
Package ‘QCGWAS’
August 19, 2013

Type Package

Title Quality Control of Genome Wide Association Study results

Version 1.0-6

Date 2013-08-19

Author Peter J. van der Most and Ilja M. Nolte

Maintainer Peter J. van der Most <p.j.van.der.most@umcg.nl>

Depends R (>= 2.15.0)

Description Tools for (automated and manual) quality control of
the results of Genome Wide Association Studies

License GPL (>= 3)

R topics documented:
QCGWAS-package . 2
calc_kurtosis . 2
check_P . 4
convert_impstatus . 5
create_hapmap_reference . 7
filter_GWAS . 8
gwa_sample . 11
header_translations . 12
HQ_filter . 12
identify_column . 14
load_GWAS . 15
match_alleles . 16
plot_distribution . 22
plot_precision . 23
plot_regional . 24
plot_skewness . 26
QC_GWAS . 27
QC_histogram . 41
QC_plots . 43
QQ_plot . 47
save_log . 49
switch_strand . 50
translate_header . 50

1

2 QCGWAS-package

Index 53

QCGWAS-package Quality Control of Genome Wide Association Study results

Description

Functions for automated and manual quality control of Genome Wide Association Study results.

Details

Package: QCGWAS
Type: Package
Version: 1.0-6
Date: 2013-08-19
License: GPL (>= 3)

The core of the package is the function QC_GWAS. This function carries out an automated quality-
control (QC) of a Genome Wide Association Study (GWAS) results file, reporting on the data-
distribution, checking the SNPs for missing and invalid data, comparing the alleles and allele-
frequency to a reference, and creating QQ and Manhattan plots.

Although the number of arguments in QC_GWAS may seem overwhelming, only three of them are
required to run a basic QC. The name of the file to be QC’ed should be passed to the filename
argument; the directory of said file to the dir_data argument; and a header-translation table to the
header_translations argument. The results will be saved in a number of files and graphs in the
data directory. For a quick introduction to QCGWAS, read the quick reference guide that can be
found in "R\library\QCGWAS\doc".

Author(s)

Peter J. van der Most and Ilja M. Nolte

Maintainer: Peter J. van der Most <p.j.van.der.most@umcg.nl>

References

Van der Most, P.J., Vaez, A., Prins, B., Loretto Munoz, M., Snieder, H., Alizadeh, B.Z. & Nolte,
I.M. (In preparation). QCGWAS: A flexible R package for automated quality control of Genome-
Wide Association results.

See Also

QC_GWAS

calc_kurtosis 3

calc_kurtosis Skewness and Kurtosis

Description

Functions for calculating skewness and kurtosis

Usage

calc_kurtosis(input,
FRQ_val = NULL, HWE_val = NULL,
cal_val = NULL, imp_val = NULL, ...)

calc_skewness(input,
FRQ_val = NULL, HWE_val = NULL,
cal_val = NULL, imp_val = NULL, ...)

Arguments

input either a vector of effect sizes or a data frame using the standard column names.
FRQ_val, HWE_val, cal_val, imp_val, ...

arguments passed to HQ_filter.

Details

Kurtosis is calculated as:

sum((ES - mean(ES))^4) / ((length(ES)-1) * sd(ES)^4)

Skewness is calculated as:

sum((ES - mean(ES))^3) / ((length(ES)-1) * sd(ES)^3)

Value

Respectively the kurtosis and skewness of the input effect-size distribution.

Note

Both functions accept vectors as input. If input is a data frame, the column names must match the
standard names used by QC_GWAS ("EFFECT" for effect sizes, "EFF_ALL_FREQ" for allele frequency,
etc.)

See Also

For plotting skewness and kurtosis: plot_skewness.

Examples

data("gwa_sample")

calc_kurtosis(gwa_sample$EFFECT)
calc_kurtosis(gwa_sample)
calc_kurtosis(gwa_sample$EFF_ALL_FREQ)
calc_kurtosis(gwa_sample,

FRQ_val = 0.05, cal_val = 0.95,
filter_NA = FALSE)

4 check_P

check_P Checking GWAS p-values

Description

A simple test to check if the reported p-values in a GWAS results file match the other statistics. This
function calculates an expected p-value (from the effect size and standard error) and then correlates
it with the actual, reported p-value.

Usage

check_P(dataset, HQ_subset,
plot_correlation = FALSE, plot_if_threshold = FALSE,
threshold_r = 0.99,
save_name = "dataset", save_dir = getwd(),
header_translations,
use_log = FALSE, dataN = nrow(dataset), ...)

Arguments

dataset table with at least three columns: p-value, effect size and standard error.

HQ_subset an optional logical or numeric vector indicating the rows in dataset that contain
high quality SNPs.

plot_correlation

logical; should a scatterplot of the reported vs. calculated p-values be made? If
TRUE, the plot is saved as a .jpg file.

plot_if_threshold

logical; if TRUE, the scatterplot is only saved when the correlation between re-
ported and calculated p-values is lower than threshold_r.

threshold_r numeric; the correlation threshold for the scatterplot.

save_name character string; the filename, without extension, for the scatterplot.

save_dir character string; the directory where the output files are saved. Note that R uses
forward slash (/) where Windows uses backslash (\).

header_translations

translation table for column names See translate_header for more informa-
tion. If the argument is left empty, dataset is assumed to use the standard
column names used by QC_GWAS.

use_log, dataN arguments used by QC_GWAS; redundant when check_P is used separately.

... arguments passed to plot.

Details

check_P calculates the expected p-value by taking the chi-square (1 degree of freedom) of the effect
size divided by the standard error squared.

Value

The correlation between expected and reported p-values.

convert_impstatus 5

Examples

data("gwa_sample")

selected_SNPs <- HQ_filter(data = gwa_sample,
FRQ_val = 0.05,
cal_val = 0.95,
filter_NA = FALSE)

check_P(gwa_sample, HQ_subset = selected_SNPs,
plot_correlation = TRUE, plot_if_threshold = FALSE,
save_name = "sample")

convert_impstatus Convert imputation-status values to the QCGWAS standard

Description

Converts imputation-status data to the standard values used by QC_GWAS

Usage

convert_impstatus(impstatus,
T_strings = c("1", "TRUE", "T"),
F_strings = c("0", "FALSE", "F"),
NA_strings = c(NA, "NA", ".", "-"),
use_log = FALSE, ...)

Arguments

impstatus vector of imputation-status data.

T_strings character-string(s) indicating imputed data.

F_strings character-string(s) indicating genotyped data.

NA_strings character-string(s) indicating missing data.

use_log, ... arguments used by QC_GWAS; redundant when convert_impstatus is used sep-
arately.

Details

This function is used to convert the imputation-status column into the standard format, where 0 is
genotyped and 1 is imputed. Untranslated values (i.e. strings that do not appear in any of the string
arguments) will trigger a warning message and are set to NA.

Value

Numeric vector with values 0 for genotyped, 1 for imputed and NA for unknown data.

6 convert_impstatus

Note

The implementation of this function has changed. Previously, only character data was translated
using the string arguments. Since version 1.0-4, the string arguments are used for all data types, so
the user can determine the conversion of logical and numeric values as well.

However, this does mean that values 1 and 0 are no longer converted automatically. They must be
specified in the string arguments, or else the function will report them as untranslated and converts
them to NA. The same applies to TRUE, FALSE and NA. Note the difference between the character
string "NA" and the value NA.

Finally, if the imputation-status column contains character strings, the main QC function QC_GWAS
requires that all values are translated. If not, QC_GWAS will abort the QC.

Examples

status1 <- c(0,0,0,1,1,1,2,NA)
status2 <- c(TRUE, FALSE, TRUE, FALSE, NA)
status3 <- c("imputed", "genotyped", "NA", NA)
status4 <- c(status1, status2, status3)

(outcome1 <- convert_impstatus(status1,
T_strings = 1,
F_strings = 0,
NA_strings = NA))

status 1 contains an untranslated value "2", which is
converted to NA. To avoid the warning message:

(outcome1 <- convert_impstatus(status1,
T_strings = 1,
F_strings = 0,
NA_strings = c(NA, 2)))

(outcome2 <- convert_impstatus(status2,
T_strings = TRUE,
F_strings = FALSE,
NA_strings = NA))

(outcome3 <- convert_impstatus(status3,
T_strings = "imputed",
F_strings = "genotyped",
NA_strings = c("NA", NA)))

Note that NA_strings includes both the character-string "NA"
and the value NA. Otherwise, one of the two would go
"untranslated" and trigger a warning message.

And to check them all together
(outcome4 <- convert_impstatus(status4,

T_strings = c(1, TRUE, "imputed"),
F_strings = c(0, FALSE, "genotyped"),
NA_strings = c("NA", NA, 2)))

create_hapmap_reference 7

create_hapmap_reference

Create an allele-reference file from HapMap data

Description

This function creates the standard allele reference file, as used by QC_GWAS and match_alleles,
from data publicly available at the website of the international HapMap project (see ’References’).

Usage

create_hapmap_reference(dir = getwd(),
download_hapmap = FALSE, download_subset,
hapmap_files = list.files(path = dir, pattern = "freqs_chr"),
filename = "allele_reference_HapMap",
save_txt = TRUE, save_rdata = !save_txt,
return_reference = FALSE)

Arguments

dir character string; the directory of the input and output files. Note that R uses
forward slash (/) where Windows uses the backslash (\).

download_hapmap

logical; if TRUE, the required allele-frequency files are downloaded from the
HapMap website into dir, and then turned into a reference. If FALSE, the files
specified in hapmap_files are used.

download_subset

character-string; indicates the population to download for creating the reference.
Options are: ASW, CEU, CHB, CHD, GIH, JPT, LWK, MEX, MKK, TSI, YRI.

hapmap_files character vector of the filenames of HapMap frequency-files to be included in
the reference. The default option includes all files with the string "freqs_chr" in
the filename. (This argument is only used when download_hapmap is FALSE.)

filename character string; the name of the output file, without file-extension.
save_txt, save_rdata

logical; should the reference be saved as a tab-delimitated text file and/or an
RData file? If saved as RData, the object name allele_ref_std is used for the
reference table.

return_reference

logical; should the function return the reference as it output value?

Details

The function removes SNPs with invalid alleles and with allele frequencies that do not add up to
1. It also removes all instances of duplicate SNPids. If such entries are encountered, a warning is
printed in the R console and the entries are saved in a .txt file in the output directory.

Like the QC_GWAS, create_hapmap_reference codes the X chromosome as 23, Y as 24, XY (not
available on HapMap website) as 25 and M as 26.

Both the .RData export and the function return store the alleles as factors rather than character
strings.

8 filter_GWAS

Value

If return_reference is TRUE, the function returns the generated reference table. If FALSE, it returns
an invisible NULL.

References

The required data is available at the Website of the International HapMap project, under bulk data
downloads > bulk data > frequencies

http://hapmap.ncbi.nlm.nih.gov

The HapMap files downloaded by this function are subject to the HapMap terms and policies. See:
http://hapmap.ncbi.nlm.nih.gov/datareleasepolicy.html

See Also

match_alleles

Examples

This command will download the CEU HapMap dataset and use
it to generate an allele-reference. Create a folder
"new_hapmap" to store the data and make sure there is
sufficient disk space and a reasonably fast internet
connection.

#new_hapmap <- create_hapmap_reference(dir = "C:/new_hapmap",
download_hapmap = TRUE, download_subset = "CEU",
filename = "new_hapmap", save_txt = TRUE,
return_reference = TRUE)

filter_GWAS Automated filtering and reformatting of GWAS results files

Description

This function was created as a convenient way to automate the removal of low-quality and non-
autosomal SNPs. It includes the same formatting options as QC_GWAS.

Usage

filter_GWAS(ini_file,
GWAS_files, output_names,
dir_GWAS = getwd(), dir_output = dir_GWAS,
FRQ_HQ = NULL, HWE_HQ = NULL,
cal_HQ = NULL, imp_HQ = NULL,
FRQ_NA = TRUE, HWE_NA = TRUE,
cal_NA = TRUE, imp_NA = TRUE,
ignore_impstatus = FALSE,
remove_X = FALSE, remove_Y = FALSE,
remove_XY = FALSE, remove_M = FALSE,
header_translations,
check_impstatus = FALSE,

filter_GWAS 9

imputed_T = c("1", "TRUE", "yes", "YES", "y", "Y"),
imputed_F = c("0", "FALSE", "no", "NO", "n", "N"),
imputed_NA = NULL,
column_separators = c("\t", " ", "", ",", ";"),
header = TRUE, nrows = -1, nrows_test = 1000,
comment.char = "", na.strings = c("NA", "."),
out_header = "original", out_quote = FALSE,
out_sep = "\t", out_eol = "\n", out_na = "NA",
out_dec = ".", out_qmethod = "escape",
out_rownames = FALSE, out_colnames = TRUE, ...)

Arguments

ini_file (the filename of) a table listing the files to be processed and the filters to be
applied. See ’Details’.

GWAS_files character vector: when no ini_file is provided, this identifies the files to be
processed. See ’Details’.

output_names character vector: the filenames for the output files. The default option is to
use the input filenames. Note that, unlike with other QCGWAS functions, the file
extensions should be included.

dir_GWAS, dir_output

character-strings specifying the directory address of the folders for the input files
and the output, respectively. Note that R uses forward slash (/) where Windows
uses backslash (\).

FRQ_HQ, HWE_HQ, cal_HQ, imp_HQ

Numeric vectors. When no ini_file is provided, these arguments specify the
filter threshold-values for allele frequency, HWE p-value, callrate and imputa-
tion quality, respectively. Passed to HQ_filter.

