
Large-scale portfolio optimization with DEoptim

Kris Boudt
Lessius and K.U.Leuven

David Ardia
aeris CAPITAL AG

Katharine M. Mullen
NIST

Brian G. Peterson
DV Trading

Abstract

This vignette evaluates the performance of DEoptim on a high-dimensional portfolio
problem. The setup is the same as in the R Journal article ?; namely minimizing the
portfolio CVaR under an upper bound constraint on the percentage CVaR contributions.
Because the resulting optimization model is a non-convex programming problem with
multiple local optima, DEoptim is more apt in solving this problem than gradient-based
methods such as optim and nlminb.

Keywords: portfolio optimization, evolutionary algorithm, Differential Evolution, R software.

1. Introduction

The R package DEoptim of ? implements several Differential Evolution algorithms. DE
belongs to the class of genetic algorithms which use biology-inspired operations of crossover,
mutation, and selection on a population in order to minimize an objective function over the
course of successive generations. More details on DEoptim can be found in ?. In this vignette
we evaluate its performance on a high-dimensional portfolio problem.

In this vignette, we use of DEoptim to solve the portfolio optimization problem described
in ?, but expand the problem to include 100 free variables. As in ?, the portfolio CVaR is
minimized under an upper bound constraint on the percentage CVaR contributions. See ?
for the rational underlying this portfolio construction technique.

The optimization of the objective function is a non-convex programming problem. Since
DEoptim is a stochastic global optimization algorithm, it is more apt to offer a good solution
than alternative local optimization methods. For instance, gradient-based methods such as
the L-BFGS-B and Nelder-Mead methods in optim and nlminb will typically converge to
suboptimal solutions on the problem considered here.

The version of this problem described in ? was stylized to describe many fewer variables
to allow users to complete the optimization on a personal computer in a matter of minutes.
Portfolio problems encountered in practice may require days to optimize on a personal com-
puter, and involve several hundred variables. In the present vignette we examine a problem
of complexity in-between the stylized, simple case considered by ?, and the most complex
problems encountered in typical financial research.

2 Large-scale portfolio optimization with DEoptim

We hope that the R package DEoptim will be fruitful for many users. If you use R or DEoptim,
please cite the software in publications.

2. Setup

The results in this vignette are obtained using R version 2.13.0. The function getSymbols

in quantmod (?) is used to obtain the data. The risk measures in the portfolio objective
function are computed using PerformanceAnalytics (?). The initial population in DEoptim
is generated using the function random_portfolios in PortfolioAnalytics (?).1

Computations are performed on a Genuine Intel® dual core CPU P8400 2.26Ghz processor.
DEoptim relies on repeated evaluation of the objective function in order to move the popula-
tion toward a global minimum. Users interested in making DEoptim run as fast as possible
should ensure that evaluation of the objective function is as efficient as possible. Using pure
R code, this may often be accomplished using vectorization. Writing parts of the objective
function in a lower-level language like C or Fortran may also increase speed.

3. Data

We take 100 randomly sampled stocks from the S&P 500 for which a sufficiently long data his-
tory is available. We first download ten years of monthly data using the function getSymbols

of the package quantmod (?). Then we compute the log-return series and the sample mean
and covariance matrix.

> tickers = c("VNO" , "VMC" , "WMT" , "WAG" , "DIS" , "WPO" , "WFC" , "WDC" ,

+ "WY" , "WHR" , "WMB" , "WEC" , "XEL" , "XRX" , "XLNX" ,"ZION" ,"MMM" ,

+ "ABT", "ADBE" , "AMD" , "AET" , "AFL" , "APD" , "ARG" ,"AA" , "AGN" ,

+ "ALTR" , "MO" , "AEP" , "AXP" , "AIG" , "AMGN" , "APC" ,"ADI" , "AON" ,

+ "APA", "AAPL" , "AMAT" ,"ADM" , "T" , "ADSK" , "ADP" , "AZO" , "AVY" ,

+ "AVP", "BHI" , "BLL" , "BAC" , "BK" , "BCR" , "BAX" , "BBT" , "BDX" ,

+ "BMS" , "BBY" , "BIG" , "HRB" , "BMC" , "BA" , "BMY" , "CA" , "COG" ,

+ "CPB" , "CAH" , "CCL" , "CAT" , "CELG" , "CNP" , "CTL" , "CEPH", "CERN" ,

+ "SCHW" , "CVX" , "CB" , "CI" ,"CINF" ,"CTAS" , "CSCO" , "C" , "CLF" ,

+ "CLX", "CMS" , "KO" , "CCE" , "CL" , "CMCSA" ,"CMA" , "CSC" , "CAG" ,

+ "COP" , "ED" , "CEG" ,"GLW" , "COST" , "CVH" , "CSX" , "CMI" , "CVS" ,

+ "DHR" , "DE")

