.

> (fm.occu <- occu(~date ~ele + I(ele^2) + forest, umf))

Call:

occu(formula = ~date ~ ele + I(ele^2) + forest, data = umf)

Occupancy:

Estimate SE z P(>|z|)

(Intercept) 0.464 0.541 0.857 0.39137

ele 1.228 0.319 3.846 0.00012

I(ele^2) -1.333 0.417 -3.194 0.00140

forest 0.654 0.274 2.385 0.01706

Detection:

Estimate SE z P(>|z|)

(Intercept) -2.2356 0.52283 -4.28 0.000019

date 0.0254 0.00752 3.39 0.000711

AIC: 455.3892

Now that we have our fitted model, we can use it to predict occurrence probability at each pixel in the
Swiss landscape. The Switzerland dataset contains country-wide data. There are many ways to display
it—here is an example of mapping elevation using the levelplot function in the lattice package (Sarkar,
2008).

> data(Switzerland)

> print(levelplot(elevation ~ x + y, Switzerland, aspect="iso",

xlab="Easting (m)", ylab="Northing (m)",

col.regions=terrain.colors(100)))

The raster package (van Etten, 2012) provides another alternative. Here we create two raster objects
and specify the coordinate system.

> library(raster)

> elevation <- rasterFromXYZ(Switzerland[,c("x","y","elevation")],

crs="+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs")

> forest <- rasterFromXYZ(Switzerland[,c("x","y","forest")],

crs="+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs")
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Figure 2: Elevation and forest cover, standardized.

Since we standardized the covariates during the model fitting process, we need to transform the country-
wide data using the same values. Note, we don’t want to use the mean and SD of the rasters themselves, we
want to use the mean and SD of the original covariates used to fit the models, which are stored as attributes
of the sc object. The following commands display the original means and SDs and then transform the rasters
and join them in a raster “stack.”

> attr(sc, "scaled:center")

ele forest

1189.32584 34.74532

> attr(sc, "scaled:scale")

ele forest

640.71471 27.67431

> ele.s <- (elevation-1189)/640

> forest.s <- (forest-34.7)/27.7

> ef <- stack(ele.s, forest.s)

> layerNames(ef) <- c("ele", "forest")

> plot(ef, col=terrain.colors(100))

It is important to assign layerNames that exactly match the covariate names used to fit the model. This
is required by the predict function as demonstrated later. The predict function is useful for computing
spatially-referenced model predictions, standard errors, and confidence intervals, but it is computationally
demanding when there are many pixels in the raster. Thus, if measures of uncertainty are not required, the
following code can be used to quickly produce the species distribution map shown in Fig.3.

> (beta <- coef(fm.occu, type="state"))

psi(Int) psi(ele) psi(I(ele^2)) psi(forest)

0.4638233 1.2276426 -1.3327186 0.6544976

> logit.psi <- beta[1] + beta[2]*ele.s + beta[3]*ele.s^2 + beta[4]*forest.s

> psi <- exp(logit.psi) / (1 + exp(logit.psi))

> #plot(psi, col=terrain.colors(100))

> print(spplot(psi, col.regions=terrain.colors(100)))

As of version 0.9-6, the predict method in unmarked can make predictions using an object of class
RasterStack from the raster package. As mentioned previously, the rasters must be named, perhaps by
using the layerNames(someraster) <- somename method. The object returned by predict is another raster
stack with rasters for the expected values of the parameter of interest, the standard errors, and the upper
and lower confidence intervals. The following example is very slow because there are many of pixels in the
raster. The resulting map is shown in Fig. 4.

> E.psi <- predict(fm, type="state", newdata=ef)

> plot(E.psi, axes=FALSE, col=terrain.colors(100))

Users should be cautious when predicting from models that have categorical predictor variables, i.e.
factors. The raster package does not have advanced methods for handling factors, and thus it is not easy
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Figure 3: A species distribution map for the European crossbill in Switzerland. The colors represent occurrence
probability.
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Figure 4: Expected occurrence probability along with standard errors and the limits of the asymptotic 95%
confidence interval.
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to automatically create dummy variables from them as can typically be done using model.matrix. The safest
option is to create the dummy variables manually before fitting the models, and to use the same variables
as rasters for prediction.

A more important consideration when creating species distribution maps based upon occurrence prob-
ability is that of spatial scale. Occurrence probability will typically depends upon the area of the “site” in
question. Thus, in our crossbill example, it would not be appropriate to use our model to predict occcur-
rence probability for 10-km2 pixels since the surveys were done in 1-km2 quadrats. In some cases it might
be possible to directly model the effect of site area on occurrence probability, in which case the effect could
be accounted for in the predictions.

Mapping Population Density

Although distribution is typically described in terms of ocurrence probability, which is always better than an
index of occurrence probability, the best parameter for modeling species distribution is population density
because density allows for inference about popualation size in any region of the species’ range. Furthermore,
occurrence probability is simply the probablity that abundance is greater than 0, so with density/abundance
estimates, it is always possible to compute occurrence probablity as a derived parameter.

