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PivotalR: A Package for

Machine Learning on Big Data
by Hai Qian

Abstract PivotalR is an R package that provides a front-end to PostgreSQL and all PostgreSQL-like
databases such as Pivotal Inc.’s Greenplum Database (GPDB) (Pivotal Inc., 2013a), HAWQ (Pivotal
Inc., 2013b). When running on the products of Pivotal Inc., PivotalR utilizes the full power of
parallel computation and distributive storage, and thus gives the normal R user access to big data.
PivotalR also provides the R wrapper for MADlib. MADlib is an open-source library for scalable
in-database analytics. It provides data-parallel implementations of mathematical, statistical and
machine-learning algorithms for structured and unstructured data. Thus PivotalR also enables the
user to apply machine learning algorithms onto big data.

Introduction

In recent years, Big Data has become an important research topic and a very realistic problem in
industry. The amount of data that we need to process is exploding, and the ability of analyzing big
data has become the key factor in competition. Big data sets do not fit into computer’s memory
and it would be really slow if the big data sets were processed sequentially. On the other hand, most
contributed packages of R are still strictly sequential, single machine, and they are restricted to small
data sets that can be loaded into memory. As computing shifts irreversibly to parallel architectures
and big data, there is a risk for the R community to become irrelevant.

Some efforts have been invested into developing packages that give R users and developers the
access to some of the parallel distributive platforms. Some examples include dplyr (Wickham and
Francois, 2013), RHadoop (Revolution Analytics Company, 2012) (including plyrmr, rmr, rhdfs,
rhbase), RHIPE (Guha et al., 2012), RHive (NexR, 2013), teradataR (Teradata Corporation, 2012)
etc.

In this paper we introduce the package PivotalR (Pivotal Inc., 2013d), which provides an R
front-end with data.frame oriented API for R users to access big data stored in distributive databases
or Hadoop distributive file system (HDFS) (The Apache Software Foundation, 2013). In this sense,
PivotalR is close to the still under development dplyr package, which has a data.frame oriented API
and multiple back-ends including several SQL database systems. PivotalR puts more emphasis on
machine learning by providing a wrapper for MADlib (Pivotal Inc., 2013c), which is an open-source
library of scalable in-database machine learning algorithms. Actually PivotalR offers more than
what MADlib has. It adds functionalities that do not exist in MADlib, for example, the support for
categorical variables. PivotalR makes it easier to work on big data sets in databases.

This package is especially useful for users who are not familiar with SQL language, because
the functions and syntax for the manipulation of tables are very similar to those for data.frame
manipulation defined natively in R. Thus the learning curve for the package is very smooth. PivotalR
is also very useful for users who are familiar with SQL language, because it brings the graphical and
analytical functionalities of R to the processing of big data stored in databases.

PivotalR is contributed to the open-source community by the Predictive Analytics Team at
Pivotal Inc. In order to gain the power of distributive storage and parallel computation, the users
need to have a distributive database system installed, for example the Greenplum Database or
HAWQ. PivotalR also supports the open-source database system PostgreSQL. Therefore PivotalR
benefits R users by providing an easy-to-access interface for manipulating data tables stored in
PostgreSQL database system and a combination of the powers of R and MADlib, which lets the user
directly apply machine learning algorithms onto the big data stored in databases.

It is worth mentioning that PivotalR provides the access to data stored on HDFS by supporting
HAWQ (Pivotal Inc., 2013b), which is the SQL query engine on HDFS created by Pivotal Inc.

The user does not need to worry about the restriction of memory size even if the data size is
very big, because PivotalR minimizes the amount of data transferred between the database and R.
The user manipulates the data from R but the data itself stays in the database.

The work flow of using PivotalR is the following. First, the user uses "db.connect" to connect
to a database. Then, "db.data.frame" can be used to create a wrapper for a data table in the
database. Minimal information about the table is kept in the wrapper, and no data is loaded into
the memory. The user can easily operate on the "db.data.frame" wrapper object and any operation
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creates a "db.Rquery" object, which is just a wrapper for a series of operations and contains a
SQL query string (see the section of Manipulation of Data Tables in Database). During this data
preparation step, no data is loaded. In the next step, the user can either call "lookat" function to
view a sample of the operation result, or call one of the MADlib wrapper functions to execute a
machine learning algorithm. Both choices initiates computation in the connected database. Usually
the computation result is small and can be loaded into memory for further processing. In some cases,
the result is also big, for example, the MADlib wrapper for ARIMA produces the residuals for each
row of the data. In such cases, a table is created in the database to store the result and a wrapper is
automatically created in R, and the user can use the same work flow to analyze the result table.