FRQ_NA, HWE_NA, cal_NA, imp_NA

Logical vectors. When no ini_file is provided, these arguments specify whether
missing values (of allele frequency, HWE p-value, callrates and imputation qual-
ity, respectively) are excluded (TRUE) or ignored (FALSE). Passed to HQ_filter.

ignore_impstatus

Logical vector. When no ini_file is provided, this argument specifies whether
imputation status is taken into account when applying the filters. If FALSE, HWE
p-value and callrate filters are applied only to genotyped SNPs, and imputation
quality filters only to imputed SNPs. If TRUE, the filters are applied to all SNPs
regardless of the imputation status.

remove_X, remove_Y, remove_XY, remove_M

logical; respectively whether X-chromosome, Y-chromosome, pseudo-autosomal
and mitochondrial SNPs are removed. Note: these arguments accept only a sin-
gle TRUE or FALSE value. Unlike the above settings, it’s not possible to specify
them independently for every dataset.

header_translations

translation table for column names. See translate_header for more infor-
mation. If the argument is left empty, dataset is assumed to use the standard
column-names used by QC_GWAS.

check_impstatus

logical; should convert_impstatus be called to convert the imputation-status
column into standard values?

10 filter_GWAS

imputed_T, imputed_F, imputed_NA

arguments passed to convert_impstatus.

column_separators

character string or vector; specifies the values used as column delimitator in the
GWAS file(s). The argument is passed to load_test; see the description of that
function for more information.

nrows_test integer; the number of rows used for "trial-loading". Before loading the entire
dataset, the function load_test is called to determine the dataset’s file-format
by reading the top x lines, where x is nrows_test. Setting nrows_test to a low
number (e.g. 150) means quick testing, but runs the risk of missing problems in
lower rows. To test the entire dataset, set it to -1.

header, nrows, comment.char, na.strings, ...

arguments passed to read.table when importing the dataset.

out_header Translation table for the column names of the output file. This argument is the
opposite of header_translations: it translates the standard column-names of
QC_GWAS to user-defined ones. output_header can be one of three things:

• A user specified table similar to the one used by translate_header. How-
ever, as this translates standard names into non-standard ones, the standard
names should be in the right column, and the desired ones in the left. There
is also no requirement for the names in the left column to be uppercase.

• The name of a file in dir_GWAS containing such a table.
• Character string specifying a standard form. See QC_GWAS, section ’Output

header’ for the options.

out_quote, out_sep, out_eol, out_na, out_dec, out_qmethod, out_rownames, out_colnames

arguments passed to write.table when saving the final dataset.

Details

The easiest way to use filter_GWAS is by passing an ini file to the ini_file argument. The ini file
can be generated by running QC_series with the save_filtersettings argument set to TRUE. The
output will include a file ’Check_filtersettings.txt’, describing the (high-quality) filter settings used
for each file (taking into account whether there was enough data, i.e. whether the use_threshold
was met, to apply the filters).

The ini_file argument accepts both a table or the name of a file in dir_GWAS or the current R
working directory.

If no ini_file is specified, the function will use the GWAS_files, x_HQ, x_NA and ignore_impstatus
arguments to construct such a table. GWAS_files can either be a character vector or a single value.
If a single string, all filenames containing the string will be processed. The other arguments can
also be a vector or a single value; if the latter, they will be recycled to create a vector of the correct
length.

If neither ini_file nor GWAS_files are specified, the function will look for a file Check_filtersettings.txt
in dir_GWAS and the current R working directory.

Note that ini_file overrules the other filter settings, i.e. one cannot adjust ini_file through the
other arguments.

Value

An invisible logical vector, indicating which files were successfully filtered.

gwa_sample 11

Note

R is not the optimal platform for filtering GWAS files. This function was added at the request of a
user, but an UNIX script is likely to be faster.

gwa_sample Sample dataset for the QCGWAS package

Description

A fake GWAS results dataset for use in the examples.

Usage

data(gwa_sample)

Format

A data frame with 10000 observations on the following 15 variables.

MARKER a character vector; the SNP IDs.

STRAND a character vector; the DNA strand of the listed alleles.

CHR a character vector; the chromosome of the listed SNP.

POSITION a numeric vector; the basepair position of the listed SNP.

EFFECT_ALL a character vector; the effect allele.

OTHER_ALL a character vector; the non-effect allele.

N_TOTAL a numeric vector; the sample size.

EFF_ALL_FREQ a numeric vector; frequency of the effect-allele in the dataset.

HWE_PVAL a numeric vector; Hardy-Weinberg (HWE) p-value of the listed alleles.

CALLRATE a numeric vector; SNP callrate.

EFFECT a numeric vector; effect size of the listed effect allele.

STDERR a numeric vector; standard error of the effect.

PVALUE a numeric vector; p-value of the effect.

IMPUTED a numeric vector; imputation status - i.e. whether the SNP is genotyped (0) or imputed
(1).

IMP_QUALITY a numeric vector; imputation quality.

12 HQ_filter

header_translations Translation table for GWAS dataset headers

Description

This is a sample translation table, as used by translate_header to translate dataset column names
to the QCGWAS standard.

Note: It not recommended to load this table into R with the data function, as this automatically
converts the characters strings into factors. See translate_header for more information.

Usage

data(header_translations)

Format

A data frame with 104 observations on the following 2 variables.

STANDARD a character vector; standard column names as used by QCGWAS.

ALTERNATIVE a character vector; alternative column names, as used in the datasets.

HQ_filter Select high-quality data in GWAS datasets

Description

This function accepts a QC_GWAS dataset and returns a vector of logical values indicating which
entries meet the quality criteria.

Usage

HQ_filter(data,
ignore_impstatus = FALSE,
FRQ_val = NULL, HWE_val = NULL,
cal_val = NULL, imp_val = NULL,
filter_NA = TRUE,
FRQ_NA = filter_NA, HWE_NA = filter_NA,
cal_NA = filter_NA, imp_NA = filter_NA)

Arguments

data table to be filtered. HQ_filter assumes the dataset uses the standard QC_GWAS
column names.

ignore_impstatus

logical; if FALSE, HWE p-value and callrate filters are applied only to genotyped
SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters
are applied to all SNPs regardless of the imputation status.

HQ_filter 13

FRQ_val, HWE_val, cal_val, imp_val

numeric; the minimal required value for allele frequency, HWE p-value, call-
rate and imputation quality respectively. Note that the allele-frequency filter
is two-sided: for a filter-value of x, it will exclude entries with freq < x and
freq > 1 - x.

filter_NA logical; if TRUE, then missing filter variables will be excluded; if FALSE, they will
be ignored. filter_NA is the default setting for all variables. Variable-specific
settings can be specified with the following arguments.

FRQ_NA, HWE_NA, cal_NA, imp_NA

logical; variable-specific settings for filter_NA.

Details

A SNP is considered high-quality if it meets all quality criteria. The thresholds are inclusive; i.e.
SNPs that have a value equal or higher than the threshold will be considered high-quality.

To filter missing values only, set the filter argument to NA, and the corresponding NA-filter to TRUE.

To disable filtering entirely, set to NULL. This disables the filtering of missing values as well.

When imputation status is missing or invalid (and ignore_impstatus is FALSE), only the allele-
frequency filter will be applied.

Value

A vector of logical values, indicating which values in data meet (TRUE) or fail (FALSE) the quality
criteria.

Note

The table entered in the data argument must use the standard column names of QC_GWAS. Functions
using HQ_filter usually allow the user to specify a translation table. If not, translate_header
can be used to translate the header manually.

Examples

data("gwa_sample")

selected_SNPs <- HQ_filter(data = gwa_sample,
FRQ_val = 0.01,
cal_val = 0.95,
filter_NA = FALSE)

summary(gwa_sample[selected_SNPs,])

selected_SNPs <- HQ_filter(data = gwa_sample,
FRQ_val = 0.01,
cal_val = 0.95,
filter_NA = FALSE,
ignore_impstatus = TRUE)

summary(gwa_sample[selected_SNPs,])

14 identify_column

identify_column Identify non-standard column names

Description

This function is a subroutine of translate_header and several other functions. It is used to trans-
late non-standard column names into standard ones.

Usage

identify_column(std_name, alt_names, header)

Arguments

std_name character string; the standard name for the data-column.

alt_names translation table; with in the left column the standard name(s) and in the right
column possible alternatives. See translate_header for more details.

header the column names of the dataset. The names should be entirely in uppercase.

Details

The purpose of identify_column is essentially to look up in the translation table (alt_names)
which of the names in header can be translated into std_name.

Value

An integer vector of the entry(s) in header (i.e. the column-numbers) that can be translated into
std_name.

See Also

translate_header

Examples

sample_data <-
data.frame(SNP = paste("rs", 1:10, sep = ""),

chrom = 2,
effect = 1:10/10,
misc = NA)

sample_header <- toupper(names(sample_data))

alt_headers <-
data.frame(

standard = c("MARKER", "MARKER", "CHR", "CHR"),
alternative = c("MARKER", "SNP", "CHR", "CHROM"),
stringsAsFactors = FALSE)

identify_column(std_name = "EFFECT", alt_names = alt_headers,
header = sample_header)

identify_column(std_name = "MARKER", alt_names = alt_headers,
header = sample_header)

load_GWAS 15

identify_column(std_name = "CHR", alt_names = alt_headers,
header = sample_header)

identify_column(std_name = "MISC", alt_names = alt_headers,
header = sample_header)

load_GWAS Easy loading of GWAS results files

Description

load_GWAS is wrapper-function of read.table that makes loading large GWAS results files less of
a hassle. It automatically unpacks .zip and .gz files and uses load_test to determine which column
separator the file uses.

Usage

load_GWAS(filename, dir = getwd(),
column_separators = c("\t", " ", "", ",", ";"),
test_nrows = 1000,
header = TRUE, nrows = -1,
comment.char = "", na.strings = c("NA", "."),
stringsAsFactors = FALSE, ...)

load_test(filename, dir = getwd(),
column_separators = c("\t", " ", "", ",", ";"),
test_nrows = 1000, ...)

Arguments

filename character string; the complete filename of the file to be loaded. Note that com-
pressed files (.gz or .zip files) can only be unpacked if the filename of the archive
contains the extension of the archived file. For example, if the archived file is
named "data1.csv", the archive should be "data1.csv.zip".

dir character string; the directory containing the file. Note that R uses forward slash
(/) where Windows uses backslash (\).

column_separators

character string or vector of the column-separators to be tried by load_test.
White-space can be specified by "", but it is recommended you try tab ("\t")
and space (" ") first.

test_nrows integer; the number of lines that load_test checks in the trail-load. A smaller
number means faster loading, but also makes it more likely that errors slip
through. To check the entire dataset, set to -1.

header, nrows, comment.char, na.strings, stringsAsFactors, ...

Arguments passed to read.table.

Details

load_test determines the correct column separator simply by trying them individually until it finds
one that works (that is: one that results in a dataset with an equal number of cells in every row AND
at least five or more columns). If none work, it reports the error-message generated by the last
column separator tried.

16 match_alleles

The column separators are tried in the order specified by the column_separators argument.

By default, load_test only checks the first 1000 lines (adjustable by the test_nrows argument);
if the problem lies further down in the dataset, it will not catch it. In such a case, load_GWAS and
QC_GWAS will crash when attempting to load the dataset.

A common problem is employing white-space ("") as column separator for a file that uses empty
fields to indicate missing values. The separators surrounding an empty field are adjacent, so R
parses them as a single column separator. In this particular example, specifying a single space
(" ") or tab ("\t") as column separator solves the problem (this is why the default setting of
column_separators puts these values before white-space).

Value

load_GWAS returns the table imported from the specified file.

load_test returns a list with 4 components:

success logical; whether load_test was able to load a dataset with five or more columns.

error character string; if unable to load the file, this returns the error-message of the
last column separator to be tried.

file_type character string; the last three characters of filename.

sep the first column-separator that succeeded in loading a dataset with five or more
columns.

Note

load_GWAS uses the same default loading-settings as QC_GWAS. load_test, on the other hand, has
no default values for header, comment.char, na.strings and stringsAsFactors, and uses the
read.table defaults instead.

Examples

As the function requires a GWAS file to work,
the following code should be adjusted before execution.
Because this is a demonstration, the nrows argument is used
to read only the first 100 rows.

data_GWAS <-
load_GWAS("GWA_results1.txt.zip",
dir = "C:/GWAS_results",
nrows = 100)

match_alleles Check and correct alleles in GWAS result files

Description

This function checks the reported alleles and allele frequencies in GWAS results data by comparing
them to a reference table. It will also uniformize the dataset by switching all SNPs to the positive
strand and flipping the alleles so that the effect allele matches the reference minor allele.

match_alleles 17

Usage

match_alleles(dataset, ref_set, HQ_subset,
dataname = "dataset", ref_name = "reference",

unmatched_data = !all(dataset$MARKER %in% ref_set$SNP),
check_strand = FALSE,
save_mismatches = TRUE, delete_mismatches = FALSE,
delete_diffEAF = FALSE, threshold_diffEAF = 0.15,
check_FRQ = TRUE, check_ambiguous = TRUE,
plot_FRQ = FALSE, plot_if_threshold = FALSE,
threshold_r = 0.95,
return_SNPs = FALSE, return_ref_values = FALSE,
header_translations, header_reference,
save_name = dataname, save_dir = getwd(),
use_log = FALSE, log_SNPall = nrow(dataset))

Arguments

dataset table containing the allele data. dataset should always contain columns for
the SNPID, the effect allele and the other allele. Strand and allele frequency
may be required, depending upon the settings, while effect size is optional.
match_alleles accepts non-standard column names, provided a translation ta-
ble is specified in header_translations. The order of columns does not mat-
ter; nor does the presence of other columns.

ref_set table containing the reference data. ref_set should always contain columns for
the SNPID, the minor allele and the major allele. Minor allele frequency is only
required if check_FRQ or check_ambiguous are TRUE. The standard column-
names are "SNP", "MINOR", "MAJOR" and "MAF". Non-standard column names
are accepted if a translation table is specified in header_reference.

