
Simulation in
multistate models with

multiple timescales

SDC
http://BendixCarstensen.com/Epi

Saturday 23rd February, 2013
Version 1.1

Compiled Saturday 23rd February, 2013, 10:57
from: C:/stat/R/BxC/Examples/sim-Lexis.tex

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bxc@steno.dk

http://BendixCarstensen.com

http://BendixCarstensen.com/Epi
http://BendixCarstensen.com

Contents

1 Introduction 1

2 Simulation setup for Poisson models based on Lexis objects 1
2.1 Simulation of transition times — theory . 8
2.2 Simulation of transition times — implementation 9

3 Putting it all together in a function 11
3.1 Components of simLexis . 12

4 Functions for deriving statistics from simulated Lexis objects 15

5 How it actually works 17

ii

1 Introduction 1

1 Introduction

This paper explains the machinery behind simulation of life histories through multistate
models where transition rates are allowed to depend on multiple time scales, including
timescales defined as time since entry to a particular state (duration). This also covers the
case where time at entry into a state is an explanatory variable for the rates, since time at
entry merely is the difference between time and duration.

2 Simulation setup for Poisson models based on Lexis

objects

For the sake of the argument we first take a small example. In order to keep track of the
transitions we will set up a list of the glm objects that models the transitions. It is the
assumption that they all are modelled using the relevant subsets of the base Lexis object.
So it means that the prediction of rates and hence the calculation of cumulative rates relies
on using a Lexis object.

We shall use the DMlate dataset from the Epi package to illustrate the construction of
the machinery. We set up a Lexis object using example(DMlate):

> library(Epi)
> sessionInfo()

R version 2.15.2 (2012-10-26)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=Danish_Denmark.1252 LC_CTYPE=Danish_Denmark.1252
[3] LC_MONETARY=Danish_Denmark.1252 LC_NUMERIC=C
[5] LC_TIME=Danish_Denmark.1252

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_1.1.45 foreign_0.8-51

loaded via a namespace (and not attached):
[1] tools_2.15.2

> example(DMlate)

DMlate> data(DMlate)

DMlate> str(DMlate)
’data.frame’: 10000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

DMlate> dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),

2 multi multi

DMlate+ exit=list(Per=dox),
DMlate+ exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),
DMlate+ data=DMlate)
NOTE: entry.status has been set to "DM" for all.

DMlate> # Split follow-up at insulin, introduce a new timescale,
DMlate> # and split non-precursor states
DMlate> system.time(
DMlate+ dmi <- cutLexis(dml, cut = dml$doins,
DMlate+ pre = "DM",
DMlate+ new.state = "Ins",
DMlate+ new.scale = "t.Ins",
DMlate+ split.states = TRUE))

user system elapsed
2.62 0.02 2.64

DMlate> summary(dmi)

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996

> attributes(dmi)[-2]

$names
[1] "Per" "Age" "DMdur" "t.Ins" "lex.dur" "lex.Cst" "lex.Xst"
[8] "lex.id" "sex" "dobth" "dodm" "dodth" "dooad" "doins"
[15] "dox"

$class
[1] "Lexis" "data.frame"

$time.scales
[1] "Per" "Age" "DMdur" "t.Ins"

$time.since
[1] "" "" "" "Ins"

$breaks
$breaks$Per
NULL

$breaks$Age
NULL

$breaks$DMdur
NULL

$breaks$t.Ins
NULL

> timeScales(dmi)

[1] "Per" "Age" "DMdur" "t.Ins"

We shall later need in indication of which of the timescales that appear as “time since
entry” to some state (well, we are using the already updated version 1.1.45 of Epi, so it is
already there):

2 Simulation setup for Poisson models based on Lexis objects 3

> attr(dmi, "time.since") <- c("","","","Ins")

We will now model the three different transitions, shown in figure 1

> boxes.Lexis(dmi, boxpos=list(x=c(20,20,80,80),
+ y=c(80,20,80,20)), scale.R=1000, pos.arr=c(0.5,0.3,0.3))

The point is now to define a structure that represents the (in this case 3) Poisson models
for the transitions.

Before we fit the models, we first split the data, in order to be able to include effects of
the time-scales:

> Si <- splitLexis(dmi, 0:30/2, "DMdur")
> summary(Si)

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 93297 1694 2048 0 97039 3742 45885.49 9899
Ins 0 17880 0 451 18331 451 8387.77 1791
Sum 93297 19574 2048 451 115370 4193 54273.27 9996

DM
45,885.5

Ins
8,387.8

Dead

Dead(Ins)

1,694
(36.9)

2,048
(44.6)

451
(53.8)

DM
45,885.5

Ins
8,387.8

Dead

Dead(Ins)

DM
45,885.5

Ins
8,387.8

Dead

Dead(Ins)

Figure 1: No. of transitions between states, and average transitions rates per 1000 PY.