From the above work flow, one can see that all the actual computation is done in the database. So
the performance depends on the database. For the Greenplum database or HAWQ, all computation
is done in a parallel and distributive way. Especially the MADlib machine learning functions are all
implemented to fully utilize the parallel and distributive power of the databases. There are some
operations that cannot be done in a parallel way, for example the ordered aggregate, but they have
not been implemented in PivotalR yet. For the Postgres database, even though the computation is
not in parallel, the user can still use PivotalR to easily access the data stored in the database, which
might be too big to load into memory. Actually the performance on Postgres is not bad at all. In
our performance tests in Postgres database, PivotalR’s ARIMA wrapper function for MADlib is
faster than R’s own "arima" function when applied onto large data sets.

It is worth mentioning that the Greenplum database (GPDB) (Pivotal Inc., 2013a) has a
community edition, which is free (but not open-source) and has all the functionalities except the
technical support from Pivotal Inc.

At the time of writing, the version of PivotalR on CRAN is 0.1.8.

In this paper, we briefly introduce the usage of PivotalR. First in the next section we explain
the architecture of PivotalR. Then we use various examples to illustrate the usage and work flow of
PivotalR.

Architecture of PivotalR

As is shown in Fig. 1, PivotalR connects to the database through the RPostgreSQL (Conway et al.,
2013) package. However, PivotalR does not directly call the functions in RPostgreSQL. Instead we
create an abstraction layer to wrap the functions of RPostgreSQL, and the access to the database is
done by calling the functions in the abstraction layer, which then call the functions in RPostgreSQL.
This design makes it easier to add supports for other data storage platforms in the future. Right
now, PivotalR only supports the connection to PostgreSQL, GPDB (Greenplum Database) and
HAWQ. Through HAWQ, PivotalR can access the big data stored on HDFS.

In the future, PivotalR will add supports to other DBMS, Pivotal HD (Hadoop created by Pivotal
Inc.) and Hadoop (MapReduce), but we have not decided about how to do that. This is why there
are question markers in Fig. 1.

The table operation functions are built upon the abstraction layer for accessing data. The syntax
of these functions is the same as R’s "data.frame" operation functions, such as [,[<-,$,$<-, merge,
"by" etc. Arithmetic methods such as +,-,*,/, logical functions such as >,<,==,!=,<=,>=,!,|,&,
math functions such as log,exp,factorial etc. are all implemented.

The layers that are built upon the table operations are the MADlib function wrappers and other
functions, which will be covered in the subsequent sections.

A graphical user interface using the shiny (RStudio Inc., 2013) package is also implemented.
Right now it only provides the graphical interface to the MADlib wrapper functions, but we have
the plan to provide the graphical access to all functionalities of PivotalR in the future.

It is worth explaining more about how PivotalR operates on the tables. Before everything, the
user needs to create a "db.data.frame" object, which is just a wrapper of the table. Any operation
on this object is translated into an SQL query string. However, the SQL query is not executed at
this point, and is instead stored in an object of class "db.Rquery" in R. When the user wants to
execute the operation, he can call the function "preview" or "lookat" (or a shorthand "lk") to
execute the operation and load part or all of the results into memory to view. The user can also
choose to use "as.db.data.frame" to execute the SQL query and save the result into a new table.
This design gives the user the freedom to choose when to load data into memory or create tables to
store intermediate data in the process of a calculation. It also avoids the risk of accidentally loading
big data into memory.

In order to realize the above design, we use a class hierarchy shown in Fig. 2. PivotalR uses S4
object-oriented programming extensively. All objects that are related to the data in the database
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Figure 1: The structure of PivotalR. PivotalR accesses the data storage through an abstraction
layer which wraps the functions that can directly access the database. Other types of data storages
will be supported in the future. Right now it only supports connections to PostgreSQL, GPDB
and HAWQ. Table operations functions are built upon the data accessing layer. They have the
exact same interface as R’s "data.frame" operation functions. MADlib function wrappers and other
functions are built upon the table operations. The graphical user interface makes the package easier
to use.

belong to subclasses of an abstract class named "db.object".