HQ_subset an optional logical or numeric vector indicating the rows in dataset that contain
high quality SNPs.

dataname, ref_name

character strings; the names of the dataset and reference, respectively. Used as
identifiers in the output files.

unmatched_data logical; are there SNPs in the dataset that do not appear in the reference? This
argument is currently redundant: the function will determine it automatically.

check_strand logical; should the function check for negative-strand SNPs? If FALSE, all SNPs
are assumed to be on the positive strand.

save_mismatches

logical; should mismatching entries be exported to a .txt file before they are
corrected?

delete_mismatches

logical; should mismatching SNPs (that could not be corrected by strand-switching)
have their effect allele set to missing?

delete_diffEAF logical; should SNPs that exceed the threshold_diffEAF have their effect al-
lele set to missing?

threshold_diffEAF

numeric; the max. allowed difference between reported and reference allele
frequency.

check_FRQ logical; should the function correlate the reported allele-frequency with that of
the reference?

18 match_alleles

check_ambiguous

logical; should the function do separate frequency correlations and create sep-
arate plots for SNPs with a strand-independent allele-pair (i.e. an A/T or C/G
configuration)?

plot_FRQ logical; should a scatterplot of reported vs. reference allele-frequency be made?
plot_if_threshold

logical; if TRUE, the scatterplot is only made when frequency correlation is below
the threshold specified by threshold_r.

threshold_r numeric; the correlation threshold value.

return_SNPs logical; should the return value include the relevant columns of dataset?
return_ref_values

logical; should the return-value include the matching entries in ref_set?
header_translations, header_reference

translation tables for converting the column names of dataset and ref_set to
standard names, respectively. See translate_header for more information.

save_name character string; the filename, without extension, for the various output files.

save_dir character string; the directory where the output files are saved. Note that R uses
forward slash (/) where Windows uses backslash (\).

use_log, log_SNPall

arguments used by QC_GWAS; redundant when match_alleles is used sepa-
rately.

Details

match_alleles is one of the more complicated functions of QCGWAS. However, what it does is quite
simple:

• Check for incorrect allele pairs

• Uniformize the output so that all SNPs are on the positive strand, and identical SNPs will have
the same effect allele and other allele in all datasets

• Check the allele frequency

The complexity stems from the fact that these three tasks have to be carried out together and often
overlap. So the actual function schematic looks like this:

• Switch negative-strand SNPs (i.e. SNPs with "-" in the strand-column) to the positive strand.
This step can be disabled by setting check-strand to FALSE.

• Correct (if possible) mismatching alleles. A mismatch is when the reported allele-pair does
not match that in the reference. match_alleles will attempt to fix the mismatch by "strand-
switching" the alleles. The assumption is that dataset merely reported the wrong strand, so
converting them to the opposing strand should solve the mismatch. If it does not, the SNPs
are truly mismatches. If delete_mismatches is TRUE, the effect alleles are set to NA; if FALSE,
they are restored to their original configuration and excluded from the allele-frequency test. If
save_mismatches is TRUE, the entries are exported in a .txt before being changed. Note that
save_mismatches only exports true mismatches (i.e. not those that were fixed after strand-
switching).

• Align the allele-pairs with the reference. In order to have the same effect allele with the same
SNP in every dataset, SNPs are "flipped" so that the effect allele matches the reference minor
allele. Flipped alleles will also have their allele frequency and effect size inverted.

match_alleles 19

• Check for undetected strand-mismatch by counting the number of ambiguous and (if check_FRQ
is TRUE) suspect SNPs. Ambiguous SNPs are SNPs with an allele-pair that is identical on both
strands (i.e. A/T or C/G). Suspect SNPs are ambiguous SNPs whose allele-frequency differs
strongly from that of the reference.

• Check allele-frequencies by correlating and/or plotting them against the reference. If check_ambiguous
is TRUE, additional scatterplots will be made for the subsets of ambiguous and non-ambiguous
SNPs. If delete_diffEAF is TRUE, SNPs whose allele-frequency differs from the reference
by more than threshold_diffEAF have their effect alleles set to NA as well. This entire step
can be disabled by setting check_FRQ to FALSE.

Value

An object of class ’list’ with the following components:

FRQ_cor, FRQ_cor_ambiguous, FRQ_cor_nonambi

Allele-frequency correlations for all, ambiguous, and non-ambiguous SNPs re-
spectively.

n_SNPs Total number of SNPs in dataset

n_missing, n_missing_data, n_missing_ref

Number of SNPs with missing allele-data in either dataset or reference,
dataset only, and reference only, respectively.

n_negative_strand, n_negative_switch, n_negative_mismatch

Number of negative-strand SNPs, the subset of negative-strand SNPs that were
strand-switched twice because they did not match the reference, and the subset
of double-switched SNPs that were still mismatching after the second strand-
switch.

n_strandswitch, n_mismatch

Number of SNPs that was strand-switched because they did not match the refer-
ence, and the subset of those that still did not match after the strand-switch.

n_flipped Number of SNPs whose alleles were flipped to align them with the reference.

n_ambiguous, n_suspect

Number of ambiguous SNPs, and the subset of those that had a large allele-
frequency aberration.

n_diffEAF Number of SNPs whose allele-frequency differs from the reference by more than
threshold_diffEAF.

MARKER When return_SNPs and/or return_ref_values is TRUE, this returns the col-
umn of dataset containing the SNP IDs. If not, this returns NULL.

EFFECT_ALL, OTHER_ALL, STRAND, EFFECT, EFF_ALL_FREQ

If return_SNPs is TRUE, these elements return the corrected columns of data-set.
If FALSE, these return NULL. Note: match_alleles only returns those columns
that were checked; if check_FRQ is FALSE, EFF_ALL_FREQ return NULL. The
same goes for check_strand and STAND. EFFECT is only returned if present
in dataset.

ref_MINOR, ref_MAJOR, ref_MAF

If return_ref_values is TRUE, these elements return the reference minor and
major alleles and allele frequency column for the SNPs in MARKER.If FALSE,
these return NULL. ref_MAF is only returned when check_FRQ is TRUE.

20 match_alleles

Interpreting the output

The output of match_alleles may seem a bit overwhelming at first, so here is a short explanation
of what it means and what you should pay attention to.

The columns included in the return value when return_SNPs is TRUE are the post-matching dataset.
This is only relevant if you want to continue working with the corrected dataset. Similarly, the out-
put of return_ref_values is only used for comparing the post-matching dataset to the reference.

n_missing, n_missing_data and n_missing_ref report the prevalence of missing allele data, but
are otherwise irrelevant.

The majority of return values serve to check whether strand-switching was performed correctly.
n_strandswitch indicates how many SNPs were converted to the other strand because of a mis-
match with the reference. In our experience, many cohorts do not include stand data, or simply set
all SNPs to "+", so the presence of strand-switched SNPs isn’t an indicator of problems by itself.
However, if the strand-switching did not fix the mismatch, there may a problem. The subset of
strand-switched SNPs that could not be fixed is reported as n_mismatch, and indicates incorrect
allele data or, possibly, triallelic SNPs.

Depending on the argument save_mismatches, mismatching entries are exported as a .txt file,
together with the reference data. This allows the user to see which SNPs are affected.

Another sign of trouble is when negative-strand SNPs (n_negative_strand) are present (i.e. the
cohort included real strand data, rather just setting it to "+"), but strand-switching still occurred.
Negative-strand SNPs are converted to the positive strand before their alleles are compared to the
reference, so they should not appear here. If they do, it means that either the strand-column data is
incorrect, or it is an ordinary mismatch (see above).

Negative-strand SNPs that are "strand-switched" will revert to their original allele configuration (but
the strand column now reports them as being on positive strand). The output of QC_GWAS calls them
double strand-switches, but here they are reported as n_negative_switch. The subset of those that
could not be fixed is n_negative_mismatch.

Just to be clear: the relevant output is still n_strandswitch and n_negative_strand, not n_negative_switch
and n_negative_mismatch. Whether it was the negative-strand SNPs that were switched or not is
not important: the important thing is that there were negative-strand SNPs (i.e. the cohort included
real strand data rather setting everything to "+"); yet strand-switches were still necessary and cannot
be attributed to mismatch (i.e. the strand data is incorrect).

n_flipped counts how many SNPs had their alleles reversed to match the effect allele with the ref-
erence minor-allele. This is merely recorded for "administrative" purposes, and shouldn’t concern
the user.

n_ambiguous and n_suspect are another test of the strand information. Ambiguous SNPs are SNPs
that have the same allele pair on the positive and negative strands (i.e. A/T or C/G). Matching them
with the allele-reference therefor won’t detected incorrect strand-information. In a normal-sized
GWAS results file, about 15% of SNPs will be ambiguous.

Suspect SNPs are the subset of ambiguous SNPs whose allele frequency is significantly different
from that in the reference (< 0.35. vs > 0.65 or visa versa). In our experience, a GWAS results file
with 2.5M SNPs will have only a few dozen suspect SNPs. However, if it’s a sizable proportion of
all ambiguous SNPs, it indicates that the ambiguous SNPs are listed for the wrong strand. This will
also have resulted in the wrong SNPs being flipped in the previous step, so it should be visible in
the allele-frequency correlation test as well.

n_diffEAF counts SNPs with significantly different allele-frequencies. A large number here indi-
cates either that the allele-frequencies are incorrect or listed for the wrong allele (see below), or that
the population used in the dataset does not match that of the reference.

match_alleles 21

The FRQ_cor value is the correlation between the reported and reference allele-frequencies. If allele
frequency is correct, the correlation should be near 1. If it’s close to -1, the listed frequency is that
of the other (i.e. non-effect) allele.

the FRQ_cor_ambiguous and FRQ_cor_nonambi values are the same test for the subsets of ambigu-
ous and non-ambiguous SNPs. If ambiguous SNPs are listed on the wrong strand, then they will
have been flipped incorrectly, so allele-frequency correlation should also move towards -1.

Note

The function does not delete SNPs, regardless of the delete_mismatches delete_diffEAF argu-
ments. Setting these to TRUE means that any such SNPs are marked by having their effect allele set
to NA. The actual deletion takes place inside QC_GWAS.

See Also

create_hapmap_reference for creating an allele reference from publicly-available HapMap data

switch_strand

Examples

In order to keep the QCGWAS package small, no allele reference
is included. Follow the example of the create_hapmap_reference
function to make one.

data("gwa_sample")
hapmap_ref <- read.table("C:/new_hapmap/new_hapmap.txt",
header = TRUE, stringsAsFactors = FALSE)

match_alleles(gwa_sample, hapmap_ref,
dataname = "sample data", ref_name = "HapMap",
save_name = "test_allele1", save_dir = "C:/new_hapmap",
check_strand = TRUE, plot_FRQ = TRUE)

HQ_SNPs <- HQ_filter(data = gwa_sample, filter_NA = TRUE,
filter_FRQ = 0.01, filter_cal = 0.95)
match_alleles(gwa_sample, hapmap_ref,
HQ_subset = HQ_SNPs,
dataname = "sample data", ref_name = "HapMap",
save_name = "test_allele2", save_dir = "C:/new_hapmap",
check_strand = TRUE, plot_FRQ = TRUE)

match_output <-
match_alleles(gwa_sample, hapmap_ref,
HQ_subset = HQ_SNPs,
delete_mismatches = TRUE, return_SNPs = TRUE,
delete_diffEAF = TRUE, threshold_diffEAF = 0.15,
dataname = "sample data", ref_name = "HapMap",
save_name = "test_allele3", save_dir = "C:/new_hapmap",
check_strand = TRUE, plot_FRQ = TRUE)

if(sum(match_output$n_negative_strand,
match_output$n_strandswitch, match_output$n_mismatch,
match_output$n_flipped, match_output$n_diffEAF) > 0){
gwa_sample$EFFECT_ALL <- match_output$EFFECT_ALL
gwa_sample$OTHER_ALL <- match_output$OTHER_ALL

22 plot_distribution

gwa_sample$STRAND <- match_output$STRAND
gwa_sample$EFFECT <- match_output$EFFECT
gwa_sample$EFF_ALL_FREQ <- match_output$EFF_ALL_FREQ
}

plot_distribution GWAS effect-Size distribution plot

Description

This function generates the effect-size distribution boxplot created by QC_series.

Usage

plot_distribution(data_table,
names = 1:ncol(data_table),
include = TRUE,
plot_order = 1:ncol(data_table),
quantile_lines = FALSE,
save_name = "Graph_distribution",
save_dir = getwd(), ...)

Arguments

data_table table with a column of effect sizes for every dataset.

names vector; the names for the datasets, for use in the graph. Note: it’s best to keep
these very short, as long labels won’t be plotted. The default is the column
numbers of data_table.

include logical vector indicating which columns of data_table are included in the plot.
The default setting is to include all.

plot_order numeric vector determining the left-to-right order of plotting the datasets (columns).
QC_series uses the sample size for this.

quantile_lines logical; should lines representing the median and quartile values be included?

save_name character string; the filename, without extension, for the graph file.

save_dir character string; the directory where the graph is saved. Note that R uses forward
slash (/) where Windows uses backslash (\).