>

> library(quantmod);

> getSymbols(tickers, from = "2000-12-01", to = "2010-12-31")

> P <- NULL; seltickers <- NULL

> for(ticker in tickers) {

+ tmp <- Cl(to.monthly(eval(parse(text=ticker))))

+ if(is.null(P)){ timeP = time(tmp) }

1All packages are readily available from CRAN, except for PortfolioAnalytics which can be downloaded
from https://r-forge.r-project.org/R/?group_id=579 or installed directly within R using the command
install.packages("PortfolioAnalytics", repos="http://R-Forge.R-project.org").

https://r-forge.r-project.org/R/?group_id=579

Kris Boudt, David Ardia, Katharine M. Mullen, Brian Peterson 3

+ if(any(time(tmp)!=timeP)) next

+ else P<-cbind(P,as.numeric(tmp))

+ seltickers = c(seltickers , ticker)

+ }

> P = xts(P,order.by=timeP)

> colnames(P) <- seltickers

> R <- diff(log(P))

> R <- R[-1,]

> dim(R)

[1] 120 100

> mu <- colMeans(R)

> sigma <- cov(R)

4. Portfolio objective function and constraints

The optimization problem consists of determining the portfolio weights for which the portfolio
has the lowest CVaR and each investment can contribute at most 5% to total portfolio CVaR
risk. Additionally, weights need to be positive and the portfolio needs to be fully invested.

The level of portfolio CVaR and the CVaR contributions are computed conveniently with
the function ES in the package PerformanceAnalytics (?). For simplicity, we assume here
normality, but also estimators of CVaR and CVaR contributions for non-normal distributions
are available in the function ES.

The constraint that each asset can contribute at most 5% to total portfolio CVaR risk is
imposed through the addition of a penalty function to the objective function. As such, we
allow the search algorithm to consider infeasible solutions. A portfolio which is unacceptable
for the investor must be penalized enough to be rejected by the minimization process and
the larger the violation of the constraint, the larger the increase in the value of the objective
function.

> library("PerformanceAnalytics")

> obj <- function(w) {

+ if (sum(w) == 0) {

+ w <- w + 1e-2

+ }

+ w <- w / sum(w)

+ CVaR <- ES(weights = w,

+ method = "gaussian",

+ portfolio_method = "component",

+ mu = mu,

+ sigma = sigma)

+ tmp1 <- CVaR$ES

+ tmp2 <- max(CVaR$pct_contrib_ES - 0.05, 0)

+ out <- tmp1 + 1e3 * tmp2

+ return(out)

+ }

4 Large-scale portfolio optimization with DEoptim

The weights need to satisfy additionally a long only and full investment constraint. The
current implementation of DEoptim allows for bound constraints on the portfolio weights. We
call these lower and upper.

> N <- ncol(R)

> minw <- 0

> maxw <- 1

> lower <- rep(minw,N)

> upper <- rep(maxw,N)

The full investment constraint is accounted for in two ways. First, we standardize all the
weights in the objective function such that they sum up to one. Second, we use the function
random_portfolios in PortfolioAnalytics (?) to generate random portfolios that satisfy all
constraints. These random portfolios will be used as the initial generation in DEoptim.

> source("random_portfolios.R")

> eps <- 0.025

> weight_seq<-generatesequence(min=minw,max=maxw,by=.001,rounding=3)

> rpconstraint<-constraint(

+ assets=N, min_sum=(1-eps), max_sum=(1+eps),

+ min=lower, max=upper, weight_seq=weight_seq)

assuming equal weighted seed portfolio

> set.seed(1234)

> rp<- random_portfolios(rpconstraints=rpconstraint,permutations=N*10)

> rp <-rp/rowSums(rp)

5. Failure of gradient-based methods

The penalty introduced in the objective function is non-differentiable and therefore stan-
dard gradient-based optimization routines cannot be used. For instance, L-BFGS-B and
Nelder-Mead methods in optim and nlminb do not converge.