4 multi multi

> attr(Si, "time.since") <- c("","","","Ins")
> attributes(Si)[-2]

$names
[1] "lex.id" "Per" "Age" "DMdur" "t.Ins" "lex.dur" "lex.Cst"
[8] "lex.Xst" "sex" "dobth" "dodm" "dodth" "dooad" "doins"
[15] "dox"

$breaks
$breaks$Per
NULL

$breaks$Age
NULL

$breaks$DMdur
[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
[16] 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
[31] 15.0

$breaks$t.Ins
NULL

$time.scales
[1] "Per" "Age" "DMdur" "t.Ins"

$time.since
[1] "" "" "" "Ins"

$class
[1] "Lexis" "data.frame"

Then we define the number of knots we will use for modelling of age, DM-duration and
insulin-duration — period will just be modelled linearly:

> nk <- 4
> (ai.kn <- with(subset(Si,lex.Xst=="Ins"),
+ quantile(Age+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
28.00642 50.05600 62.12076 75.69020

> (ad.kn <- with(subset(Si,lex.Xst=="Dead"),
+ quantile(Age+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
63.61875 74.98700 81.38501 89.26831

> (di.kn <- with(subset(Si,lex.Xst=="Ins"),
+ quantile(DMdur+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
1.5 4.0 7.0 10.5

> (dd.kn <- with(subset(Si,lex.Xst=="Dead"),
+ quantile(DMdur+lex.dur, probs=(1:nk-0.5)/nk)))

2 Simulation setup for Poisson models based on Lexis objects 5

12.5% 37.5% 62.5% 87.5%
0.3778234 1.9582478 4.3370979 8.0232717

> (td.kn <- with(subset(Si,lex.Xst=="Dead(Ins)"),
+ quantile(t.Ins+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
0.1759069 1.0095825 2.7939767 6.3579740

Now we can model the three transitions; note that we use lex.dur as the offset argument,
because the subsequent simulation machinery will rely on this. Similarly, when an
intermediate state is used as a mere hazard multiplier, we must use lex.Cst as argument.
The latter is not illustrated here, as we model the two mortality rates separately:

> library(splines)
> source("c:/stat/r/bxc/library.sources/useful/r/Ns.R")
> Ns

function (x, df = NULL, knots = NULL, intercept = FALSE, Boundary.knots = NULL)
{

if (is.null(Boundary.knots)) {
if (!is.null(knots)) {

knots <- sort(unique(knots))
ok <- c(1, length(knots))
Boundary.knots <- knots[ok]
knots <- knots[-ok]

}
}
ns(x, df = df, knots = knots, intercept = intercept, Boundary.knots = Boundary.knots)

}

> DM.Ins <- glm((lex.Xst=="Ins") ~ Ns(Age, knots=ai.kn) +
+ Ns(DMdur, knots=di.kn) + I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM"))
> DM.Dead <- glm((lex.Xst=="Dead") ~ Ns(Age, knots=ad.kn) +
+ Ns(DMdur, knots=dd.kn) + I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM"))
> Ins.Dead <- glm((lex.Xst=="Dead(Ins)") ~ Ns(Age, knots=ad.kn) +
+ Ns(DMdur, knots=dd.kn) +
+ Ns(t.Ins, knots=td.kn) + I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="Ins"))

We can now place these three glms in a Tr list of list of glm objects, designed to represent
the possible transitions in the multistate model. The list has names equal to the states
from which transitions occur (the transient states), and the sublists have names equal to
the states to which the transitions occur.

> Tr <- list("DM" = list("Ins" = DM.Ins,
+ "Dead" = DM.Dead),
+ "Ins" = list("Dead(Ins)" = Ins.Dead))
> lapply(Tr, names)

6 multi multi

$DM
[1] "Ins" "Dead"

$Ins
[1] "Dead(Ins)"

Thus in this case TrDMIns is the glm object that models the transition from “DM” to
“Ins”.

Now we want to simulate transitions according to this model for a (group of) persons. In
order to do this we must define all relevant covariates, among which are the time scales,
lex.Cst, whereas lex.dur and lex.Xst will be the target of the simulation. It will be a
Lexis object because we want to keep track of the timescales — this is the major point that
makes it possible to simulate from processes where the rates depend on multiple time scales.

For a start we could make a data frame with only 1 person in it; but we set up N

identical persons, because we subsequently will be simulating transitions and -times for a
data frame of different persons:

> N <- 2
> ini <- subset(Si,select=1:9)[NULL,]
> ini[1:N,"lex.id"] <- 1:N
> ini[1:N,"lex.dur"] <- NA
> ini[1:N,"lex.Cst"] <- "DM"
> ini[1:N,"lex.Xst"] <- NA
> ini[1:N,"Per"] <- 2000
> ini[1:N,"Age"] <- 50
> ini[1:N,"DMdur"] <- 1
> ini[1:N,"sex"] <- c("M","F")
> attr(ini, "time.since") <- c("","","","Ins")
> ini

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 1 2000 50 1 NA NA DM <NA> M
2 2 2000 50 1 NA NA DM <NA> F

> str(ini)

Classes ’Lexis’ and ’data.frame’: 2 obs. of 9 variables:
$ lex.id : int 1 2
$ Per : num 2000 2000
$ Age : num 50 50
$ DMdur : num 1 1
$ t.Ins : num NA NA
$ lex.dur: num NA NA
$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..: 1 1
$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..: NA NA
$ sex : Factor w/ 2 levels "M","F": 1 2
- attr(*, "breaks")=List of 4
..$ Per : NULL
..$ Age : NULL
..$ DMdur: num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
..$ t.Ins: NULL
- attr(*, "time.scales")= chr "Per" "Age" "DMdur" "t.Ins"
- attr(*, "time.since")= chr "" "" "" "Ins"

Eventually, a data frame like this and an object like Tr will be the input to a prediction
function for a multistate model based on a Lexis object.