... arguments passed to boxplot.

Details

When running a QC over multiple files, QC_series collects the values of the effectsize_HQ output
of QC_GWAS in a table, which is then passed to this function. If there are significant differences in
the distribution of effect sizes, it usually indicates that the datasets did not use the same model or
unit.

Value

An invisible NULL.

plot_precision 23

Note

There is a known bug with this function when called by QC_series. As input for names, QC_series
pastes together a shortened filename and a "N = x" string giving the dataset’s sample size.

The filenames are truncated to the first unique element; e.g. files "cohortX_male_HB.txt" and
"cohortX_female_HB.txt" become "cohortX_male; N = 608" and "cohortX_female; N = 643",
respectively. However, if the unique element is longer than approx. 15 characters, the label is
too long to be plotted. The only solution is to change the filenames prior to passing the files to
QC_series.

See Also

For comparing reported to expected effect-size distribution: QC_histogram.

For other plots comparing GWAS results files: plot_precision and plot_skewness.

Examples

data("gwa_sample")

chunk1 <- gwa_sample$EFFECT[1:1000]
chunk2 <- gwa_sample$EFFECT[1001:2000]
chunk3 <- gwa_sample$EFFECT[2001:3000]

plot_distribution(
data_table = data.frame(chunk1, chunk2, chunk3),
names = c("chunk 1", "chunk 2", "chunk 3"),
quantile_lines = TRUE,
save_name = "sample_distribution")

plot_precision GWAS Precision Plot

Description

This function generates the precision plot created by QC_series. Precision is defined as:

1 / median standard-error.

Usage

plot_precision(SE, N,
labels = NULL,
save_name = "Graph_precision",
save_dir = getwd(), ...)

Arguments

SE, N numeric vectors containing the median standard-error and sample size of the
datasets, respectively.

labels vector containing names or other identifiers for the datapoints, to be plotted in
the graph. Note: it’s best to keep these very short. To disable labeling, set to
NULL (default).

24 plot_regional

save_name character string; the filename, without extension, for the graph file.

save_dir character string; the directory where the graph is saved. Note that R uses forward
slash (/) where Windows uses backslash (\).

... arguments passed to plot.

Details

When running a QC over multiple files, QC_series collects the values of the SE_HQ_median and
sample_size_HQ outputs of QC_GWAS in a table, which is then passed to this function to convert it
into a plot.

Value

An invisible NULL.

See Also

plot_distribution and plot_skewness.

Examples

value_SE <- c(0.078, 0.189, 0.077, 0.040, 0.021, 0.072)
value_N <- c(870, 830, 970, 690, 2200, 870)
value_labels <- paste("cohort", 1:6)

plot_precision(SE = value_SE, N = value_N,
labels = value_labels,
save_name = "sample_precision")

plot_regional Regional Association Plot

Description

A regional association plot is essentially a zoomed-in Manhattan plot, allowing the researcher to
look at associations in a small, pre-defined area of the genome.

Usage

plot_regional(dataset,
chr, start_pos, end_pos,
plot_cutoff_p = 1,
name_cutoff_p,
data_name = NULL,
save_name = "regional_association_plot",
save_dir = getwd(),
header_translations,
main = "Regional association plot", ...)

plot_regional 25

Arguments

dataset data frame containing the SNPs chromosome number, position, p-value and (if
a name_cutoff_p is specified) their SNP IDs.

chr character or numeric value indicating the chromosome of interest.

start_pos, end_pos

Numeric; the position values of the beginning and end of the region of interest.

plot_cutoff_p numeric - the threshold of p-values to be shown in the QQ & Manhattan plots.
Higher (less significant) p-values are not included in the plot. Note that, unlike
in QC_GWAS or QC_plots, the default value is 1 (i.e. includes everything), rather
than 0.05. Setting it to 0.05 excludes 95% of data-points, which significantly
reduces running time and memory usage in larger datasets.

name_cutoff_p numeric; SNPs with p-values lower than or equal to this value will have their
names plotted in the graph. If set to NULL (default), no names will be plotted.

data_name character string; the subtitle for the plot.

save_name character string; the filename, without extension, for the graph file.

save_dir character string; the directory where the graph is saved. Note that R uses forward
slash (/) where Windows uses backslash (\).

header_translations

translation table for column names. See translate_header for more infor-
mation. If the argument is left empty, dataset is assumed to use the standard
column-names of QC_GWAS.

main, ... arguments passed to plot.

Details

By default, plot_regional expects dataset to use the standard column-names used by QC_GWAS.
A translation table can be specified in header_translations to allow non-standard names. See
translate_header for more information.

Value

An invisible NULL.

See Also

For creating a Manhattan plot: QC_plots.

Examples

data("gwa_sample")

plot_regional(dataset = gwa_sample,
chr = 2, start_pos = 55000000, end_pos = 75000000,
data_name = "QC GWAS sample data",
save_name = "sample_regional_association")

26 plot_skewness

plot_skewness GWAS Skewness vs. Kurtosis Plot

Description

This function generates the skewness vs. kurtosis plot created by QC_series.

Usage

plot_skewness(skewness,
kurtosis,
labels = paste("Study", 1:length(skewness)),
plot_labels = "outliers",
save_name = "Graph_skewness_kurtosis",
save_dir = getwd(), ...)

Arguments

skewness, kurtosis

Vectors containing the skewness and kurtosis values of the datasets

labels vector containing names or other identifiers for the datapoints, to be plotted in
the graph. Note: it’s best to keep these very short.

plot_labels character string or logical determining whether the values in labels are plotted
next to the data points. The possible settings are: "none" (or FALSE); "all" (or
TRUE); and "outliers" for outliers only.

save_name character string; the filename, without extension, for the graph file.

save_dir character string; the directory where the graph is saved. Note that R uses forward
slash (/) where Windows uses backslash (\).

... arguments passed to plot.

Details

When running a QC over multiple files, QC_series collects the values of the skewness_HQ and
kurtosis_HQ output of QC_GWAS in a table, which is then passed to this function to convert it into a
plot. Note that this values are calculated over high-quality SNPs only.

Value

An invisible NULL.

See Also

For calculating skewness and kurtosis: calc_kurtosis.

For other plots comparing GWAS results files: plot_precision and plot_distribution.

QC_GWAS 27

Examples

value_S <- c(0.05, -0.27, 0.10, 0.11)
value_K <- c(6.7, 10.0, 10.1, 6.6)
value_labels <- paste("cohort", 1:4)

plot_skewness(skewness = value_S,
kurtosis = value_K,
labels = value_labels,
plot_labels = "outliers",
save_name = "sample_skewness_kurtosis")

QC_GWAS Automated Quality Control of GWAS Results files

Description

QC_GWAS runs a full quality control (QC) over a single GWAS results file. It removes missing
and invalid data, checks the alleles and allele frequency with a reference, tests the reported p-
value against both calculated and expected values, creates QQ and Manhattan plots and reports the
distribution of the quality-parameters within the dataset, as well as various QC statistics.

QC_series does the same thing for multiple GWAS results files. It’s mainly a wrapper that passes
individual files to QC_GWAS, but it has a few extra features, such as making a checklist of important
QC stats and creating several graphs to compare the QC’ed files.

Although the number of arguments in QC_GWAS may seem overwhelming, only three of them are
required to run a basic QC. The name of the file to be QC’ed should be passed to the filename
argument; the directory of said file to the dir_data argument; and a header-translation table to the
header_translations argument. For a quick introduction to QCGWAS, read the quick reference
guide that can be found in "R\library\QCGWAS\doc".

Usage

QC_GWAS(filename,
filename_output = paste("QC_", filename, sep = ""),
dir_data = getwd(),
dir_output = paste(dir_data, "QCGWASed", sep = "/"),
dir_references = dir_data,
header_translations,
column_separators = c("\t", " ", "", ",", ";"),
nrows = -1, nrows_test = 1000,
header = TRUE, comment.char = "",
na.strings = c("NA", "nan", "NaN", "."),
imputed_T = c("1", "TRUE", "T"),
imputed_F = c("0", "FALSE", "F"),
imputed_NA = c(NA, "-"),
save_final_dataset = TRUE, order_columns = FALSE,
out_header = "standard",
out_quote = FALSE, out_sep = "\t", out_eol = "\n",
out_na = "NA", out_dec = ".", out_qmethod = "escape",
out_rownames = FALSE, out_colnames = TRUE,
return_HQ_effectsizes = FALSE,
remove_X = FALSE, remove_Y = FALSE,

28 QC_GWAS

remove_XY = remove_Y, remove_M = FALSE,
calculate_missing_p = FALSE,
make_plots = TRUE, only_plot_if_threshold = TRUE,
threshold_allele_freq_correlation = 0.95,
threshold_p_correlation = 0.99,
plot_histograms = make_plots, plot_QQ = make_plots,
plot_QQ_bands = TRUE, plot_Manhattan = make_plots,
plot_cutoff_p = 0.05,
allele_ref_std, allele_name_std,
allele_ref_alt, allele_name_alt,
update_alt = FALSE, update_savename,
update_as_rdata = FALSE, backup_alt = FALSE,
remove_mismatches = FALSE,
remove_mismatches_std = remove_mismatches,
remove_mismatches_alt = remove_mismatches,
threshold_diffEAF = 0.15, remove_diffEAF = FALSE,
remove_diffEAF_std = remove_diffEAF,
remove_diffEAF_alt = remove_diffEAF,
check_ambiguous_alleles = TRUE,
use_threshold = 0.1,
useFRQ_threshold = use_threshold,
useHWE_threshold = use_threshold,
useCal_threshold = use_threshold,
useImp_threshold = use_threshold,
useMan_threshold = use_threshold,
HQfilter_FRQ = NULL, HQfilter_HWE = NULL,
HQfilter_cal = NULL, HQfilter_imp = NULL,
QQfilter_FRQ = NULL, QQfilter_HWE = NULL,
QQfilter_cal = NULL, QQfilter_imp = NULL,
NAfilter = TRUE,
NAfilter_FRQ = NAfilter, NAfilter_HWE = NAfilter,
NAfilter_cal = NAfilter, NAfilter_imp = NAfilter,
ignore_impstatus = FALSE,
minimal_impQ_value = -0.5, maximal_impQ_value = 1.5,
logI = 1L, logN = 1L, ...)

QC_series(data_files, datafile_tag, output_filenames,
dir_data = getwd(),
dir_output = paste(dir_data, "QCGWASed", sep = "/"),
dir_references = dir_data,
header_translations, out_header = "standard",
allele_ref_std, allele_name_std,
allele_ref_alt, allele_name_alt,
update_alt = FALSE, update_savename,
update_as_rdata = FALSE, backup_alt = FALSE,
plot_effectsizes = TRUE, lim_effectsizes = NULL,
plot_SE = TRUE, label_SE = TRUE,
plot_SK = TRUE, label_SK = "outliers",
save_filtersettings = FALSE, ...)

Arguments

filename, data_files, datafile_tag

filename and data_files are, respectively, the name and names of the GWAS

QC_GWAS 29

results file(s) to be QC’ed. If no data_files are specified, QC_series will
process all filed in dir_data containing the string passed to datafiles_tag in
their filename. See below for more information on the input requirements.

filename_output, output_filenames

respectively the filename or names of the output of the QC. This should not
include an extension, since the QC will automatically add one. The default is to
use the input filename with "QC_" prefixed.

dir_data, dir_output, dir_references

character strings specifying the directory dress of the folders for, respectively,
the input file(s), the output file(s) and the auxillary files (header-translation ta-
bles and allele references). Note that R uses forward slash (/) where Win-
dows uses backslash (\). If dir_output does not exist, it will be created. If
no dir_output is specified, a folder named "QCGWASed" will be created in
dir_data.

header_translations

Translation table for the column names of the input file. Alternatively, the name
of a file in dir_references containing such a table. See translate_header
for details.

column_separators

character string or vector; specifies the values used as column delimitator in the
GWAS file. The argument is passed to load_test; see the description of that
function for more information.

nrows_test integer; the number of rows used for "trial-loading". Before loading the entire
dataset, the function load_test is called to determine the dataset’s file-format
by reading the top x lines, where x is nrows_test. Setting nrows_test to a low
number (e.g. 150) means quick testing, but runs the risk of missing problems in
lower rows. To test the entire dataset, set it to -1.

nrows, header, comment.char

arguments passed to read.table when importing the dataset.

na.strings character vector describing the values that represent missing data in the dataset.
Passed to read.table.

imputed_T, imputed_F, imputed_NA

character vectors; passed to convert_impstatus (as T_strings, F_strings
and NA_strings, respectively) to translate the imputation-status column. Note
that the current version of QC_GWAS always translates the imputation status. Even
when the dataset already has the correct format, the user still needs to specify
1, 0 and NA for these arguments, respectively. Also note that R distinguishes
between the value NA and the character string "NA".

save_final_dataset

logical; should the post-QC dataset be saved?

order_columns logical; should the post-QC dataset use the default column order?

out_header Translation table for the column names of the output file. This argument is the
opposite of header_translations: it translates the standard column-names of
QC_GWAS to user-defined ones. output_header can be one of three things:

• A user specified table similar to the one used by translate_header. How-
ever, as this translates standard names into non-standard ones, the standard
names should be in the right column, and the desired ones in the left. There
is also no requirement for the names in the left column to be uppercase.

• The name of a file in dir_references containing such a column.