> out <- optim(par = rep(1/N, N), fn = obj,

+ method = "L-BFGS-B", lower = lower, upper = upper)

> out$value

[1] 0.05431692

> out$message

[1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"

> out <- nlminb(start =rep(1/N, N), objective = obj,

+ lower = lower, upper = upper)

> out$objective

[1] 0.0547231

Kris Boudt, David Ardia, Katharine M. Mullen, Brian Peterson 5

> out$message

[1] "false convergence (8)"

6. Portfolio optimization with DEoptim

In contrast with gradient-based methods, DEoptim is designed to consistently find a good
approximation to the global minimum of the optimization problem. For complex problems as
the one considered here, the performance of DEoptim is quite dependent on the DE algorithm
used.

We first consider the current default DE algorithm in DEoptim, called the “local-to-best”
strategy with fixed parameters.

We define convergence when the percentage improvement between iterations is below reltol=1e-6

after steptol=150 steps. For some problems, it may take many iterations before the DE al-
gorithm converges. We set the maximum number of iterations allowed to 5000. Progress is
printed every 250 iterations.2 As explained above, the initial generation is set to rp.

> controlDE <- list(reltol=.000001,steptol=150, itermax = 5000,trace = 250,

+ NP=as.numeric(nrow(rp)),initialpop=rp)

> set.seed(1234)

> start <- Sys.time()

> out <- DEoptim(fn = obj, lower = lower, upper = upper, control = controlDE)

Iteration: 250 bestvalit: 0.064652

Iteration: 500 bestvalit: 0.057199

Iteration: 750 bestvalit: 0.055774

Iteration: 1000 bestvalit: 0.055013

Iteration: 1250 bestvalit: 0.054581

Iteration: 1500 bestvalit: 0.054269

Iteration: 1750 bestvalit: 0.054146

Iteration: 2000 bestvalit: 0.054049

Iteration: 2250 bestvalit: 0.053706

Iteration: 2500 bestvalit: 0.053695

Iteration: 2750 bestvalit: 0.053351

Iteration: 3000 bestvalit: 0.053273

> out$optim$iter

[1] 3055

> out$optim$bestval

[1] 0.05327273

> end <- Sys.time()

> end - start

Time difference of 16.03645 mins

2For convenience in presentation, we display only the best value for the sected iterations, while the DEoptim
output in R also displays the best member for each iteration.

6 Large-scale portfolio optimization with DEoptim

We thus see that, at iteration 5000, the “local-to-best” strategy with fixed parameters reaches
a solution that is better than the one obtained using the gradient-based methods mentioned
above.

A recently proposed DE algorithm with better convergence properties on complex problems is
the JADE algorithm proposed by ?. JADE combines a“local-to-pbest” strategy with adaptive
parameter control.

The first building block of JADE is thus that the DE algorithm does not always use the best
solution of the current generation to mutate the solutions, but one of the randomly chosen
b100p%c best solutions, with 0< p ≤ 1. The default value of p is 0.2. Even though this
strategy is more greedy, it tends to converge faster because it diversifies the population. The
“local-to-pbest” strategy is chosen by setting strategy=6.

> controlDE <- list(reltol=.000001,steptol=150, itermax = 5000,trace = 250,

+ strategy=6, c=0,

+ NP=as.numeric(nrow(rp)),initialpop=rp)

> set.seed(1234)

> start <- Sys.time()

> out <- DEoptim(fn = obj, lower = lower, upper = upper, control = controlDE)

Iteration: 250 bestvalit: 0.063848

Iteration: 500 bestvalit: 0.058090

Iteration: 750 bestvalit: 0.055960

Iteration: 1000 bestvalit: 0.055235

Iteration: 1250 bestvalit: 0.054884

Iteration: 1500 bestvalit: 0.054369

Iteration: 1750 bestvalit: 0.054269

Iteration: 2000 bestvalit: 0.054089

> out$optim$bestval

[1] 0.05408688

> end <- Sys.time()

> end - start

Time difference of 11.45833 mins

The second distinctive feature of ? is to introduce learning about successful parameters in
the algorithm. Under this approach, the cross-over probability at generation g + 1 is set to
(1− c) the cross-over probability at generation g plus c times the the average of all successful
cross-over probabilities at generation g. Similarly, the mutation factor at generation g + 1 is
equal to 1− c times the previous mutation factor plus c times the average mutation factor of
all successful mutations. We take c = .4.