Figure 2: The class hierarchy of PivotalR. This is not a UML figure. The square blocks represent
the S4 classes. The arrows represent the conversion between the classes. The dashed arrows represent
the various operations that convert the classes. The MADlib wrapper functions and preview/lookat
function operate on both db.data.frame class and db.Rquery class.

As has been mentioned, the class "db.data.frame" is a wrapper of data objects stored in the
connected database. When it is created by the command "db.data.frame", no actual data stored in
the data table in the database is transferred from the database to R. This object just contains some
basic information about the data object in the database, such as dimensions and column names.
"db.data.frame" has two sub-classes, "db.table" and "db.view", which are wrappers for tables
and views respectively.

> library(PivotalR)

> conn.id <- db.connect(port = 14526, dbname = "madlib", host =

+ "localhost")

Created a connection to database with ID 1

> x <- db.data.frame("abalone")

The command "db.connect" in the abstraction layer is used to connect to one or multiple
databases. It has an optional parameter that lets the user select which package he wants to use to
connect to the databases, although only RPostgreSQL is supported right now. The returned value
of "db.connect" is an integer which represents the database connection. PivotalR can connect to
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multiple databases at the same time. Thus it is possible to train a machine learning model using
the data from database 1 and then make predictions using the data from database 2. One can use
"db.disconnect" to disconnect a connection and "db.list" to list all active connections.

Any operation on an object of the class "db.data.frame" produces an object of the class
"db.Rquery". An object of the class "db.Rquery" resides entirely on the R side, and is a wrapper
of operations on a "db.data.frame" object. Most operations on a "db.Rquery" object produces
another "db.Rquery" object. Essentially, a "db.Rquery" object is just a container of a string of SQL
query, which can be viewed using the command "content". The command "as.db.data.frame"

creates a table in the database using the results of the SQL query contained in a "db.Rquery" object
and then creates a "db.data.frame" wrapper that points to this table.

"preview" (or its alias "lookat" and "lk") transfers the data from the database into R’s memory.
By default it fetches 100 rows of data from the table in the database and convert the data into
"data.frame" in R.

> lookat (x, 10)

id sex length diameter height whole shucked viscera shell rings

1 4 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155 10

2 8 F 0.545 0.425 0.125 0.7680 0.2940 0.1495 0.260 16

3 12 M 0.430 0.350 0.110 0.4060 0.1675 0.0810 0.135 10

4 16 M 0.500 0.400 0.130 0.6645 0.2580 0.1330 0.240 12

5 20 M 0.450 0.320 0.100 0.3810 0.1705 0.0750 0.115 9

6 24 F 0.550 0.415 0.135 0.7635 0.3180 0.2100 0.200 9

7 28 M 0.590 0.445 0.140 0.9310 0.3560 0.2340 0.280 12

8 32 F 0.680 0.560 0.165 1.6390 0.6055 0.2805 0.460 15

9 36 M 0.465 0.355 0.105 0.4795 0.2270 0.1240 0.125 8

10 40 M 0.355 0.290 0.090 0.3275 0.1340 0.0860 0.090 9

The MADlib wrappers can be applied onto both "db.data.frame" and "db.Rquery" objects.
When a MADlib wrapper function is applied onto a "db.Rquery" object, a temporary table is created
using as.db.data.frame. MADlib is an in-database library and we have to convert "db.Rquery"

into an object inside the database so that we could apply MADlib functions onto it. This temporary
table is dropped after the computation is done.

The design of PivotalR minimizes the amount of data that needs to be transferred between the
database and R. The only function that transfers data from the database is "preview.

Manipulation of Data Tables in Database

As has been mentioned, PivotalR overloads many methods that operate on "data.frame", and thus
lets the operations on the "db.obj" objects mimic those on "data.frame" as much as possible.