2 Simulation setup for Poisson models based on Lexis objects 7

Now we predict the cumulative incidence based on these persons using the value of
lex.Cst to select the relevant element of Tr: The prediction of the survival function is in
np points, starting at 0, so across ni intervals, at an equidistance of int. Note that int are
assumed given in the same units as those in which the person-risk time were supplied to
the offset when fitting the glms to the original Lexis object.

> tmax<- 50 # How long into the future should we predict
> ni <- 25 # 20 intervals would be more realistical
> int <- tmax/ni
> pt <- 0:ni*int
> np <- length(pt)

We will need the intensities calculated at these time points, but for the calculation of the
cumulative rates we need the cumulative sum using the averages over the intervals, that is
the mean of the intensities at the two endpoints, so we define a small function to do that
kind of calculation:

> cummid <- function(x, pt=1:length(x)) cumsum(c(0, (x[-1]-diff(x)/2)*diff(pt)))

What we will do is to use the Tr object to make predictions of the cumulative incidence in
an array classified by transition, time for FU and person, only assuming that all persons
are in the same current state.

So we want to set up a prediction data frame which basically is the Lexis object of the
starters with each row repeated np times, but where the timescales are updated by adding
pt.

> nd <- ini[rep(1:nrow(ini),each=np),]
> nd[,timeScales(ini)] <- nd[,timeScales(ini)] + rep(pt,np)
> cbind(pt, nd)

pt lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 0 1 2000 50 1 NA NA DM <NA> M
1.1 2 1 2002 52 3 NA NA DM <NA> M
1.2 4 1 2004 54 5 NA NA DM <NA> M
1.3 6 1 2006 56 7 NA NA DM <NA> M
1.4 8 1 2008 58 9 NA NA DM <NA> M
1.5 10 1 2010 60 11 NA NA DM <NA> M
1.6 12 1 2012 62 13 NA NA DM <NA> M
1.7 14 1 2014 64 15 NA NA DM <NA> M
1.8 16 1 2016 66 17 NA NA DM <NA> M
1.9 18 1 2018 68 19 NA NA DM <NA> M
1.10 20 1 2020 70 21 NA NA DM <NA> M
1.11 22 1 2022 72 23 NA NA DM <NA> M
1.12 24 1 2024 74 25 NA NA DM <NA> M
1.13 26 1 2026 76 27 NA NA DM <NA> M
1.14 28 1 2028 78 29 NA NA DM <NA> M
1.15 30 1 2030 80 31 NA NA DM <NA> M
1.16 32 1 2032 82 33 NA NA DM <NA> M
1.17 34 1 2034 84 35 NA NA DM <NA> M
1.18 36 1 2036 86 37 NA NA DM <NA> M
1.19 38 1 2038 88 39 NA NA DM <NA> M
1.20 40 1 2040 90 41 NA NA DM <NA> M
1.21 42 1 2042 92 43 NA NA DM <NA> M
1.22 44 1 2044 94 45 NA NA DM <NA> M
1.23 46 1 2046 96 47 NA NA DM <NA> M
1.24 48 1 2048 98 49 NA NA DM <NA> M
1.25 50 1 2050 100 51 NA NA DM <NA> M
2 0 2 2000 50 1 NA NA DM <NA> F
2.1 2 2 2002 52 3 NA NA DM <NA> F
2.2 4 2 2004 54 5 NA NA DM <NA> F

8 multi multi

2.3 6 2 2006 56 7 NA NA DM <NA> F
2.4 8 2 2008 58 9 NA NA DM <NA> F
2.5 10 2 2010 60 11 NA NA DM <NA> F
2.6 12 2 2012 62 13 NA NA DM <NA> F
2.7 14 2 2014 64 15 NA NA DM <NA> F
2.8 16 2 2016 66 17 NA NA DM <NA> F
2.9 18 2 2018 68 19 NA NA DM <NA> F
2.10 20 2 2020 70 21 NA NA DM <NA> F
2.11 22 2 2022 72 23 NA NA DM <NA> F
2.12 24 2 2024 74 25 NA NA DM <NA> F
2.13 26 2 2026 76 27 NA NA DM <NA> F
2.14 28 2 2028 78 29 NA NA DM <NA> F
2.15 30 2 2030 80 31 NA NA DM <NA> F
2.16 32 2 2032 82 33 NA NA DM <NA> F
2.17 34 2 2034 84 35 NA NA DM <NA> F
2.18 36 2 2036 86 37 NA NA DM <NA> F
2.19 38 2 2038 88 39 NA NA DM <NA> F
2.20 40 2 2040 90 41 NA NA DM <NA> F
2.21 42 2 2042 92 43 NA NA DM <NA> F
2.22 44 2 2044 94 45 NA NA DM <NA> F
2.23 46 2 2046 96 47 NA NA DM <NA> F
2.24 48 2 2048 98 49 NA NA DM <NA> F
2.25 50 2 2050 100 51 NA NA DM <NA> F

But if we want to predict using nd as the newdata= argument we should insert a value for
lex.dur that will make the predictions into actual (log)rates. If that is going to work we
need an assumption that the units in which time points are given are the same as the units
in which the risk time was given to the glm as offset:

> nd[,"lex.dur"] <- 1
> # This is where we assume the state is the same:
> inc <- data.frame(lex.id=nd$lex.id,
+ exp(sapply(Tr[[nd[1,"lex.Cst"]]],
+ predict.glm,
+ newdata=nd)))
> head(inc)

lex.id Ins Dead
1 1 0.05220453 0.01238514
1.1 1 0.01690560 0.01036758
1.2 1 0.01763702 0.01312218
1.3 1 0.04514729 0.01512384
1.4 1 0.05646396 0.01656640
1.5 1 0.04227533 0.01810780

So now inc contains the estimated rates at specific time points of follow-up, so now we
need to derive the cumulative incidences within each person, and from that derive a
transition time and a transition for each person.

