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1 Introduction

The Neyman-Scott spatial clustering point processes play an important role to model clus-
tering point patterns in stochastic geometry and the theory of point processes. The areas
of their applications are manifold. In fact, they include astronomy, (development) eco-
nomics, ecology, forestry, geography, image analysis, spatial epidemiology and statistical
seismology, and so forth.

In order to be advantageous to users who are unfamiliar with the FORTRAN language, we
provide the present software package NScluster in terms of the R language for simulation
and estimation of the Neyman-Scott type spatial cluster models. The corresponding
source files are published in [1]. We develop a shared library or DLL from the original
FORTRAN source programs.

Thus the package enables one to facilitate [1] providing the programs for the sim-
ulation methods of various Neyman-Scott spatial clustering point processes and their
superpositions and for computing their maximum Palm-likelihood estimate, MPLE for
abbreviation.

For more details of the simulation methods and the maximum Palm-likelihood proce-
dure for their parameter estimation, see [1] and [2] and the references therein for theoretical
information on stochastic geometry and the theory of point processes.

2 R functions in the NScluster package

Classes of tasks performed by this package are listed below:
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2.1 Simulation of the Neyman-Scott spatial cluster models and
their extensions

SimulateThomas, SimulateIP, SimulateTypeA, SimulateTypeB, SimulateTypeC

2.2 Parameter estimation by the simplex method

SimplexThomas, SimplexIP, SimplexTypeA, SimplexTypeB, SimplexTypeC

2.3 Non-parametric Palm intensity functions

PalmThomas, PalmIP, PalmTypeA, PalmTypeB, PalmTypeC

3 Overview of the models

The Neyman-Scott model is defined as the set of all cluster points (offspring points)
described as follows:

1. Each cluster centre (parent point) formed to be a homogeneous Poisson point pro-
cess with intensity µ produces a random number M of cluster points that are real-
ized independently and identically according to the probabilities Pr{M = m}, m =
0, 1, . . . .

2. Locations of cluster points are distributed independently and identically according
to a density function qτ (x, y), where (x, y) is coordinates of cluster points relative to
their cluster centre, and the parameter τ indicates a set of coefficients of the density
function.

Hereafter, we consider parameters θ = (µ, ν, τ), where ν = E[M ] = Σm Pr{M = m},
as the parameters that characterize the various models of the Neyman-Scott type. In
particular, throughout this article, we assume that M has the Poisson distribution with
mean ν.

Furthermore, we consider multi-type cluster models, which are formed as follows [2]:
the models allow two types of clusters with the different cluster sizes and distance scales.
The intensities of cluster centres are µ1 and µ2, respectively. The corresponding cluster
points of a representative cluster distribute according to Poisson random variables with
means ν1 and ν2, respectively.

While such point patterns can be considered in spaces of arbitrary dimension, we here
restrict ourself to planar point patterns in observed rectangular region W = [0, Tx] ×
[0, Ty], assuming the periodic boundary condition. Furthermore, we restrict ourself to
the standardized case where Tx = 1 and Ty ≥ 1 without loss of generality except for the
scaling. All the models of point patterns are assumed to be homogeneous (stationary)
and isotropic. Therefore the density function qτ (x, y) is denoted by polar coordinate qτ (r)
of distance r from its cluster centre.
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3.1 Thomas model

The Thomas model has the density function that is given by the bivariate Gaussian
distribution with zero mean and the covariance matrix σ2I where I is 2 × 2 identity
matrix as follows (e.g., [2]). Due to isotropy this is described in polar coordinate as a
function

qσ(r) =
r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0,

of distance r from the corresponding parent’s location.

3.2 Inverse-power model

The Inverse-power type density function of the distance is given as follows (see [1], [2]):

qp,c(r) =
cp−1(p − 1)

(r + c)p
, r ≥ 0, p > 1, c > 0,

where the parameters p and c represent a decay order and scaling factor with respect to
the distance, respectively.

3.3 Generalized Thomas model of type A

The generalized Thomas model of type A is given by the mixed Gaussian density function
with σ1 and σ2 as follows (see [1], [2]):

qτ (r) =

{
ar

σ1
2

exp
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2σ1
2

)
+
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σ2
2
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2

)}
, τ = (a, σ1, σ2),

where the parameter a indicates the mixture ratio of the density function.

3.4 Generalized Thomas model of type B

We assume two types of clusters with the different sizes and distributions of the Thomas
type. The intensities of the respective centres are µ1 and µ2, respectively. The respective
clusters have the Poisson means of the cluster points ν1 and ν2. The density functions of
the cluster point relative to respective cluster centre are given by

qσ1(r) =
r

σ1
2

exp

(
− r2

2σ1
2

)
, qσ2(r) =

r

σ2
2

exp

(
− r2

2σ2
2

)
, (1)

where σ1 and σ2 indicate their scales. If the mean sizes of the two types of clusters are
the same, then it is referred to as the generalized Thomas model of type B (see [1], [2]).

3.5 Generalized Thomas model of type C

If ν1 6= ν2 and each density function qσi
, i = 1, 2 have the same forms (1), then, in

particular, for σ1 and σ2 we may constrain ν1 and ν2 to be

ν2 = ν1

(
σ2

σ1

)
,

and it is referred to as the generalized Thomas model of type C (see [1], [2]).
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