> x <- db.data.frame ("abalone")

> dim (x)

[1] 4177 10

> names (x)

[1] "id" "sex" "length" "diameter" "height" "whole"

[7] "shucked" "viscera" "shell" "rings"

> x$rings <- x$rings + 2 / 3

> x$newCol <- (x$rings + x[['length']]) < 10

> content(x)

[1] "select \"id\" as \"id\", \"sex\" as \"sex\", \"length\" as \"length\",

\"diameter\" as \"diameter\", \"height\" as \"height\", \"whole\" as \"whole\",

\"shucked\" as \"shucked\", \"viscera\" as \"viscera\", \"shell\" as \"shell\",

(\"rings\")::double precision + 0.666666666666667 as \"rings\",

(((\"rings\")::double precision + 0.666666666666667)::double precision

+ (\"length\"))::double precision < 10 as \"newCol\" from \"abalone\""

Here "content" displays the SQL query stored in the "db.Rquery". The quotes inside the SQL
query is used to deal with column or table names with special characters. x was originally a
"db.data.frame" object, but was converted to a "db.Rquery" object by the operation x$rings

<-x$rings + 2 / 3.

As long as a "key" is specified when the user calls "db.data.frame" function, the syntax A[3,4]

can be used. Here the first number "3" means that the key column has the value of 3. Therefore,
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lk(A[3,4],-1) may return multiple values. This is different from the behavior of "data.frame",
where A[3,4] returns the element on 3-rd row and 4-th column. This difference is related to the
lack of intrinsic order in the database tables, which will be discussed in the following.

The operations on "db.obj" objects mimic those on "data.frame". However, there is important
difference between "db.obj" and "data.frame".

The rows of a "data.frame" object have an intrinsic order, which makes the operations that
involve two "data.frame" objects easier to define. For example, it is straightforward to define the
subtraction of two columns of two different "data.frame" objects by matching the order of the rows
as long as they have the same number of rows.

On the other hand, the tables in the database do not have an intrinsic order for the rows. Thus,
most operations like subtraction, addition etc. can only be defined for columns belonging to the
same table. However, this is usually not a problem. Whenever the user wants to do an operation
that involves two tables, he/she should first call the function "merge" to create a new table (actually
a "db.Rquery" object) from the two tables and at the same time explicitly specify how to match the
rows of the two different tables. Then, the user can easily do operations on the new table. While R’s
"data.frame" implicitly uses the intrinsic order of the rows to match the rows from two different
data.frames, this needs to be explicitly done for "db.data.frame" objects. For example,

> x <- db.data.frame("abalone")

> y <- db.data.frame("abalone")

> z <- merge(x, y, by = NULL) # cross join two tables

> names(z)

[1] "id_x" "sex_x" "length_x" "diameter_x" "height_x"

[6] "whole_x" "shucked_x" "viscera_x" "shell_x" "rings_x"

[11] "id_y" "sex_y" "length_y" "diameter_y" "height_y"

[16] "whole_y" "shucked_y" "viscera_y" "shell_y" "rings_y"

> z$sex_x == z$sex_y # This is a db.Rquery object

The data frame ‘abalone’ is lazy-loaded in PivotalR. It is used as an example data here. One can
use as.db.data.frame to transfer this data set into a table in the database and at the same time
create a wrapper for the table

> x <- as.db.data.frame(abalone, conn.id=1)

The data in the data.frame abalone is stored into the table in database madlib on localhost !

All the subsequent operations will be applied onto the table wrapper x. A sample of the data is
shown in the following, where sort is used to create a sorting operation on the original table.

> lookat(sort(x, FALSE, x$id), 10) # load 10 rows of the sorted data

id sex length diameter height whole shucked viscera shell rings

1 1 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 15

2 2 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 7

3 3 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9

4 4 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155 10

5 5 I 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055 7

6 6 I 0.425 0.300 0.095 0.3515 0.1410 0.0775 0.120 8

7 7 F 0.530 0.415 0.150 0.7775 0.2370 0.1415 0.330 20

8 8 F 0.545 0.425 0.125 0.7680 0.2940 0.1495 0.260 16

9 9 M 0.475 0.370 0.125 0.5095 0.2165 0.1125 0.165 9

10 10 F 0.550 0.440 0.150 0.8945 0.3145 0.1510 0.320 19

At last, I want to reiterate that all these operations done on "db.data.frame" are not executed
immediately. Instead a "db.Rquery" object is produced. The user can convert it into a real table
using as.db.data.frame.

MADlib Wrapper Functions

In the next, we show some examples of MADlib wrapper functions. As is shown in Fig. 2, all MADlib
wrapper functions can be applied onto "db.obj" objects. Because the connection information is
already contained in "db.obj" objects, we do not need to specify "conn.id" in the MADlib wrapper
functions.