2.1 Simulation of transition times — theory

Suppose that the rates out of the current state are λ1, λ2 and λ3, and the corresponding
cumulative rates are Λ1, Λ2 and Λ3. If we want to simulate an exit time and an exit state
(that is either 1 or 2). This can be done in two slightly different ways:

1. First time, then state

(a) Compute the survival function, S(t) = exp
(
−Λ1(t)− Λ2(t)− Λ3(t)

)
(b) Simulate a random U(0,1) variate, u, say.

2.2 Simulation of transition times — implementation 9

(c) The simulated exit time is then the solution tu to the equation
S(tu) = u⇔

∑
j Λj(tu) = − log(u).

(d) A simulated transition at tu is then found by simulating from the multinomial
distribution with probabilities pi = λi(tu)/

∑
j λj(tu).

2. Separate cumulative incidences

(a) Simulate 3 independent U(0,1) random variate u1, u2 and u3.

(b) Solve the equations Λ(ti) = − log(ui) and get (t1, t2, t3).

(c) The simulated survival time is then min(t1, t2, t3), and the simulated transition
is k ∈ {1, 2, 3}, where tk = min(t1, t2, t3)

The intuitive argument is that with three possible transition there are 3 independent
processes running, and the first one wins.

The formal argument goes as follows: [. . .]

2.2 Simulation of transition times — implementation

We shall use the latter approach here.
This is done for a single person using split and then applying a function that returns the

time and the state

> dd <- subset(inc, lex.id==1)
> dd

lex.id Ins Dead
1 1 5.220453e-02 0.01238514
1.1 1 1.690560e-02 0.01036758
1.2 1 1.763702e-02 0.01312218
1.3 1 4.514729e-02 0.01512384
1.4 1 5.646396e-02 0.01656640
1.5 1 4.227533e-02 0.01810780
1.6 1 3.007524e-02 0.01979262
1.7 1 2.124267e-02 0.02163423
1.8 1 1.489624e-02 0.02365509
1.9 1 1.038359e-02 0.02590161
1.10 1 7.203742e-03 0.02843595
1.11 1 4.980168e-03 0.03133772
1.12 1 3.435113e-03 0.03470927
1.13 1 2.366927e-03 0.03867982
1.14 1 1.630703e-03 0.04333417
1.15 1 1.123478e-03 0.04867521
1.16 1 7.740244e-04 0.05466543
1.17 1 5.332668e-04 0.06128462
1.18 1 3.673961e-04 0.06860836
1.19 1 2.531188e-04 0.07674006
1.20 1 1.743871e-04 0.08580600
1.21 1 1.201446e-04 0.09594080
1.22 1 8.277405e-05 0.10727264
1.23 1 5.702747e-05 0.11994292
1.24 1 3.928928e-05 0.13410973
1.25 1 2.706849e-05 0.14994981

> ci <- apply(dd[,-1,drop=FALSE], 2, cummid, pt)
> tt <- uu <- -log(runif(ncol(ci)))
> for(i in 1:ncol(ci)) tt[i] <- approx(ci[,i],pt,uu[i])$y
> tt

10 multi multi

[1] NA 35.24372

> list(min(tt), colnames(ci)[tt==min(tt)])

[[1]]
[1] NA

[[2]]
[1] NA NA

This is then packed into a function that takes a data frame with predicted incidence rates
along pt as input and delivers the time and transition as output. However, we really want
everyone to have a simulated transition time or censoring time. Basically we only simulate
transition times up to the maximal value of pt, if we simulate a value that is beyond this
we, set the follow-up time to max(pt) and treat it as a censoring.

> sim1 <-
+ function(dd, pt)
+ {
+ ci <- apply(dd[,-1,drop=FALSE], 2, cummid, pt)
+ tt <- uu <- -log(runif(ncol(ci)))
+ for(i in 1:ncol(ci)) tt[i] <- approx(ci[,i],pt,uu[i],rule=2)$y
+ data.frame(lex.id = dd[1,1],
+ lex.dur = min(tt,na.rm=TRUE),
+ lex.Xst = factor(if(min(tt)<max(pt)) colnames(ci)[tt==min(tt)]
+ else NA, levels=levels(ini$lex.Cst)))
+ }

So we get

> sim1(subset(inc,lex.id==1), pt)

lex.id lex.dur lex.Xst
1 1 36.11108 Dead

> sim1(subset(inc,lex.id==2), pt)

lex.id lex.dur lex.Xst
1 2 11.41325 Dead

If we want to assemble this, we must pack it in a do.call

> (rr <- do.call("rbind", lapply(split(inc,inc$lex.id), sim1, pt)))

lex.id lex.dur lex.Xst
1 1 28.84452 Dead
2 2 50.00000 <NA>

This is the used to update the initial data frame:

> xx <- match(c("lex.dur","lex.Xst"), names(ini))
> ini.upd <- merge(ini[,-xx], rr)
> attr(ini.upd, "time.scales") <- attr(ini, "time.scales")
> str(ini.upd)

3 Putting it all together in a function 11

Classes ’Lexis’ and ’data.frame’: 2 obs. of 9 variables:
$ lex.id : int 1 2
$ Per : num 2000 2000
$ Age : num 50 50
$ DMdur : num 1 1
$ t.Ins : num NA NA
$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..: 1 1
$ sex : Factor w/ 2 levels "M","F": 1 2
$ lex.dur: num 28.8 50
$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..: 3 NA
- attr(*, "time.scales")= chr "Per" "Age" "DMdur" "t.Ins"

> ini.upd

lex.id Per Age DMdur t.Ins lex.Cst sex lex.dur lex.Xst
1 1 2000 50 1 NA DM M 28.84452 Dead
2 2 2000 50 1 NA DM F 50.00000 <NA>

Then we can split this data frame, by taking those who exited to a transient state and
those who did not.