30 QC_GWAS

• Character string specifying a standard form. See the section ’Output header’
below for the options.

out_quote, out_sep, out_eol, out_na, out_dec, out_qmethod, out_rownames, out_colnames

arguments passed to write.table when saving the final dataset.
return_HQ_effectsizes

logical; return a vector of (max. 1000) high-quality effect-sizes? (In QC_series,
this is set by the plot_effectsizes argument.)

remove_X, remove_Y, remove_XY, remove_M

logical; respectively whether X-chromosome, Y-chromosome, pseudo-autosomal
and mitochondrial SNPs are removed from the dataset.

calculate_missing_p

logical; should the QC calculate missing/invalid p-values in the dataset?

make_plots logical; should the QC generate and save QQ plots, a Manhattan plot, histograms
of data distribution and scatter plots of correlation in dir_reference?

only_plot_if_threshold

logical; should the scatterplots only be made if the correlation is below a thresh-
old value?

threshold_allele_freq_correlation, threshold_p_correlation

numeric; thresholds for reporting and plotting the correlation between respec-
tively the allele frequency of the dataset and the reference, and the calculated
and reported p-values.

plot_histograms

logical; should histograms of the effect sizes, standard errors, allele frequencies,
HWE p-values, callrates and imputation quality be made?

plot_QQ, plot_Manhattan

logical; should QQ and Manhattan plots be made?

plot_QQ_bands logical; include probability bands in the QQ plot?

plot_cutoff_p numeric; significance threshold for inclusion in the QQ and Manhattan plots.
The default value (0.05) excludes 95% of SNPs, significantly reducing running-
time and memory usage. For this reason it is not recommend to set a higher value
when QC’ing a normal-sized GWAS dataset.

allele_ref_std, allele_ref_alt

the standard and alternative allele-reference tables. Alternatively, the name of
a file in dir_references containing said table. Files in .RData format are
accepted, but the table’s object name must match the argument name. See
match_alleles for more information on the input requirements.

allele_name_std, allele_name_alt

character strings; these name the standard and alternative allele reference in the
output. If no values are given, the function will use the reference’s filename (if
specified) or a default name.

update_alt logical; if the function encounters SNPs not included in either the standard or
alternative reference, should these be added to the alternative reference file? If
no alternative reference was specified, this creates one.

update_savename

character string; the filename for saving the updated alternative reference, with-
out extension. If allele_ref_alt is a filename, it is not necessary to specify
this argument.

update_as_rdata

logical; should the updated alternative allele reference be saved as .RData (TRUE)
or a tab-delimitated .txt file (FALSE).

QC_GWAS 31

backup_alt logical; if the alternative allele reference is updated, should a back-up be made
of the original reference file?

remove_mismatches, remove_mismatches_std, remove_mismatches_alt

logical; should SNPs with mismatching alleles be removed from the dataset?
remove_mismatches serves as the default value; the other two arguments deter-
mine this setting for the standard and alternative references, respectively.

threshold_diffEAF

Numeric; the threshold for the difference between reported and reference allele-
frequency. SNPs for which the difference exceeds the threshold are counted and
(optionally) removed.

remove_diffEAF, remove_diffEAF_std, remove_diffEAF_alt

Logical; should SNPs that exceed the threshold_diffEAF be removed from the
dataset? remove_diffEAF serves as the default value; the other two arguments
determine this setting for the standard and alternative references, respectively.

check_ambiguous_alleles

logical; check for SNPs with strand-independent allele-configurations (i.e. A/T
and C/G SNPs)?

use_threshold numeric; threshold value. The relative or absolute number of usable values re-
quired for a variable to be used in the QC. These arguments prevent the QC from
applying filters to variables with no data. If a variable has less non-missing, non-
invalid values than specified in the threshold, it will be ignored; i.e. no filter will
be applied to it and no plots will be made. Values > 1 specify the absolute
threshold, while values of 1 or lower specify the fraction of SNPs remaining in
the dataset. This argument is the default threshold for all variables; variable-
specific thresholds can be set with the following arguments.

useFRQ_threshold, useHWE_threshold, useCal_threshold, useImp_threshold, useMan_threshold

numeric; variable-specific thresholds for allele frequency, HWE p-value, call-
rate, imputation quality and Manhattan plot (i.e. chromosome & position values)
respectively.

HQfilter_FRQ, HQfilter_HWE, HQfilter_cal, HQfilter_imp

numeric; threshold values for the high-quality SNP filter. SNPs that do not meet
or exceed all four thresholds will be excluded from several QC tests. The filters
are for allele frequency, HWE p-value, callrate & imputation quality, respec-
tively, and are processed by HQ_filter. See ’Filter arguments’ for more infor-
mation. Note: the high-quality filter does not remove SNPs; it merely excludes
them from several QC tests.

QQfilter_FRQ, QQfilter_HWE, QQfilter_cal, QQfilter_imp

numeric vector; threshold values for the QQ plot filters. SNPs that do not meet
or exceed the value will be excluded from the QQ plot. Up to five values can
be specified per filter. The filters are for allele-frequency, HWE p-value, callrate
& imputation quality respectively, and are processed by QC_plots. See ’Filter
arguments’ for more information.

NAfilter, NAfilter_FRQ, NAfilter_HWE, NAfilter_cal, NAfilter_imp

logical; should the high-quality and QQ filters exclude (TRUE) or ignore (FALSE)
missing values? NAfilter is the default setting; the others allow allow variable
specific settings.

ignore_impstatus

logical; if FALSE, HWE p-value and callrate filters are applied only to genotyped
SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters
are applied to all SNPs regardless of the imputation status.

32 QC_GWAS

minimal_impQ_value, maximal_impQ_value

numeric; the minimal and maximal possible (i.e. non-invalid) imputation quality
values.

logI, logN progress indicators used by QC_series: irrelevant for users.
plot_effectsizes, plot_SE, plot_SK

logical; additional plot options for QC_series. The arguments toggle the cre-
ation of plots comparing the effect-size distribution, precision and skewness vs.
kurtosis of all successfully QC’ed datasets, respectively. See plot_distribution,
plot_precision and plot_skewness for more information.

lim_effectsizes

specifies the y-axis range of the effect-size distribution plot.

label_SE logical; should the datapoints in the precision plot be labeled?

label_SK character string; determines whether the datapoints in the skewness vs. kurtosis
plot are labeled. Options are "none", "all", or "outliers" (outliers only).

save_filtersettings

logical; saves the filtersettings used by the high-quality filter to a file ’Check_filtersettings.txt’
in the output directory. If a file of that name already exists, the settings are added
to the end (i.e. it updates rather than overwrites existing files). The file can be
used as ini file by filter_GWAS.

... in QC_series: arguments passed to QC_GWAS; in QC_GWAS: arguments passed to
read.table when importing the dataset.

Details

The full quality-control carried out by QC_GWAS consists of 5 phases. The function takes a single
dataset (or, rather, the location and filename of a single dataset) and runs it through the following
phases:

• 1: Importing the dataset

• 2: Checking data integrity

• 3: Checking alleles

• 4: Generating QC statistics and graphs

• 5: Saving the output

Phase 1: importing the dataset

GWAS results files come in a variety of formats, so QC_GWAS is flexible about loading data. It uses an
autoloader function (load_GWAS) to unpack .zip or .gz files and determine the column-separator
used in the file. See the section ’Requirement for the input dataset’ for more information.

Next, the function attempts to translate the dataset’s column names (the header) to standard names,
so that it knows what type of data a column contains. This is done by comparing the column names
to a translation table (specified in the header_translations argument). See translate_header
for more information.

Note that only the SNP ID, alleles, effect-size and standard error columns are required. The absence
of other standard columns (chromosome, position, strand, allele frequency, HWE p-value, callrate,
imputation quality, imputation status and used for imputation) will not cause the QC to abort. In-
stead, a warning is printed on screen and in the log file, and a dummy column filled with NA values
is added to the dataset.

It is therefor important to check the log file: if a standard column is present but not identified
(because it is missing or misspelled in the translation table) the QC will continue, but is unable to

QC_GWAS 33

check/use the data inside. The unidentified column will be reported in the columns_unidentified
value of the QC_GWAS return or in the "QC_checklist.txt" file generated by QC_series.

Phase 2: checking data integrity

The purpose of phase 2 is to ensure that the dataset can be QC’ed: that that all SNPs have the
required data and that all columns contain only valid (or missing) values.

The first step is to remove SNPs that won’t be used: monomorphic SNPs and (if specified by the
arguments) allosomal, pseudo-autosomal and mitochondrial SNPs. The function considers SNPs
monomorphic if they have a missing or invalid other (non-effect) allele, identical alleles or an allele-
frequency of 1 or 0.

The second step is to check the imputation status column with the function convert_impstatus.
See the section ’Requirement for the input dataset’ for more information. Imputation status is one of
the most important variables in the dataset: if unknown, the HWE p-value, callrate and imputation
quality won’t be used (unless ignore_impstatus is TRUE), as the function cannot determine which
SNPs are imputed and which are not. For this reason, if convert_impstatus is unable to translate
any character string in the column, the QC will abort.

The third step carries out three tests for all other standard variables:

• Does the column contain the correct type of data (integer, numeric or character)?

• How many values are missing (NA)?

• How many values are invalid (= impossible)?

The exact nature of the three tests differs per variable: see the documentation file in "R\library\QCGWAS\doc"
for more detail.

The presence of the wrong data-type will cause the QC to abort. Wrong data-type indicates either
a problem in the file itself, or with the way it was imported (in which case it is most likely due to a
mistranslated header).

The final step is the removal of the invalid values and of unusable SNPs. The variables MARKER,
EFFECT_ALLELE, OTHER_ALLELE, EFFECT and STDERR are considered crucial. SNPs with
missing or invalid values in any of these variables are removed the dataset. Missing values in the
other variables are ignored, while invalid values are set to NA.

Phase 3: checking alleles

This phase has three functions:

• To check if the correct alleles are reported for each SNP

• To check if the allele-frequency is reported for the correct (effect) allele

• To ensure that SNPs are aligned to the positive strand and use the same effect-allele in all
post-QC datasets

This is achieved by comparing the data to a reference, using the function match_alleles. First,
all SNPs are switched to the positive strand (the alleles are converted to their opposing base and
the strand-value is set to "+"). If there are SNPs whose allele pair doesn’t match the reference,
match_alleles assumes the information in the strand column is absent or incorrect, and will also
switch those SNPs to the other (presumably positive) strand. This step is referred to as strand-
switching in QC output, and is independent from the negative-strand SNP conversion. It is therefor
possible that a SNP is switched twice: once because the strand-column indicates it is on the negative
strand, and twice because of a mismatch. This is referred to as double strand-switch in the output,
and indicates either the wrong value in the strand column, or a mismatch with the reference. In the
latter case, it will most likely be picked up in the next step.

34 QC_GWAS

If the strand-switch does not fix the mismatch, the SNPs are counted in the QC output as mis-
matches. Depending on the remove_mismatches arguments, the SNPs will either be removed from
the dataset, or left in but excluded from the further tests of the allele-matching.

Next, match_alleles "flips" SNPs so that their effect allele matches the reference minor allele.
This ensures that a SNP will have the same effect allele in all post-QC datasets.

match_alleles also counts the number of SNPs with a strand-independent allele configuration
(A/T or C/G; these are designated as "ambiguous SNPs"), and the subset of those with an allele-
frequency that is substantially different from the reference ("suspect SNPs"). If a substantial pro-
portion of ambiguous SNPs is suspect, it indicates that the strand information is incorrect. In our
experience, a regular, 2.5M SNP dataset usually consists of 15% ambiguous SNPs, of which a few
dozen will be suspect.

The function also counts the number of SNPs whose allele frequency differs from the reference by
more than a set amount (threshold_difEAF). If the relevant remove_diffEAF argument is TRUE,
these SNP will be excluded from the dataset after the allele-matching is finished.

The final step is to correlate the reported allele-frequency against the reference. If allele-frequency
is reported for the correct (effect) allele, the correlation should be close to 1. If the outcome is close
to -1, the reported frequency is that of the other allele. Depending on the plot settings, a scatter
plot of reported vs. reference frequency is made for all SNPs, and for the subsets of ambiguous and
non-ambiguous SNPs.

The standard and alternative allele reference

The above steps describe what happens when the dataset is compared to a single reference. How-
ever, we found that many GWAS datasets contain SNPs not present in our standard HapMap refer-
ence, so we added a second, flexible reference that can be updated with any unknown SNPs the QC
encounters.

SNPs that are not found in either reference are converted to the positive strand, and "flipped" if their
allele frequency is > 0.50. If update_alt is TRUE, these SNPs are then added to the alternative
reference and saved under the name update_savename. There are a few caveats to this system: see
the section ’Updating the alternative reference’ for details.

Phase 4: generating QC statistics and graphs

At this stage, no further changes will be made to the dataset (except, optionally, to recalculate miss-
ing p-values). The function will now start to calculate the QC statistics and generate the important
graphs. These are:

• Create histograms of variable distribution (optional)

• Check p-values by correlating them to a p calculated from the effect-size and standard-error
(via the check_P function).

• Recalculate missing/invalid p-values (optional)

• Calculate QC statistics

• Create QQ and Manhattan plots (optional, see QC_plots function for more information).

Phase 5: saving the output

A series of tables is added to the bottom of the log file, reporting the QC statistics and the data
distribution. If save_final_dataset is TRUE, the post-QC data will be exported as a .txt file. The
column names and format of that file can be specified by the out arguments.

Value

The most important output of the QC is the log file. See the section ’QC output files’ for more
details. This section only describes the function return within R.

QC_GWAS 35

QC_series returns a single, invisible, logical value, indicating whether the alternative allele-reference
has been updated.