First, we show several examples of linear regression. Basically, PivotalR’s "madlib.lm" uses
the same formula syntax as "lm". Because MADlib’s linear regression supports fitting separate
linear regression models on sub-groups of the data, which are grouped by one or multiple columns,
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"madlib.lm" allows "|" in the formula, which means that the model is fit on a subset of the data
conditioned on the value of the variables after "|".

> ## fit one different model to each group of data with the same sex

> fit <- madlib.lm(rings ~ . - id | sex, data = x)

sex has 3 distinct values, and thus fit is a list of 3 elements. Each element is the linear regression
model for a subset of the data. The mean square error can be easily computed

> ## apply the model onto data in another database

> lookat(mean((x$rings - predict(fit, x))^2)) # mean square error

rings_madlib_predict_opr_opr_avg

1 4.647291

We can plot a random sample of the fitting values together with the real values, as is shown in
Fig. 3. We can also select one model from the fitting result to plot, as is shown in the comments of
the following snippets.

> ## plot the result

> ap <- cbind(x$rings, predict(fit, x)) # combine two columns

> plot(lookat(sort(ap, FALSE, NULL), 100)) # plot a random sample

> ## ap <- cbind(x$rings[x$sex == "I"], predict(fit[[1]], x[x$sex == "I",]))

> ## plot(lookat(sort(ap, FALSE, NULL), 100)) # plot a random sample

Figure 3: The sample plot

The support to categorical variables is done through "as.factor", as is shown in the next
example.

> v <- x

> v$sex <- as.factor(v$sex) # specify which column to pivot

> f <- madlib.lm(rings ~ . - id, data = v)

> f

MADlib Linear Regression Result

Call:

madlib.lm(formula = rings ~ . - id, data = v)

---------------------------------------

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.89464 0.29157 13.3576 6.992e-40 ***
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sex:M 0.05772 0.08335 0.6925 4.887e-01

sex:I -0.82488 0.10240 -8.0558 1.022e-15 ***

length -0.45834 1.80912 -0.2533 8.000e-01

diameter 11.07510 2.22728 4.9725 6.876e-07 ***

height 10.76154 1.53620 7.0053 2.861e-12 ***

whole 8.97544 0.72540 12.3730 1.469e-34 ***

shucked -19.78687 0.81735 -24.2086 2.988e-121 ***

viscera -10.58183 1.29375 -8.1792 3.757e-16 ***

shell 8.74181 1.12473 7.7723 9.639e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-squared: 0.5378844

Condition Number: 137.2694

Because extractAIC method is implemented for the result of madlib.lm and madlib.glm, one
can use R’s step function for feature selection.

fit <- madlib.glm(rings<10 ~ ., data = x, family = "binomial")

step(fit)

This is a good example of how R’s analytical functionalities can be combined with MADlib.

In the next example, we use the bootstrap aggregate method to fit a linear model to the data.

## generic bagging

fit <- generic.bagging(function(data) {

madlib.lm(rings ~ . - id - sex, data = data)

},

data = x, nbags = 10, fraction = 0.85)

pred <- predict(fit, newdata = x) # make prediction

lookat(mean((x$rings - pred)^2))

Just like "glm" in stats (R Core Team, 2013) package, PivotalR provides "madlib.glm", which
can do both linear and logistic regressions. The usage is similar to glm. Please refer to PivotalR
manual (Pivotal Inc., 2013d) for details.

Support for Array Columns

Both Greenplum database and Postgres database have an upper limit for the number of columns in
a data table. The upper limit depends on the column data types, but is usually around 1600. If the
big data set has more features, the only workaround is to use an array column to encapsulate all the
features, because there is no limit for how many elements an array can contain.

PivotalR has the full support for such array columns, as is shown in the next example.