We can derive the transient states from the Tr object, it is simply the names of the Tr

object:

> tr.states <- names(Tr)
> # The final rows
> ini.fin <- subset(ini.upd, !lex.Xst %in% tr.states)
> ini.fin[is.na(ini.fin$lex.Xst),"lex.Xst"] <- ini.fin[is.na(ini.fin$lex.Xst),"lex.Cst"]
> ini.fin
> # Rows requiring another simulation
> ini.nxt <- subset(ini.upd, lex.Xst %in% tr.states)
> # This should be automatic
> attr(ini.nxt, "time.since") <- attr(ini, "time.since")
> ini.nxt[,timeScales(ini.nxt)] <- ini.nxt[,timeScales(ini.nxt)] + ini.nxt$lex.dur
> for(i in 1:length(wh<-attr(ini.nxt,"time.since")))
+ if(wh[i] != "" & sum(ini.nxt$lex.Xst==wh[i])>0)
+ ini.nxt[ini.nxt$lex.Xst==wh[i],timeScales(ini.nxt)[i]] <- 0
> ini.nxt$lex.Cst <- ini.nxt$lex.Xst
> ini.nxt$lex.dur <- 1
> ini.nxt

3 Putting it all together in a function

There are two main arguments to a function to simulate from a multistate model which is
represented in a Lexis object:

1. A Lexis object representing the initial states and covariates of the population to be
simulated. This has to have the same structure as the original Lexis object
representing the multistate model.

2. A transition object, representing the transition intensities between states. This is a
list of lists of intensity representations. As an intensity representation we mean a
function that given a Lexis object produces estimates of the transition intensities at
the time points given in the supplied Lexis object.

The names of the elements (which are lists) of the transition object will be names of
the transient states, that is the states from which a transition can occur. The names

12 multi multi

of the elements of each of these lists are the names of states of the stats to which
transitions can occur (which may be either transient or absorbing states).

If the transition object is called Tr then TR$From1$To2 (or
Tr[["From1"]][["To2"]]) will represent the transition intensity from state “From1”
to the state “To2”.

Alternatively the entries can be glm objects, in which case we just substitute by
function(nd) exp(predict(glm.obj,newdata=nd)).

In addition to these two input items, there will be a couple of tuning parameters, which
we will seek to give sensible defaults.

The output of the function will simply be a Lexis object with simulated transitions
between states. This will be the basis for deriving sensible statistics from the Lexis object
— see next section.

3.1 Components of simLexis

The function simLexis need a Lexis object as input. This defines the initial state(s) and
times of the start. Since the purpose is to simulate a history through the estimated
multistate model, the variables lex.Xst and lex.dur are ignored.

Note that the attribute time.since must be present in the object. This is used for
initializing timescales defined as time since entry into a particular state, it is a character
vector of the same length as the time.scales attribute, with value equal to a state name if
the corresponding time scale is defined as time since entry into that state. In this example
the 4th timescale is time since entry into the “Ins” state, and hence:

> attr(ini, "time.since")

[1] "" "" "" "Ins"

Lexis objects created with Epi version 1.1.45 or later will have this attribute set for time
scales created with cutLexis.

The other necessary argument is a transition object Tr, which is a list of lists. The
elements of the lists should be glm objects derived by fitting Poisson models to a Lexis

object representing a multistate model. It is assumed (and not checked) that timescales
enter in the model via the timescales of the Lexis object and also the variable lex.dur

enters in the offset of the model.
The two optional arguments are time.pts, a numerical vector giving the times after

entry at which the cumulative rates will be computed (the maximum of which will be taken
as the censoring time), and N a scalar or numerical vector of the number of persons with a
given initial state each record of the init object should represent.

The central part of the functions uses a do.call and split construction to do
simulations for different initial states:

> simLexis

function(Tr, # List of lists of glm objects
init, # Lexis objects of persons to simulate. Must have the

same attributes as the original object, in particular
"time.scales" and "time.since".

3.1 Components of simLexis 13

time.pts = 0:50/2, # Points where rates are computed in the
simulation

N = 1, # How many persons should each line in
init represent?

type = "glm-mult"
)

{
Expand the input data frame using N
if(length(N)>1)
{
if(length(N)!=nrow(init)) stop("N has ", length(N) , " elements, but\n",

"init has ", nrow(init), " rows; must be the same.\n")
else init <- init[rep(1:nrow(init),N),]
}

else if(N>1) init <- init[rep(1:nrow(init),each=N),]

Make sure that each line represents one person
init$lex.id <- 1:nrow(init)

Fix attributes
if(is.null(nts <- attr(init,"time.scales")))
stop("No time.scales attribute for init")

if(is.null(attr(init,"time.since")))
{
attr(init,"time.since") <- rep("", nts)
cat("WARNING:\n

’time.since’ attribute set, which means that you assume that\n
none of the time scale represent time entry to a state.")