QC_GWAS returns an object of class ’list’. If the QC was not successful, this list contains only five of
the following components (QC_successful, filename_input, filename_output, all_ref_changed,
effectsize_return). If it was, it will contain all of them:

QC_successful logical; indicates whether the QC was completed. If FALSE, the function was ei-
ther unable to load the dataset, encountered an unexpected datatype, or removed
all SNPs during the QC. The log file and screen output will indicate what trig-
gered the abort.

filename_input, filename_output

the filenames of the dataset pre- and post-QC respectively.
sample_size, sample_size_HQ

the highest reported sample size for all SNPs and high-quality SNPs only, re-
spectively.

lambda, lambda_geno, lambda_imp

the lambda values of all, genotyped and imputed SNPs, respectively.

SNP_N_input the number of SNPs in the original dataset.
SNP_N_input_monomorphic

the number of SNPs removed because they are monomorphic.
SNP_N_input_monomorphic_identic_alleles

the subset of above that had identical alleles, but allele-frequencies that were not
0 or 1.

SNP_N_input_chr

the number of SNPs removed because they were X-chromosomal, Y-chromosomal,
pseudo-autosomal or mitochondrial (depends on the remove-arguments). If all
remove arguments were set to FALSE, this returns NA.

SNP_N_preQC the number of SNPs that entered phase 2b (i.e. after removal of the monomor-
phic and excluded-chromosome SNPs).

SNP_N_preQC_unusable

the number of SNPs removed in phase 2d, due to missing or invalid crucial
variables.

SNP_N_preQC_invalid

the number of SNPs with invalid, non-crucial values in phase 2d.
SNP_N_preQC_min

the number of negative-strand SNPs in phase 2d.

SNP_N_midQC the number of SNPs in the dataset during allele-matching (phase 3).
SNP_N_midQC_min

the number of negative strand SNPs in phase 3.
SNP_N_midQC_min_std, SNP_N_midQC_min_alt,SNP_N_midQC_min_new

the number of negative strand SNPs matched against, respectively, the standard
allele reference, the alternative allele reference or neither.

SNP_N_midQC_strandswitch_std, SNP_N_midQC_strandswitch_alt

the number of SNPs that were strand-switched because of a mismatch with the
standard and alternative allele reference, respectively.

SNP_N_midQC_strandswitch_std_min, SNP_N_midQC_strandswitch_alt_min

the subset of previous that were negative-strand SNPs. NOTE: at this point in
the QC, negative-strand SNPs have already been converted to the positive strand,
i.e. they should not appear in this category. If they do, there is a problem with
the reported strand, or with the reference table.

36 QC_GWAS

SNP_N_midQC_mismatch

the number of SNPs that were still mismatching after the strand-switch.
SNP_N_midQC_mismatch_std, SNP_N_midQC_mismatch_alt

subset of previous that were matched with the standard and alternative allele
reference, respectively.

SNP_N_midQC_mismatch_std_min, SNP_N_midQC_mismatch_alt_min

subset of previous that are negative-strand SNPs.
SNP_N_midQC_flip_std, SNP_N_midQC_flip_alt, SNP_N_midQC_flip_new

Number of SNPs that were flipped (had their alleles reversed) when matched
against, respectively, the standard allele reference, the alternative allele refer-
ence or neither.

SNP_N_midQC_ambiguous

the number of ambiguous SNPs
SNP_N_midQC_ambiguous_std, SNP_N_midQC_ambiguous_alt, SNP_N_midQC_ambiguous_new

subset of ambiguous SNPs matched against, respectively, the standard allele
reference, the alternative allele reference or neither.

SNP_N_midQC_suspect

the subset of ambiguous SNPs whose allele frequencies differ strongly from
those in the reference.

SNP_N_midQC_suspect_std, SNP_N_midQC_suspect_alt

the subsets of previous matched against the standard and alternative allele refer-
ence, respectively.

SNP_N_midQC_diffEAF

the number of SNPs whose allele frequency differs strongly from the reference.
SNP_N_midQC_diffEAF_std, SNP_N_midQC_diffEAF_alt

subset of previous that were matched with the standard and alternative allele
reference, respectively.

SNP_N_postQC the number of SNPs in the final dataset.
SNP_N_postQC_geno, SNP_N_postQC_imp

the number of genotyped and imputed SNPs in the final dataset.
SNP_N_postQC_invalid

the number of SNPs with invalid values remaining in the final dataset. Note: any
invalid values have already been changed to NA at this point. This merely counts
how many of those SNPs are still in the dataset.

SNP_N_postQC_min

the number of negative-strand SNPs in the final dataset. Note: all SNPs have
been switched to the positive strand at this point. This merely counts how many
of those SNPs are still in the dataset.

SNP_N_postQC_HQ

the number of high-quality SNPs in the final dataset.
fixed_HWE, fixed_callrate, fixed_sampleN, fixed_impQ

logical or character string; are HWE p-values, callrates, sample-size and impu-
tation quality values identical for all relevant SNPs? If TRUE, it indicates that the
parameters have not been calculated and are dummy values. If a parameter fails
the threshold test, this returns "insuf. data" ("no data" for sample size).

effect_25, effect_median, effect_75

the quartile values of the effect-size distribution.

effect_mean the mean of the effect-size distribution.
SE_median, SE_median_HQ

the median standard error of all SNPs and high-quality SNPs only, respectively.

QC_GWAS 37

skewness, kurtosis

the skewness and kurtosis value of the dataset.
skewness_HQ, kurtosis_HQ

the skewness and kurtosis value for high-quality SNPs only.
all_ref_std_name, all_ref_alt_name

the names used for the standard and alternative allele-references in the output.
all_MAF_std_r, all_MAF_alt_r

allele-frequency correlation with the standard and alternative allele references.
all_ambiguous_MAF_std_r, all_ambiguous_MAF_alt_r

allele-frequency correlations for the subset of ambiguous SNPs in the standard
and alternative allele references, respectively.

all_non_ambig_MAF_std_r, all_non_ambig_MAF_alt_r

allele-frequency correlations for the subset of non-ambiguous SNPs in the stan-
dard and alternative allele references, respectively.

all_ref_changed

logical; has an updated alternative allele reference been saved?
effectsize_return

logical; is a vector of high-quality effect-sizes returned in effectsizes_HQ?

effectsizes_HQ if effectsize_return is TRUE, a vector of 1000 high-quality effect-sizes; if
not, NULL. If a dataset contains less than 1000 high-quality SNPs, the vector is
padded with NA’s to bring it to 1000 values.

pvalue_r the correlation between reported and calculated p-values.
visschers_stat, visschers_stat_HQ

the Visscher’s statistic for all SNPs and high-quality SNPs only, respectively.
columns_std_missing

the names of any missing, standard columns: if no columns are missing, this
returns 0.

columns_std_empty

the names of any empty, standard columns: if no columns are empty, this returns
0.

columns_unidentified

the names of any unidentified columns in the input dataset. If none, this returns
0.

outcome_useFRQ, outcome_useHWE, outcome_useCal, outcome_useImp, outcome_useMan

logical; indicates whether the variable passed the threshold test.

... the remaining ’setting’ components return the the actual filter settings used in
the QC (i.e. taking into account whether the variables passed the threshold test).

QC output files

The results of the QC are reported in a variety of .txt and .jpeg files saved in dir_output. The files
use the same output name as the dataset, with an extension to indicate their contents (i.e. ’_log.txt’,
’_graph_QQ.jpg’). The .txt files are tab-delimited and are best viewed in a spreadsheet program.
The most important one is the log file. This file summarizes the results of the QC and the data inside
the file.

The log file

The top of the file is table of log entries, reporting any (potential) problems encountered during the
QC. Some of these are just routine updates; the removal of SNPs with missing data, for example.
However, do check the other entries. These report important but non-fatal problems, relating to

38 QC_GWAS

crucial missing data or invalid data. In such a case, and provided the QC did not abort, the affected
SNPs will have been exported to a .txt file before being excluded, so the user can inspect them
without having to reload the entire dataset. The .txt’s are:

[filename_output]_SNPs_invalid_allele2.txt

[filename_output]_SNPs_duplicates.txt

[filename_output]_SNPs_removed.txt

[filename_output]_SNPs_improbable_values.txt

(Note: the names of the files are slightly confusing: the "SNPs_removed" file contains all SNPs
removed in phase 2d. This does not include monomorphic SNPs, or SNPs from excluded chromo-
somes, as these are removed in phase 2a. Also, the "SNPs_improbable_values" file does not include
SNPs with invalid values for crucial variables, as these are already in the "SNPs_removed" file.)

Another important but non-fatal problem is missing columns. QC_GWAS uses a translation table to
determine the contents of a column. If the translation table is incomplete, or contains a typo, the
function will be unable to translate (and therefor use) a column. If this involves, say, callrate, it
merely means the function cannot apply the callrate filters, but the absence of p-values or impu-
tation status will disable many features of the QC. If you know that a data column is present, yet
the log reports it missing, check the translation table. The QC_series checklist output and the
columns_unidentified value of the QC_GWAS return report the names of any unidentified columns
in the dataset.

If the QC aborts, the log file should give some indication why this occurred. However, if it was
successful, there will be several other tables in the log file.

The second table reports the number of SNPs in the dataset at various stages of the QC; as well as
how many (and for what reason) SNPs were removed.

The third table gives an overview of the data itself. It reports how many values were missing and
invalid per variable in both the pre- and post-QC datasets, as well as the quartile and mean values
of the post-QC data. A few notes on the nomenclature: invalid values will have been removed (for
crucial variables) or set to missing (for non-crucial variables) in stage 2d. The post-QC ’invalid’
column merely records how many of these SNPs remain in the dataset. ’Unusable’ values are
the missing and invalid values combined (shown as percentage of the total data). Finally, pre-
QC refers to the dataset during stage 2b-c, but after monomorphic SNPs and SNPs from excluded
chromosomes (stage 2a) have been removed.

The fourth table reports on the allele-matching in phase 3. The concepts are explained in ’details’
and the match_alleles function; here we just mention what the user needs to pay attention to.
Strand-switching counts SNPs whose strand was switched because it mismatched with the refer-
ence. As many cohorts do not add strand data (or set every SNP to "+"), the presence of such SNPs
is not a red flag by itself. However, if there are mismatching SNPs (the subset of strand-switched
SNPs that could not be fixed), there is a problem with the allele data (or, possibly, a triallelic SNP).
Check the [filename_output]_SNPs_mismatches-[ref-name].txt file to see the affected SNPs.

Another red flag is if there are strand-switched SNPs in a dataset that also contains negative-strand
SNPs (i.e. the cohort included real strand data, rather just setting it to "+" for all SNPs). Negative-
strand SNPs are converted to the positive strand beforehand, so they should not appear in this step
(if they do, they are counted in the "double strand-switch" entry, but that is of minor importance).
The real problem is that if a cohort includes negative-strand SNPs (i.e. real strand data), and there
are still strand-switches, the strand data must be incorrect. Whether the strand-switches and the
negative-strand SNPs overlap is unimportant.

The third possible problem is when a large proportion of ambiguous SNPs is suspect: it indicates
that they are on the wrong strand.

QC_GWAS 39

Finally, a large number of SNPs with a deviating allele frequency indicates either that the frequency
is reported for the wrong allele (see below) or that the dataset population does not match that of the
reference.

The fifth table reports the QC outcome statistics. The p-value and allele-frequency correlations
should be close to 1. An allele-frequency correlation of -1 means that the frequency was reported
for the wrong (non-effect) allele.

The sixth table reports how many SNPs were removed by the various QQ plot filters.

The seventh table reports the chromosomes and alleles present in the final dataset.

The eighth table counts invalid values in the pre- and post-QC files for several variables. ’Extreme
p’ is a value that is only used when calculate_missing_p is TRUE. Any newly-calculated p-values
that are < 1E-300 will be set to 1E-300, in order to exclude any values of 0 (1E-300 is close to the
smallest numeric value that R can handle safely).

The final four tables contain the settings of the QC.

The QC_series output

QC_series saves a checklist, showing the most important QC stats of the various files side by side,
and (depending on the plot-arguments) several graphs comparing effect-size distribution, precision
and skewness vs. kurtosis of the QC’ed files.

Output header

The standard-format values used by out_header are:

• "standard" retains the default column names used by QC_GWAS.

• "original" restores the column names used in the input file.

• "old" uses the default column names of pre-v1.0b versions of QCGWAS.

• "GWAMA", "PLINK", "META" and "GenABEL" set the column names to those use by the respec-
tive programs. Note that META’s alleleB corresponds to EFFECT_ALL in QC_GWAS.

Requirement for the input dataset

QC_GWAS will automatically unpack .gz and .zip files, provided the filename includes the extension
of the packed file. For example, if the data file is named "data1.csv", the zip file should be
"data1.csv.zip". If it is named "data1.zip", QC_GWAS won’t be able to "call" the file inside.

QC_GWAS is flexible when it comes to file-format. By default, it can open datasets with a variety
of column separators and NA values (the user can specify these via the column_separators and
na.strings arguments). Read the documentation of the auto-loader function load_GWAS for more
information.

Chromosome values can be coded as numeric or character: values of "X", "Y", "XY" and "M" will
automatically be converted to 23, 24, 25 and 26, respectively.

By default, imputation status is coded as integers 0 (genotyped) and 1 (imputed). As of version 1.0-
4, imputation status will always be translated using the imputed_T, imputed_F and imputed_NA
arguments. This means that the user must specify values for these arguments, even when the dataset
already uses the standard format. Because of the importance of imputation status, if the function is
unable to translate character values, the QC will abort.