> z <- db.data.frame("madlibtestdata.lin_auto_mpg_oi")

> lookat(z, 10)

x.1 x.2 x.3 x.4 x.5 x.6 x.7 y

1 8 383 170 3563 10.0 70 1 15

2 8 340 160 3609 8.0 70 1 14

3 8 400 150 3761 9.5 70 1 15

4 4 121 113 2234 12.5 70 2 26

5 8 360 215 4615 14.0 70 1 10

6 8 304 193 4732 18.5 70 1 9

7 4 113 95 2228 14.0 71 3 25

8 6 250 88 3302 15.5 71 1 19

9 8 351 153 4154 13.5 71 1 14

10 8 318 150 4096 13.0 71 1 14

> madlib.lm(y ~ x, data = z)

MADlib Linear Regression Result

Call:

madlib.lm(formula = y ~ x, data = z)
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---------------------------------------

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.218435 4.644294 -3.7074 2.402e-04 ***

x[1] -0.493376 0.323282 -1.5261 1.278e-01

x[2] 0.019896 0.007515 2.6474 8.445e-03 **

x[3] -0.016951 0.013787 -1.2295 2.196e-01

x[4] -0.006474 0.000652 -9.9288 7.883e-21 ***

x[5] 0.080576 0.098845 0.8152 4.155e-01

x[6] 0.750773 0.050973 14.7288 3.069e-39 ***

x[7] 1.426140 0.278136 5.1275 4.666e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-squared: 0.8214781

Condition Number: 85850.33

Handling of NULL Values

PivotalR makes it very easy to filter NULL values from a table. Here we show an example using the
data "null.data" comes with PivotalR. ‘null.data’ has lots of NULL value. However, we can easily
filter out all the NULL values.

> delete("null_data", conn.id = 2)

[1] TRUE

> w <- as.db.data.frame(null.data, "null_data", conn.id = 2)

The data in the data.frame null.data is stored into the table null_data in database madlib on localhost !

> dim(w)

[1] 67126 10

> lookat(w, 10)

sf_mrtg_pct_assets ris_asset lncrcd lnauto lnconoth lnconrp intmsrfv

1 31.62 208596 0 NA 18260 44 0

2 20.66 34647 0 NA 2997 0 0

3 14.95 160175 0 NA 15164 0 0

4 17.49 117398 0 NA 12365 0 0

5 35.59 233592 0 NA 6261 151 0

6 11.57 166387 0 NA 36356 0 0

7 10.56 102891 0 NA 6311 0 0

8 6.05 30138 0 NA 2664 0 0

9 14.53 1615727 0 NA 80829 1106 105

10 12.88 83090 0 NA 11815 0 0

lnrenr1a lnrenr2a lnrenr3a

1 NA NA NA

2 NA NA NA

3 NA NA NA

4 NA NA NA

5 NA NA NA

6 NA NA NA

7 NA NA NA

8 NA NA NA

9 NA NA NA

10 NA NA NA

> db.objects("null", conn.id = 2)

[1] "madlibtestdata.credit_nulls" "madlibtestdata.rf_golf_nullclass"

[3] "madlibtestdata.rf_nursery_nullclass" "madlibtestdata.table_has_null"

[5] "public.null_data"

> for (i in 1:10) w <- w[!is.na(w[i]),] # filter NULL values

> dim(w)

[1] 6789 10

> madlib.lm(sf_mrtg_pct_assets ~ ., data = w)

MADlib Linear Regression Result
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Call:

madlib.lm(formula = sf_mrtg_pct_assets ~ ., data = w)

---------------------------------------

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.528e+01 1.471e-01 103.90694 0.000e+00 ***

ris_asset 1.602e-08 1.141e-08 1.40440 1.602e-01

lncrcd -1.608e-07 7.725e-08 -2.08170 3.741e-02 *

lnauto -3.871e-07 3.447e-07 -1.12301 2.615e-01

lnconoth -7.498e-07 4.370e-07 -1.71559 8.628e-02 .

lnconrp 7.575e-08 1.229e-06 0.06165 9.508e-01

intmsrfv 8.609e-06 1.790e-06 4.81005 1.542e-06 ***

lnrenr1a -4.827e-06 3.837e-05 -0.12580 8.999e-01

lnrenr2a 1.358e-04 2.359e-05 5.75605 8.986e-09 ***

lnrenr3a -3.133e-05 4.273e-06 -7.33355 2.502e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-squared: 0.01083685

Condition Number: 37854014

na.action is supported by madlib.lm, madlib.glm and madlib.elnet. The user can define his
own "na.action" function. "na.omit" method is also implemented.

Quickly Creating Prototypes of Machine Learning Algo-
rithms

One of the goals of PivotalR is to help data scientists quickly create prototypes for parallel machine
learning algorithms that can run in distributive databases. Although PivotalR is still at an early
stage of development, we already invest some effort into this. The idea is to implement some basic
operations that forms the build blocks for most machine learning algorithms.