> controlDE <- list(reltol=.000001,steptol=150, itermax = 5000,trace = 250,

+ strategy=2, c=.4,

+ NP=as.numeric(nrow(rp)),initialpop=rp)

> set.seed(1234)

> start <- Sys.time()

> out <- DEoptim(fn = obj, lower = lower, upper = upper, control = controlDE)

Iteration: 250 bestvalit: 0.074612

Kris Boudt, David Ardia, Katharine M. Mullen, Brian Peterson 7

Iteration: 500 bestvalit: 0.068776

Iteration: 750 bestvalit: 0.067991

Iteration: 1000 bestvalit: 0.067894

Iteration: 1250 bestvalit: 0.067887

> out$optim$bestval

[1] 0.06788674

> end <- Sys.time()

> end - start

Time difference of 6.5763 mins

The “local-to-1best” strategy with adaptive parameter control converges clearly too fast. It is
the combination of “local-to-pbest” strategy with adaptive parameter control that is the most
successful in solving our problem.

> controlDE <- list(reltol=.000001,steptol=150, itermax = 5000,trace = 250,

+ strategy=6, c=.4,

+ NP=as.numeric(nrow(rp)),initialpop=rp)

> set.seed(1234)

> start <- Sys.time()

> out <- DEoptim(fn = obj, lower = lower, upper = upper, control = controlDE)

Iteration: 250 bestvalit: 0.087517

Iteration: 500 bestvalit: 0.077481

Iteration: 750 bestvalit: 0.067673

Iteration: 1000 bestvalit: 0.059015

Iteration: 1250 bestvalit: 0.054758

Iteration: 1500 bestvalit: 0.053618

Iteration: 1750 bestvalit: 0.053290

Iteration: 2000 bestvalit: 0.053156

Iteration: 2250 bestvalit: 0.053099

Iteration: 2500 bestvalit: 0.053071

Iteration: 2750 bestvalit: 0.053059

Iteration: 3000 bestvalit: 0.053052

Iteration: 3250 bestvalit: 0.053049

> out$optim$iter

[1] 3451

> out$optim$bestval

[1] 0.0530483

> end <- Sys.time()

> end - start

Time difference of 18.57083 mins

We see that with JADE, DEoptim converges within 3451 iterations to 0.0530483, which is the
lowest obtained by all methods considered in the vignette.

This vignette illustrates that for complex problems, the performance of DEoptim is thus
quite dependent on the DE algorithm used. It is recommended that users try out several DE
algorithms to find out which one is most adapted for their problem.

8 Large-scale portfolio optimization with DEoptim

Furthermore, DE is a stochastic optimizer and typically will only find a near-optimal solution
that depends on the seed. The function optimize.portfolio.parallel in PortfolioAnalytics
allows to run an arbitrary number of portfolio sets in parallel in order to develop confidence
bands around your solution. It is based on REvolution’s foreach package (?).

Affiliation:

Kris Boudt
Lessius and K.U.Leuven, Belgium
E-mail: kris.boudt@econ.kuleuven.be

David Ardia
aeris CAPITAL AG, Switzerland
URL: http://perso.unifr.ch/david.ardia/

Katharine Mullen
Ceramics Division, National Institute of Standards and Technology (NIST)
100 Bureau Drive, MS 8520, Gaithersburg, MD, 20899, USA
E-mail: Katharine.Mullen@nist.gov

Brian G. Peterson
DV Trading
E-mail: brian@braverock.com

mailto:kris.boudt@econ.kuleuven.be
http://perso.unifr.ch/david.ardia/
mailto:Katharine.Mullen@nist.gov
mailto:brian@braverock.com

	Introduction
	Setup
	Data
	Portfolio objective function and constraints
	Failure of gradient-based methods
	Portfolio optimization with DEoptim