The minimal and maximal valid imputation quality values are determined by the minimal_impQ_value
and maximal_impQ_value arguments.

Standard errors and p-values of 0 are considered invalid and removed in phase 2d, while values of
-1 will be set to NA. Effect sizes of -1 are accepted, unless the standard error and/or the p value are
also -1, in which case it is also set to NA.

40 QC_GWAS

Filter arguments

QC_GWAS has three sets arguments relating to filters: the arguments for the HQ (high-quality), QQ
(plot) and NA (missing values) filters. The HQ and QQ arguments work mostly in the same way,
but there are a few key differences.

The high-quality arguments accept single, numeric values that determine the minimal values of
allele-frequency (FRQ), HWE p-value (HWE), callrate (cal) and imputation quality (imp) for a SNP
to be of high-quality. The high-quality filter is used for the effect-size boxplot and the Manhattan
plot, as well as several QC stats.

The QQ arguments accept a vector of max. 5 numeric values that are applied sequentially as filters
in the QQ plots.

Both of these use the NA filter argument(s) to determine whether to exclude or ignore missing
values.

Neither filter is used to remove SNPs; they merely exclude them from several QC tests. Both HQ and
QQ filter criteria are only applied if the variable passed the threshold test, i.e. if there are sufficient
non-missing, non-invalid values for the filter to be applied (see the use_threshold argument for
details). It’s pointless to filter an empty column.

If ignore_impstatus is FALSE (default), the imputation-quality criterion is only applied to imputed
SNPs, and the HWE p-value and callrate criteria only to genotyped SNPs. If TRUE, the filters are
applied to all SNPs, regardless of the imputation status.

The allele-frequency filters are two-sided: when set to value x, SNPs with frequency < x or > 1 - x
are excluded.

To filter missing values only, set the filter to NA and the corresponding NA filter argument to TRUE.
To disable entirely, set to NULL (this means the NA-filter setting is ignored as well).

The differences between the HQ and QQ filters are:

The HQ filter arguments accept a single value, the QQ filters can accept up to 5.

The HQ filter is a single filter: a SNP needs to meet all relevant criteria to be considered high-quality.
The QQ filter values are applied separately.

The QQ filter has an additional feature: if passed a value x > 1, it will calculate a filter value of
x / sample size. This is to allow size-based filtering of allele frequencies. Note that this filter
uses the sample size listed for that specific SNP. If the sample size is missing, the relevant NA-filter
setting is used to determine whether it should be excluded.

Updating the alternative reference

There are two drawbacks to the way the function updates the alternative reference file. One is a
technical issue, but the other can affect the QC of subsequent files.

Firstly, the argument update_alt has a slightly misleading name: the alternative-reference file is
updated, but the reference inside the R memory is not. If the user wants to do further QCs with the
updated reference, (s)he will have to manually reload the updated file into R.

This is caused by the way R handles data-alterations that occur inside a function. Any changes made
to data last only for the duration of the function. Once the function terminates, the memory reverts
to its original state. In other words: the allele reference is updated inside QC_GWAS, but goes back
to the pre-QC state once the QC is finished. QC_series deals with this by automatically reloading
the reference file whenever it is updated, but, again, once the function terminates it will revert to its
original state.

The second drawback is that the content of the alternative reference is arbitrary, depending on which
file an unknown SNP is encountered in first. For example, suppose that SNP rs31 has alleles A and
G, an allele frequency that varies around 0.5, and does not appear in the standard reference. When it

QC_histogram 41

is added to the alternative reference, the allele listed as the minor one depends entirely on the allele
frequency in the first file it is encountered in.

More seriously, if the information in the first file is incorrect, the SNP may be strand-switched or
excluded in subsequent files because it does not match the (incorrect) reference. This is another
reason why it is important to check the log files: if there is a problem with a datafile’s strand,
alleles or allele-frequency, and the alternative reference was updated, the incorrect data may have
been added to the reference. If so, one should go back to a previous reference file. The argument
backup_alt is useful for this, though note that QC_series only does this the first time the reference
is updated.

Also, if one wants to QC a large number of files for a meta-GWAS, one should use the same
alternative allele reference file (and let QC_GWAS update it) for every file, otherwise it is possible that
rs13 may have a different effect alleles in some post-QC files.

See Also

For the plots created by QC_series: plot_distribution, plot_precision and plot_skewness.

For loading and preparing a GWAS dataset: load_GWAS, translate_header, convert_impstatus.

For carrying out separate steps of QC_GWAS: match_alleles, check_P, QC_plots.

Examples

For instructions on how to run QC_GWAS and QC_series
check the quick start guide in /R/library/QCGWAS/doc

QC_histogram Histogram(s) of expected and observed data distribution

Description

QC_histogram creates two histograms: one showing the observed data distribution of a numeric
variable, and one showing the expected distribution. It includes the option to filter the data with
the high-quality filter. histogram_series generates a series of such histograms for multiple filter
settings.

Usage

QC_histogram(dataset, data_col = 1,
save_name = "dataset", save_dir = getwd(),
export_outliers = FALSE,
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,
filter_NA = TRUE,
filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,
breaks = "Sturges",
graph_name = colnames(dataset)[data_col],
header_translations, check_impstatus = FALSE,
ignore_impstatus = FALSE,
T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),
F_strings = c("0", "FALSE", "no", "NO", "n", "N"),

42 QC_histogram

NA_strings = c(NA, "NA", ".", "-"), ...)
histogram_series(dataset, data_col = 1,

save_name = paste("dataset_F", 1:nrow(plot_table), sep = ""),
save_dir = getwd(), export_outliers = FALSE,
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,
filter_NA = TRUE,
filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,
breaks = "Sturges",
header_translations, ignore_impstatus = FALSE,
check_impstatus = FALSE,
T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),
F_strings = c("0", "FALSE", "no", "NO", "n", "N"),
NA_strings = c(NA, "NA", ".", "-"),
...)

Arguments

dataset vector or table containing the variable of interest.

data_col name or number of the column of dataset containing the variable of interest.

save_name for QC_histogram, a character string; for histogram_series, a vector of char-
acter strings; specifying the filename(s) of the graph, without extension.

save_dir character string; the directory where the output files are saved. Note that R uses
forward slash (/) where Windows uses the backslash (\).

export_outliers

logical or numeric value; should outlying entries (which are excluded from the
plot) be exported to an output file? If numeric, the number specifies the max.
number of entries that is exported.

filter_FRQ, filter_cal, filter_HWE, filter_imp

Filter threshold-values for allele-frequency, callrate, HWE p-value and impu-
tation quality, respectively. Passed to HQ_filter. QC_histogram takes only
single values, but histogram_series accepts vectors as well (see ’details’).

filter_NA logical; if TRUE, then missing filter variables will be excluded; if FALSE, they will
be ignored. QC_histogram takes only single values, but histogram_series ac-
cepts vectors as well (see ’Details’). filter_NA is the default setting for all
variables; variable-specific settings can be specified with the following argu-
ments.

filter_NA_FRQ, filter_NA_cal, filter_NA_HWE, filter_NA_imp

logical; variable-specific settings for filter_NA. These arguments are passed to
HQ_filter.

breaks argument passed to hist; determines the cell-borders in the histogram.

graph_name character string; used in the title of the plot.
header_translations

translation table for column names. See translate_header for more infor-
mation. If the argument is left empty, dataset is assumed to use the standard
column-names used by QC_GWAS.

check_impstatus

logical; should convert_impstatus be called to convert the imputation-status
column into standard values?

QC_plots 43

ignore_impstatus

logical; if FALSE, HWE p-value and callrate filters are applied only to genotyped
SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters
are applied to all SNPs regardless of the imputation status.

T_strings, F_strings, NA_strings

arguments passed to convert_impstatus.

... in histogram_series: arguments passed to QC_histogram; in QC_histogram,
arguments passed to hist.

Details

histogram_series accepts multiple filter-values, and passes these one by one to QC_histogram to
generate a series of histograms. For example, specifying:

filter_FRQ = c(0.05, 0.10), filter_cal = c(0.90, 0.95)

will generate two histograms. The first excludes SNPs with allele frequency < 0.05 or callrate
< 0.90; the second allele frequency < 0.10 or callrate < 0.95. The same principle applies to the
NA_filter settings. If the vectors submitted to the filter arguments are of unequal length, the
shorter vector will be recycled until it equals the length of the longer (if possible). To filter missing
values only, set the filter to NA and the corresponding NA-filter argument to TRUE. Setting the filter
argument to NULL will disable the filter entirely, regardless of the NA filter setting.

Value

Both functions return an invisible value NULL.

See Also

For creating QQ plots: QQ_plot.

Examples

data("gwa_sample")

QC_histogram(dataset = gwa_sample, data_col = "EFFECT",
save_name = "sample_histogram",
filter_FRQ = 0.01, filter_cal = 0.95,
filter_NA = FALSE,
graph_name = "Effect size histogram")

histogram_series(dataset = gwa_sample, data_col = "EFFECT",
save_name = "sample_histogram",
filter_FRQ = c(NA, 0.01, 0.01),
filter_cal = c(NA, 0.95, 0.95),
filter_NA = c(FALSE, FALSE, TRUE))

QC_plots QQ and Manhattan plots

Description

This function creates the most important graphs of the QC: the QQ plots and the Manhattan plot. It
also calculates lambda, and determines the effect of the filters.

44 QC_plots

Usage

QC_plots(dataset,
plot_QQ = TRUE, plot_Man = TRUE,
FRQfilter_values = NULL, FRQfilter_NA = filter_NA,
HWEfilter_values = NULL, HWEfilter_NA = filter_NA,
calfilter_values = NULL, calfilter_NA = filter_NA,
impfilter_values = NULL, impfilter_NA = filter_NA,
impfilter_min = min(dataset$IMP_QUALITY, na.rm = TRUE),
manfilter_FRQ = NULL, manfilter_HWE = NULL,
manfilter_cal = NULL, manfilter_imp = NULL,
filter_NA = TRUE,
plot_cutoff_p = 0.05, plot_names = FALSE,
QQ_colors = c("red", "blue", "orange", "green3", "yellow"),
plot_QQ_bands = FALSE,
save_name = "dataset", save_dir = getwd(),
header_translations, use_log = FALSE,
check_impstatus = FALSE, ignore_impstatus = FALSE,
T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),
F_strings = c("0", "FALSE", "no", "NO", "n", "N"),
NA_strings = c(NA, "NA", ".", "-"))

Arguments

dataset vector of p-values or a data frame containing the p-value column and (depending
on the settings) columns for chromosome number, position, the quality parame-
ters, sample size and imputation status.

plot_QQ, plot_Man

logical; should QQ and Manhattan plots be saved?
FRQfilter_values, HWEfilter_values, calfilter_values, impfilter_values

numeric vectors; the threshold values for the QQ plot filters. The filters are
for allele-frequency, HWE p-values, callrate and imputation-quality parameters,
respectively. A maximum of five values can be specified per parameter.

• Set to NULL to disable the QQ filter for that parameter.
• To filter missing values only, set the filter value to NA and the corresponding
filter_NA argument to TRUE.

• The allele-frequency filter is two-sided: for a filter-value of x, it will ex-
clude entries with freq < x and freq > 1 - x.

• Values >= 1 will be divided by the SNP’s sample size. This allows sample-
size dependent filtering of allele frequencies. Note that this uses the sample
size reported in the sample-size column for that specific SNP. SNPs without
sample size will be excluded if the corresponding filter_NA argument is
TRUE and ignored if it is FALSE.

FRQfilter_NA, HWEfilter_NA, calfilter_NA, impfilter_NA, filter_NA

logical; should the filters exclude (TRUE) or ignore (FALSE) missing values?
filter_NA is the default setting, the others allow variable-specific settings.

impfilter_min numeric; the lowest possible value for imputation-quality. This argument is
currently redundant, as it is calculated automatically.

manfilter_FRQ, manfilter_HWE, manfilter_cal, manfilter_imp

single, numeric values; the filter-settings for allele-frequency, HWE p-values,
callrate and imputation quality respectively, for the Manhattan plot. The argu-
ments are passed to HQ_filter. To filter missing values only, set to NA and the

QC_plots 45

corresponding filter_NA argument to TRUE. To disable filtering entirely, set to
NULL.

plot_cutoff_p numeric; the threshold of p-values to be shown in the QQ & Manhattan plots.
Higher (less significant) p-values are excluded from the plot. The default setting
is 0.05, which excludes 95% of data-points. It’s not recommended to increase
the value above 0.05, as this may dramatically increase running time and mem-
ory usage.

plot_names argument currently redundant.

QQ_colors vector of R color-values; the color of the QQ filter-plots. The unfiltered data is
black by default. This argument sets the colors of the least (first value) to most
(last value) stringent filters. (For this setting, filter values >= 1 (i.e. sample-size
based filtering) are considered less stringent than values < 1.)

plot_QQ_bands logical; should probability bands be added to the QQ plot?

save_name character string; the filename, without extension, for the graphs.

save_dir character string; the directory where the graphs are saved. Note that R uses
forward slash (/) where Windows uses the backslash (\).

header_translations

translation table for column names. See translate_header for more infor-
mation. If the argument is left empty, dataset is assumed to use the standard
column-names of QC_GWAS.

use_log argument used by QC_GWAS; redundant when QC_plots is used separately.
check_impstatus

logical; should the imputation-status column be passed to convert_impstatus?
ignore_impstatus

logical; if FALSE, HWE p-value and callrate filters are applied only to genotyped
SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters
are applied to all SNPs regardless of the imputation status.