For example, we implemented the function crossprod, which computes the operation XTY. X
and Y are wrappers created by "db.data.frame" for tables that represent matrices. X has m rows
(observations) and n columns (features). The assumption here is that m can be very large but the
number of features n is small. Thus results of XT X and XTY are both small and can be loaded into
memory for further calculations. The big data computation only involves the computations of XT X
and XTY in the database.

## linear regression

linregr <- function (x, y)

{

a <- crossprod (x)

b <- crossprod (x, y)

solve (lookat (a)) %*% lookat(b)

}

linregr (db.array(1, x[,-c (1,2,10)]), x[["rings"]])

Another example is the implementation of PCA for a matrix Z. Again we assume that the
number of columns n is not large and the product ZT Z is small enough to be loaded into memory.
PivotalR implements "scale", which is used together with crossprod in this example.

## PCA

## compute all eigenvectors in parallel

## can be used for tables with features < 1000

pca <- function (x, center = TRUE, scale = FALSE)

{

y <- scale(x, center = center, scale = scale) # centering and scaling

z <- as.db.data.frame(y, verbose = FALSE) # create an intermediate
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Figure 4: Display the summary of a table in the graphical interface.

# table to speed up computation

m <- lookat(crossprod(z)) # one scan of the table to compute Z^T * Z

d <- delete(z) # delete the intermediate table

res <- eigen(m) # only this computation is in R

n <- attr(y, "row.number") # save the computation to count rows

## return the result

list(val = sqrt(res$values/(n-1)), # eigenvalues

vec = res$vectors, # columns of this matrix are eigenvectors

center = attr(y, "scaled:center"),

scale = attr(y, "scaled:scale"))

}

dat <- db.data.frame("madlibtestdata.pca_mat_600_100", conn.id = 2)

q <- pca(dat[,-1])

GUI of PivotalR

As a front-end to both the database and MADlib, PivotalR also provides a graphical user interface
(GUI) to let users that are not familiar with data science have an easy access to the functionalities.
The GUI is written using the package shiny, which provides a very nice web application framework
to create graphical user interface.

The GUI is launched by the command pivotalr after the connection to the databases have been
created. Fig. 4 and Fig. 5 show the graphical user interface. Fig. 4 shows the screen shot for the
summary of various properties for all columns of a table. The actual computation is done through
MADlib’s "summary" function, which has a wrapper function "madlib.summary" in PivotalR. Fig. 5
shows the computation result of linear regression. The actual computation is done through MADlib’s
linregr_train function, which has a wrapper function "madlib.lm".

The GUI of PivotalR is based upon the package shiny, which is a web application framework.
Therefore the command pivotalr launches a web application. One can run the GUI on the server
and connect to it using his web browser.

The GUI of PivotalR is still at its early development stage. Many functionalities, especially the
various operations on data tables, cannot be done through GUI. However, we expect to improve the
GUI gradually in the future releases.

Future Work

MADlib has a wide variety of machine learning functions. At the time of writing, the version
of PivotalR on CRAN is 0.1.8, and it implements 5 wrapper functions: linear regression, logistic
regression, ARIMA, elastic net regularization, and the data table summary function. In the future,
all MADlib functions will have their wrappers in PivotalR. This is our highest priority right now.
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Figure 5: Display the result of linear regression in the graphical interface.

As to the shiny interface of PivotalR, we are still exploring the possibilities of streamlining the
machine learning work flow and making it compatible with a graphical interface. This by itself is a
big project, but it has a lower priority in our road-map.

The support for other platforms, like Hadoop or other database systems, is also on our road-map,
but has a relatively low priority too.

Summary

Here we introduced PivotalR, a package created by Pivotal Inc. This package provides an R front-
end to PostgreSQL and all PostgreSQL-like databases like Pivotal Inc.’s Greenplum Database
(GPDB), HAWQ. PivotalR allows the user to manipulate tables in database from within R. It
also provides the wrapper functions for MADlib, which is an in-database machine learning library.
PivotalR implements the support for array columns and NULL handling. It also helps the user quickly
create prototypes of machine learning algorithms. A graphical user interface based on shiny is also
implemented. In general, PivotalR gives the user the access to big data stored in databases and an
easy-to-use machine learning toolkit.
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