In this example, we create a distribution map for the Island Scrub-Jay (Aphelocoma insularis), which is
restricted to Santa Cruz Island, California. To do so, we fit the hierarchical distance sampling model of Royle
et al. (2004), which allows for the estimation of abundance in each of the 300× 300m pixels representing the
island. The data were collected 307, 300-m radius point count (or “point transect”) surveyed during the Fall
of 2008.

Important This analysis is for demonstration purposes only, and the estimates of population size should
not be used for conservation or management purposes. Indeed, the Poisson assumption used here was found
to be inadequate by Sillett et al. (In press) who conducted a rigorous analysis and reported reliable estimate
of population size.

Although we are fitting a model of population density, the steps of the analysis closely mirror those shown
in the previous section. First, we format the data and fit a model, then we format the island-wide covariates
and make predictions. The three covariates thought to influence jay abundance are elevation, forest cover,
and chapararral cover. We also include include the area of the survey plots in the analysis so that we can
make predictions for regions of any area. Here is the code to format the data and fit the model.

> data(issj)

> covs <- scale(issj[,c("elevation", "forest", "chaparral")])

> area <- pi*300^2 / 10000

> jayumf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),

siteCovs=data.frame(covs, area),

dist.breaks=c(0,100,200,300),

unitsIn="m", survey="point")

> head(jayumf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 elevation forest chaparral area

1 0 0 2 -1.20607849 -0.3309618 -0.1218243 28.27433

2 0 0 0 -0.36132054 -0.4429552 0.8384709 28.27433

3 0 0 0 -0.45797193 -0.3738751 2.1319298 28.27433

4 0 0 0 -0.14196112 1.3908065 -0.2737078 28.27433

5 0 0 0 -0.72588125 -0.4869152 -1.1562240 28.27433

6 0 0 0 0.01704522 0.6706992 0.2989173 28.27433

7 0 0 0 -0.11866710 -0.2671150 1.0326122 28.27433

8 0 0 0 -0.76411740 -0.4921486 -0.9332983 28.27433

9 0 0 0 0.40065595 0.5440524 -1.0759952 28.27433

10 0 0 0 -0.24030211 -0.4921486 -1.1023299 28.27433

> fm1 <- distsamp(~chaparral ~chaparral + elevation + offset(log(area)),

jayumf, keyfun="halfnorm", output="abund",

starts=c(-2.8,1,0,4.5,0))

> fm1

Call:

distsamp(formula = ~chaparral ~ chaparral + elevation + offset(log(area)),

data = jayumf, keyfun = "halfnorm", output = "abund", starts = c(-2.8,

1, 0, 4.5, 0))

Abundance:

Estimate SE z P(>|z|)

(Intercept) -2.827 0.1609 -17.57 4.34e-69

chaparral 0.957 0.1460 6.55 5.60e-11

elevation -0.244 0.0932 -2.61 8.96e-03
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Detection:

Estimate SE z P(>|z|)

sigma(Intercept) 4.73 0.0845 55.96 0.000000

sigmachaparral -0.25 0.0744 -3.36 0.000773

AIC: 964.6426

Remarks. 1) The distance data were binned into 3 distance classes. 2) We used output="abund" even
though, by specifying the offset, we effectively modeled population density. As stated previously, this allows
us to make predictions of abundance for regions of arbitrary size.

The next thing to do is to format the raster data. For details, see the previous section—the process is
the same, except that we need a raster for “area”, the size of each pixel in the raster data. This is necessary
because the survey plots were larger than the pixels for which we want predictions of abundance.

> data(cruz)

> elev <- rasterFromXYZ(cruz[,c("x","y","elevation")],

crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")

> forest <- rasterFromXYZ(cruz[,c("x","y","forest")],

crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")

> chap <- rasterFromXYZ(cruz[,c("x","y","chaparral")],

crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")

> area.raster <- chap

> values(area.raster) <- 300*300/10000 # area of a grid pixel

> attr(covs, "scaled:center")

elevation forest chaparral

202.0023616 0.0673357 0.2703592

> attr(covs, "scaled:scale")

elevation forest chaparral

124.8818069 0.1368199 0.2338295

> elev.s <- (elev-202)/125

> forest.s <- (forest-0.0673)/0.137

> chap.s <- (chap-0.270)/0.234

> habitat <- stack(elev.s, forest.s, chap.s, area.raster)

> layerNames(habitat) <- c("elevation", "forest", "chaparral", "area")

Now, when we use predict, it will return the expected number of jays in each pixel along with the
standard errors and the 95% confidence intervals. We could sum these up to obtain an estimate of total
population size. Sillett et al. (In press) did this and used the parametric boostrap to estimate the variance
of total population size.

> E <- predict(fm1, type="state", newdata=habitat)

doing row 1000 of 5625

doing row 2000 of 5625

doing row 3000 of 5625

doing row 4000 of 5625

doing row 5000 of 5625

> plot(E, axes=FALSE, col=terrain.colors(100))
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Figure 5: Expected Island Scrub-Jay abundance, SEs, and 95% CIs.
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