}
Convenience constants
np <- length(time.pts)
tr.st <- names(Tr)

The first set of sojourn times in the initial states
sf <- do.call("rbind", lapply(split(init,init$lex.Cst), simX, init, Tr, time.pts))

Then we must update those who have ended in transient states
and keep on doing that till all are in absorbing states or censored
nxt <- get.next(sf, init, tr.st)
while(nrow(nxt) > 0)
{
nx <- do.call("rbind", lapply(split(nxt,nxt$lex.Cst), simX, init, Tr, time.pts))
sf <- rbind(sf, nx)
nxt <- get.next(nx, init, tr.st)
}

Doctor lex.Xst for the censored, and supply attributes
sf$lex.Xst[is.na(sf$lex.Xst)] <- sf$lex.Cst[is.na(sf$lex.Xst)]
Finally, nicely order the output by persons, then times and states
nord <- match(c("lex.id", timeScales(sf),

"lex.dur",
"lex.Cst",
"lex.Xst"), names(sf))

noth <- setdiff(1:ncol(sf), nord)
sf <- sf[order(sf$lex.id,sf[,timeScales(init)[1]]),c(nord,noth)]
rownames(sf) <- NULL
attr(sf, "time.scales") <- attr(init, "time.scales")
attr(sf, "time.since") <- attr(init, "time.since")
chop.lex(sf, max(time.pts))
}
<environment: namespace:Epi>

This construction calls the function simX, which uses the state in lex.Cst to select the
relevant component of Tr and compute predicted cumulative intensities for all states
reachable from this state. The dataset on which this is done has length(time.pts) rows

14 multi multi

per person:

> Epi:::simX

function(nd, init, Tr, time.pts)
{
Simulation is done from nd by chunks of starting state, lex.Cst
Necessary because different states have different (sets of) exit
rates. Therefore, this simulates for a set of persons from
the same starting state.
np <- length(time.pts)
nr <- nrow(nd)
if(nr==0) return(NULL)
cst <- unique(nd$lex.Cst)
if(length(cst)>1) stop("More than one lex.Cst present.\n")
Expand each person by the timepoints
nx <- nd[rep(1:nrow(nd),each=np),]
nx[,timeScales(init)] <- nx[,timeScales(init)] + rep(time.pts,nr)
nx$lex.dur <- 1
Make a dataframe with predicted rates for each of the transitions
out of this state for these times
rt <- data.frame(lex.id=nx$lex.id)
for(i in 1:length(Tr[[cst]])) rt <- cbind(rt, exp(predict(Tr[[cst]][[i]],newdata=nx)))
names(rt)[-1] <- names(Tr[[cst]])
Then we find the transition time and exit state for each person:
xx <- match(c("lex.dur","lex.Xst"), names(nd))
if(any(!is.na(xx))) nd <- nd[,-xx[!is.na(xx)]]
merge(nd, do.call("rbind", lapply(split(rt,rt$lex.id), sim1, init, time.pts)), by="lex.id")
}
<environment: namespace:Epi>

This is fed, person by person, to sim1 — again via a do.call - split construction — and
the resulting time and state is appended to the init object. This way we have simulated
one transition for each person:

> Epi:::sim1

function(rt, init, time.pts)
{
Simulates a single transition time and state based on the dataframe
rt with columns lex.id and timescales. Each row in rt is the id,
followed by the set of estimated transition rates to the different
states reachable from the current one.
ci <- apply(rt[,-1,drop=FALSE], 2, cummid, time.pts)
tt <- uu <- -log(runif(ncol(ci)))
for(i in 1:ncol(ci)) tt[i] <- approx(ci[,i], time.pts, uu[i], rule=2)$y
Note this resulting data frame has 1 row
data.frame(lex.id = rt[1,1],

lex.dur = min(tt,na.rm=TRUE),
lex.Xst = factor(if(min(tt)<max(time.pts)) colnames(ci)[tt==min(tt)]

else NA, levels=levels(init$lex.Cst)))
}
<environment: namespace:Epi>

We must repeat this operation on those that have a simulated entry to a transient state,
and also make sure that any time scales defined as time since entry to one of these states
be initialized to 0 before a call to simX is made for these persons. This accomplished by the
function get.next:

> Epi:::get.next

4 Functions for deriving statistics from simulated Lexis objects 15

function(sf, init, tr.st)
{
Procduces an initial Lexis object for the next simulation for those
who have ended up in a transient state
Note that this exploits the existance of the "time.since" attribute
for Lexis objects and assumes that a charcter vector naming the
transient states is supplied as argument.
if(nrow(sf)==0) return(sf)
nxt <- sf[sf$lex.Xst %in% tr.st,]
if(nrow(nxt) == 0) return(nxt)
nxt[,timeScales(init)] <- nxt[,timeScales(init)] + nxt$lex.dur
wh <- attr(init,"time.since")
for(i in 1:length(wh))

if(wh[i] != "") nxt[nxt$lex.Xst==wh[i],timeScales(init)[i]] <- 0
nxt$lex.Cst <- nxt$lex.Xst
return(nxt)
}
<environment: namespace:Epi>

The operation so far has censored individuals max(time.pts) after each new entry to a
transient state. In order to groom the output data we use chop.lex to censor all persons
at the same designated time after initial entry.

> Epi:::chop.lex

function(obj, cens)
{
A function that chops off all follow-up beyond cens since entry for
each individual
zz <- entry(obj, 1, by.id=TRUE)
ww <- merge(obj, data.frame(lex.id=as.numeric(names(zz)),

cens=zz+cens))
ww <- ww[ww[,timeScales(obj)[1]] < ww$cens,]
x.dur <- pmin(ww$lex.dur, ww[,"cens"]-ww[,timeScales(obj)[1]])
ww$lex.Xst[x.dur<ww$lex.dur] <- ww$lex.Cst[x.dur<ww$lex.dur]
ww$lex.dur <- pmin(x.dur, ww$lex.dur)
ww
}
<environment: namespace:Epi>

4 Functions for deriving statistics from simulated

Lexis objects

Once we have simulated a Lexis object we want to use it for estimating probabilities, so
basically we will want to enumerate the number of persons in each state at a prespecified
set of time points.

Since we are dealing with multistate model with potentially multiple time scales, it is
necessary to define the timescale (time.scale), the starting point on the timescale (from)
and the points after this where we compute the number of occupants in each state (at).

> nState

function (obj,
at,

from,
time.scale = 1)

16 multi multi

{
tmsc <- Epi:::check.time.scale(obj,time.scale)
TT <- tmat(obj)
absorb <- rownames(TT)[apply(!is.na(TT),1,sum)==0]
transient <- setdiff(rownames(TT), absorb)
Expand each record length(at) times
tab.frm <- obj[rep(1:nrow(obj),each=length(at)),c(tmsc,"lex.dur","lex.Cst","lex.Xst")]
Stick in the correponding times on the chosen time scale
tab.frm$when <- rep(at, nrow(obj)) + from
For transient states keep records that includes these points in time
tab.tr <- tab.frm[tab.frm[,tmsc] <= tab.frm$when &

tab.frm[,tmsc]+tab.frm$lex.dur > tab.frm$when,]
tab.tr$State <- tab.tr$lex.Cst
For absorbing states keep records where follow-up ended before
tab.ab <- tab.frm[tab.frm[,tmsc]+tab.frm$lex.dur <= tab.frm$when &

tab.frm$lex.Xst %in% absorb,]
tab.ab$State <- tab.ab$lex.Xst
Make a table using the combination of those in transient and
absorbing states.
with(rbind(tab.ab, tab.tr), table(when, State))
}
<environment: namespace:Epi>

In order to plot probabilities of state-occupancy it is useful to compute cumulative
probabilities across states in any order; this is done by the function pState:

> pState

function(nSt, perm=1:ncol(nSt))
{
tt <- t(apply(nSt[,perm], 1, cumsum))
tt <- sweep(tt, 1, tt[,ncol(tt)], "/")
class(tt) <- c("pState","matrix")
tt
}
<environment: namespace:Epi>

There is also a plot method for resulting objects:

> plot.pState

function(x,
col = rainbow(ncol(x)),

border = col,
xlab = "Time",
ylab = "Probability", ...)

{
Just for coding convenience when plotting polygons
pSt <- cbind(0, x)
matplot(as.numeric(rownames(pSt)), pSt, type="n",

ylim=c(0,1), yaxs="i", xaxs="i",
xlab=xlab, ylab=ylab, ...)

for(i in 2:ncol(pSt))
{
polygon(c(as.numeric(rownames(pSt)) ,

rev(as.numeric(rownames(pSt)))),
c(pSt[,i],
rev(pSt[,i-1])),

col=col[i-1], border=border[i-1], ...)
}

}
<environment: namespace:Epi>

5 How it actually works 17

5 How it actually works

This is just a walk-trough of the example from the help-page of simLexis, with somewhat
more realistic parameters supplied.

First we take the diabetes data, and set up a simple illness-death model:

> data(DMlate)
> dml <- Lexis(entry = list(Per=dodm, Age=dodm-dobth, DMdur=0),
+ exit = list(Per=dox),
+ exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.

Split follow-up at insulin, introduce a new timescale, and split non-precursor states, so that
we can address the question of ever been on insulin:

> dmi <- cutLexis(dml, cut = dml$doins,
+ pre = "DM",
+ new.state = "Ins",
+ new.scale = "t.Ins",
+ split.states = TRUE)

Then we split the follow in 1-year intervals for modelling

> Si <- splitLexis(dmi, 0:30/2, "DMdur")

Define knots for the analysis of rates

> nk <- 4
> (ai.kn <- with(subset(Si,lex.Xst=="Ins"),
+ quantile(Age+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
28.00642 50.05600 62.12076 75.69020

> (ad.kn <- with(subset(Si,lex.Xst=="Dead"),
+ quantile(Age+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
63.61875 74.98700 81.38501 89.26831

> (di.kn <- with(subset(Si,lex.Xst=="Ins"),
+ quantile(DMdur+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
1.5 4.0 7.0 10.5

> (dd.kn <- with(subset(Si,lex.Xst=="Dead"),
+ quantile(DMdur+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
0.3778234 1.9582478 4.3370979 8.0232717

18 multi multi

> (td.kn <- with(subset(Si,lex.Xst=="Dead(Ins)"),
+ quantile(t.Ins+lex.dur, probs=(1:nk-0.5)/nk)))

12.5% 37.5% 62.5% 87.5%
0.1759069 1.0095825 2.7939767 6.3579740

Fit Poisson models to transition rates

> library(splines)
> DM.Ins <- glm((lex.Xst=="Ins") ~ ns(Age , knots=ai.kn[2:(nk-1)], Bo=ai.kn[c(1,nk)]) +
+ ns(DMdur, knots=di.kn[2:(nk-1)], Bo=di.kn[c(1,nk)]) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM"))
> DM.Dead <- glm((lex.Xst=="Dead") ~ ns(Age , knots=ad.kn[2:(nk-1)], Bo=ad.kn[c(1,nk)]) +
+ ns(DMdur, knots=dd.kn[2:(nk-1)], Bo=dd.kn[c(1,nk)]) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM"))
> Ins.Dead <- glm((lex.Xst=="Dead(Ins)") ~ ns(Age , knots=ad.kn[2:(nk-1)], Bo=ad.kn[c(1,nk)]) +
+ ns(DMdur, knots=dd.kn[2:(nk-1)], Bo=dd.kn[c(1,nk)]) +
+ ns(t.Ins, knots=td.kn[2:(nk-1)], Bo=td.kn[c(1,nk)]) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="Ins"))

Stuff the models into an object representing the transitions; note this is a list of lists, the
latter having glm objects as elements.

> Tr <- list("DM" = list("Ins" = DM.Ins,
+ "Dead" = DM.Dead),
+ "Ins" = list("Dead(Ins)" = Ins.Dead))

Now we have the description of the rates and of the structure of the model. The Tr object
defines all states and all transitions between them.

We now define an initial object of persons in a given state with all relevant covariates
defined. These will be the persons that we simulate through the model:

> ini <- subset(Si,select=1:9)[NULL,]
> ini[1:2,"lex.id"] <- 1:2
> ini[1:2,"lex.Cst"] <- "DM"
> ini[1:2,"Per"] <- 1995
> ini[1:2,"Age"] <- 60
> ini[1:2,"DMdur"] <- 5
> ini[1:2,"sex"] <- c("M","F")
> ini

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 1 1995 60 5 NA NA DM <NA> M
2 2 1995 60 5 NA NA DM <NA> F

Simulate 5000 of each sex using the estimated model. The time.pts argument gives the
times at which the integrated intensities (cumulative rates) are evaluated and between
which linear interpolation is used when simulating transition times.

> system.time(
+ simL <- simLexis(Tr, ini, time.pts=seq(0,20,0.2), N=5000))

user system elapsed
84.25 12.68 97.17

5 How it actually works 19

> summary(simL, by="sex")

$M

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 938 1798 2264 0 5000 4062 47692.66 5000
Ins 0 728 0 1070 1798 1070 17535.79 1798
Sum 938 2526 2264 1070 6798 5132 65228.44 5000

$F

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 1606 1480 1914 0 5000 3394 58233.12 5000
Ins 0 818 0 662 1480 662 16033.00 1480
Sum 1606 2298 1914 662 6480 4056 74266.12 5000

Tabulate the number of persons in each state at a set of times. Note that in order for this
to be sensible, the from argument would normally be equal to the starting time for the
simulated individuals.

> system.time(
+ nSt <- nState(subset(simL,sex=="M"),
+ at=seq(0,15,0.2), from=1995, time.scale="Per"))

user system elapsed
1.93 0.03 1.96

> nSt[1:10,]

State
when DM Ins Dead Dead(Ins)
1995 5000 0 0 0
1995.2 4951 21 28 0
1995.4 4886 58 55 1
1995.6 4809 99 88 4
1995.8 4742 129 123 6
1996 4687 162 144 7
1996.2 4632 187 173 8
1996.4 4568 219 203 10
1996.6 4508 251 230 11
1996.8 4406 304 274 16

Show the cumulative prevalences in a different order than that of the state-level ordering
and plot them

> pp <- pState(nSt, perm=c(1,2,4,3))
> head(pp)

when DM Ins Dead(Ins) Dead
1995 1.0000 1.0000 1.0000 1
1995.2 0.9902 0.9944 0.9944 1
1995.4 0.9772 0.9888 0.9890 1
1995.6 0.9618 0.9816 0.9824 1
1995.8 0.9484 0.9742 0.9754 1
1996 0.9374 0.9698 0.9712 1

20 multi multi

> plot(pp)

A more useful set-up of the graph would include proper annotation and sensible choice of
colors:

> clr <- c("orange2","forestgreen")
> par(las=1)
> plot(pp, col=clr[c(2,1,1,2)])
> lines(as.numeric(rownames(pp)), pp[,2], lwd=3)
> mtext("60 year old male, diagnosed 1990", side=3, line=2.5, adj=0)
> mtext("Survival curve", side=3, line=1.5, adj=0)
> mtext("DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1])
> mtext("DM, no insulin", side=3, line=0.5, adj=0, col=clr[2])
> axis(side=4)

1996 1998 2000 2002 2004 2006 2008 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

Figure 2: Default layout of the plot.pState graph.

5 How it actually works 21

1996 1998 2000 2002 2004 2006 2008 2010

0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

60 year old male, diagnosed 1990
Survival curve
DM, no insulin DM, InsulinDM, no insulin

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: A plot.pState graph where persons ever on insulin are given in orange and
persons never on insulin in green, and the overall survival (dead over the line) as a black
line.

	Introduction
	Simulation setup for Poisson models based on Lexis objects
	Simulation of transition times — theory
	Simulation of transition times — implementation

	Putting it all together in a function
	Components of simLexis

	Functions for deriving statistics from simulated Lexis objects
	How it actually works