T_strings, F_strings, NA_strings

arguments passed to convert_impstatus.

Details

The function QC_plots grew out of phase 4 of QC_GWAS. It carries out three functions, hence the
vague name: it calculates lambda, it applies the QQ filters, and it creates the QQ and Manhat-
tan plots (a separate function is available for creating regional-association plots: see below). The
function schematic is as follows:

• Preparing the dataset: this step involves translating the dataset header to the standard column-
names (by identify_column) and converting imputation status (by convert_impstatus).
Both steps are optional, and are disabled by default. If the function cannot identify the im-
putation status column, it will generate a warning message and disable the imputation-status
dependent filters.

• Calculating the QC stats: here it generates the filters an calculates how many SNPs are re-
moved. Lambda is also calculated at this point.

• Creating a QQ graph of every variable for which filters have been specified. Every graph
contains an unfiltered plot, plus plots for every effective filter. ("Effective" means "excludes
more SNPs than the previous, less-stringent filter".)

• Creating the Manhattan plot. The default Manhattan plot covers chromosomes 1 to 23 (X).
Fields for XY, Y and M are added when such SNPs are present.

46 QC_plots

Value

An object of class ’list’ with the following components:

lambda vector of the lambda values of all SNPs, genotyped SNPs and imputed SNPs,
respectively.

ignore_impstatus

logical value indicating whether imputation status was used when applying the
filters.

FRQfilter_names, HWEfilter_names, calfilter_names, impfilter_names

character vectors naming the specified QQ filters.
FRQfilter_N, HWEfilter_N, calfilter_N, impfilter_N

numeric vectors; the number of SNPs removed by the specified filters. Note that
the filters are sorted before being applied, so the order may not match that of
the input. Check the filter_names output to see the order that was used inside
QC_plots.

Manfilter_N numeric; the number of SNPs removed by the Manhattan filter. This does not
include those SNPs removed because they lacked p or chromosome/position-
values, or failed the p-cutoff threshold.

Note

By default, QC_plots expects dataset to use the standard column-names used by QC_GWAS. A
translation table can be specified in header_translations to allow non-standard names. See
translate_header for more information.

The function accepts both integer and character chromosome values. Character values of "X", "Y",
"XY" and "M" are automatically converted to integers. By default, the Manhattan plot shows all
autosomal chromosomes and chromosome X. Fields for Y, XY and M are added only when such
SNPs are present.

There must be more than 10 p-values at or below the plot_cutoff_p threshold for the QQ and
Manhattan plots to be created.

See Also

plot_regional for creating a regional association plot.

check_P for comparing the reported p-values to the p expected from the effect size and standard
error.

QQ_plot for generating simpler QQ plots.

Examples

data("gwa_sample")

QC_plots(dataset = gwa_sample,
plot_QQ = TRUE, plot_QQ_bands = TRUE, plot_Man = TRUE,
FRQfilter_values = c(NA, 0.01, 0.05, 3),
calfilter_values = c(NA, 0.95, 0.99),
manfilter_FRQ = 0.05, manfilter_cal = 0.95,
filter_NA = TRUE, save_name = "sample_plots")

QQ_plot 47

QQ_plot QQ plot(s) of expected vs. reported p-values

Description

QQ_plot generates a simple QQ plot of the expected and reported p-value distribution. It includes
the option to filter the data with the high-quality filter. QQ_series generates a series of such QQ
plots for multiple filter settings.

Usage

QQ_plot(dataset, save_name = "dataset", save_dir = getwd(),
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,
filter_NA = TRUE,
filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,
p_cutoff = 0.05, plot_QQ_bands = FALSE,
header_translations,
check_impstatus = FALSE, ignore_impstatus = FALSE,
T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),
F_strings = c("0", "FALSE", "no", "NO", "n", "N"),
NA_strings = c(NA, "NA", ".", "-"), ...)

QQ_series(dataset, save_name = "dataset", save_dir = getwd(),
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,
filter_NA = TRUE,
filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,
p_cutoff = 0.05, plot_QQ_bands = FALSE,
header_translations,
check_impstatus = FALSE, ignore_impstatus = FALSE,
T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),
F_strings = c("0", "FALSE", "no", "NO", "n", "N"),
NA_strings = c(NA, "NA", ".", "-"), ...)

Arguments

dataset a data frame containing the p-value column and (depending on the settings)
columns for chromosome number, position, the quality parameters, sample size
and imputation status.

save_name for QQ_plot, a character string; for QQ_series, a vector of character strings;
specifying the filename(s) of the graph, without extension.

save_dir character string; the directory where the output files are saved. Note that R uses
forward slash (/) where Windows uses the backslash (\).

filter_FRQ, filter_cal, filter_HWE, filter_imp

Filter threshold-values for allele-frequency, callrate, HWE p-value and impu-
tation quality, respectively. Passed to HQ_filter. QQ_plot takes only single
values, but QQ_series accepts vectors as well (see ’details’).

48 QQ_plot

filter_NA logical; if TRUE, then missing filter variables will be excluded; if FALSE, they will
be ignored. QQ_plot takes only single values, but QQ_series accepts vectors as
well (see ’Details’). filter_NA is the default setting for all variables; variable-
specific settings can be specified with the following arguments.

filter_NA_FRQ, filter_NA_cal, filter_NA_HWE, filter_NA_imp

logical; variable-specific settings for filter_NA. These arguments are passed to
HQ_filter.

p_cutoff numeric; the threshold of p-values to be shown in the QQ plot(s). Higher (less
significant) p-values are excluded from the plot. The default setting is 0.05,
which excludes 95% of data-points. It’s not recommended to increase the value
above 0.05, as this may dramatically increase running time and memory usage.

plot_QQ_bands logical; should probability bands be added to the QQ plot?
header_translations

translation table for column names. See translate_header for more infor-
mation. If the argument is left empty, dataset is assumed to use the standard
column-names of QC_GWAS.

check_impstatus

logical; should the imputation-status column be passed to convert_impstatus?
ignore_impstatus

logical; if FALSE, HWE p-value and callrate filters are applied only to genotyped
SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters
are applied to all SNPs regardless of the imputation status.

T_strings, F_strings, NA_strings

arguments passed to convert_impstatus.

... arguments passed to plot.

Details

QQ_series accepts multiple filter-values, and passes these one by one to QQ_plot to generate a
series of plots. For example, specifying:

filter_FRQ = c(0.05, 0.10), filter_cal = c(0.90, 0.95)

will generate two plots. The first excludes SNPs with allele frequency < 0.05 or callrate < 0.90;
the second allele frequency < 0.10 or callrate < 0.95. The same principle applies to the NA_filter
settings. If the vectors submitted to the filter arguments are of unequal length, the shorter vector
will be recycled until it equals the length of the longer (if possible). To filter missing values only,
set the filter to NA and the corresponding NA-filter argument to TRUE. Setting the filter argument to
NULL will disable the filter entirely, regardless of the NA-filter setting.

Value

Both functions return an invisible value NULL.

See Also

QC_plots for generating more complex QQ plots as well as Manhattan plots.

QC_histogram for creating histograms.

check_P for comparing the reported p-values to the p expected from the effect size and standard
error.

save_log 49

Examples

data("gwa_sample")

QQ_plot(dataset = gwa_sample,
save_name = "sample_QQ",
filter_FRQ = 0.01, filter_cal = 0.95,
filter_NA = FALSE)

QQ_series(dataset = gwa_sample,
save_name = "sample_QQ",
filter_FRQ = c(NA, 0.01, 0.01),
filter_cal = c(NA, 0.95, 0.95),
filter_NA = c(FALSE, FALSE, TRUE))

save_log Log entries for QC_GWAS

Description

A subroutine for reporting problems encountered while running QC_GWAS. It’s not designed for use
outside of this context, so we recommend that users do not bother with it. It is described here for
the sake of completeness only.

Usage

save_log(phaseL, checkL, typeL, SNPL = allSNPs,
allSNPs = 1L, actionL, noteL = "", fileL)

Arguments

phaseL, checkL, typeL

character-strings indicating (very briefly) what occurred to trigger a log entry.
SNPL integer value indicating the number of SNPs affected.
allSNPs integer value indicating the total number of SNPs in the dataset.
actionL character-string describing very briefly the response to situation.
noteL character-string for longer explanations of what happened.
fileL character-string of the directory path and the file name, without file extension,

of the log file.

Details

save_log is used to add entries to the log file the moment they are triggered (as opposed to waiting
until the QC concludes and then saving the entire log). In case of a fatal crash, the log file should
therefor give some indication of where in the QC it occurred.

save_log does not create the log file (this is done by QC_GWAS): it merely appends entries to the
bottom of the specified file, regardless of what that file is. Hence it is not recommended to use the
function outside of QC_GWAS.

Value

save_log returns an invisible NULL. The relevant output is the entry added to the log file.

50 translate_header

switch_strand Convert alleles to the opposing DNA strand

Description

This function is a subroutine of QC_GWAS and match_alleles. It converts allele-pairs to the config-
uration on the opposing DNA strand.

Usage

switch_strand(input, strand_col = FALSE)

Arguments

input table with the alleles in column 1 and 2, and (optionally) the strand-information
(coded as "+" or "-") in column 3. Note: the alleles must be uppercase charac-
ters.

strand_col logical; if strand-information is present, this switches the sign in column 3 as
well.

Value

A table with two or three columns, depending on strand_col.

See Also

match_alleles

Examples

data("gwa_sample")

switched_data <- gwa_sample[, c("MARKER", "EFFECT_ALL",
"OTHER_ALL", "STRAND")]

switched_data[1:10,]

switched_data[, 2:4] <- switch_strand(input =
switched_data[, 2:4], strand_col = TRUE)

switched_data[1:10,]

translate_header Translate column names into standard names

Description

This function is used to translate non-standard column names into the standard ones used by
QC_GWAS and other functions. It can also translate the standard names into user-specified names
(via the out_header argument of QC_GWAS).

translate_header 51

Usage

translate_header(header,
standard = c("MARKER", "CHR", "POSITION", "EFFECT_ALL",

"OTHER_ALL", "STRAND", "EFFECT", "STDERR",
"PVALUE", "EFF_ALL_FREQ", "HWE_PVAL",
"CALLRATE", "N_TOTAL", "IMPUTED",
"USED_FOR_IMP", "IMP_QUALITY"),

alternative)

Arguments

header character vector; the header to be translated.

standard character vector; the names header should be translated into.

alternative translation table; see ’Details’ for more information.

Details

In a nutshell: the header argument contains the names you have; the standard argument contains
the names you want; and alternative is the conversion table.

The table in alternative should have two columns. The left column contains the standard names;
the right column possible alternatives. Only one alternative name should be listed per row. translate_header
automatically changes the contents of header to uppercase, so standard and the right column of
alternative should be uppercase as well.

A sample translation table can be found in "R\library\QCGWAS\doc". (It not recommended to load
it into R with the data function, as this automatically converts the characters into factors. Use
read.table instead, or put it in the reference directory and pass the filename to QC_GWAS by the
header_translations argument. QC_GWAS will then load the table automatically.)

Value

translate_header returns an object of class ’list’ with 6 components:

header_h character vector; the translated header. Unknown columns are included under
their old names.

missing_h character vector; the standard column names that were not found. If none, this
returns NULL.

unknown_h character vector; column names that could not be converted to a standard name.
Note that these columns are also included in header_h. If none, this returns
NULL.

header_N, missing_N, unknown_N

integer; the lengths of the above three vectors

See Also

identify_column

Examples

sample_data <-
data.frame(SNP = paste("rs", 1:10, sep = ""),

chrom = 2,
effect = 1:10/10,

52 translate_header

misc = NA,
stringsAsFactors = FALSE)

Creates a table with four columns:
SNP, chrom, effect and misc.

(alt_headers <-
data.frame(

standard = c("MARKER", "MARKER", "CHR", "CHR"),
alternative = c("MARKER", "SNP", "CHR", "CHROM"),
stringsAsFactors = FALSE))

Creates the translation table
with the standard names in column 1 and the alternatives
in column 2.

(header_info <-
translate_header(header = names(sample_data),

standard = c("MARKER", "CHR", "EFFECT"),
alternative = alt_headers))

Despite not being in the translation table, EFFECT is
changed to uppercase because it is present in standard.
misc is neither in standard or the translation table, so
it is marked as unknown and left unchanged.

names(sample_data) <- header_info$header_h

Index

∗Topic IO
save_log, 49

∗Topic classes
convert_impstatus, 5

∗Topic datasets
gwa_sample, 11
header_translations, 12

∗Topic distribution
match_alleles, 16
plot_distribution, 22
plot_precision, 23
plot_regional, 24
plot_skewness, 26
QC_histogram, 41
QC_plots, 43
QQ_plot, 47

∗Topic files
load_GWAS, 15

∗Topic package
QCGWAS-package, 2

∗Topic print
save_log, 49

∗Topic univar
calc_kurtosis, 2
check_P, 4
match_alleles, 16
plot_regional, 24
QC_plots, 43

boxplot, 22

calc_kurtosis, 2, 26
calc_skewness (calc_kurtosis), 2
check_P, 4, 34, 41, 46, 48
convert_impstatus, 5, 9, 10, 29, 33, 41–43,

45, 48
create_hapmap_reference, 7, 21

data, 12, 51

filter_GWAS, 8, 32

gwa_sample, 11

header_translations, 12

hist, 42, 43
histogram_series (QC_histogram), 41
HQ_filter, 3, 9, 12, 31, 42, 44, 47, 48

identify_column, 14, 45, 51

load_GWAS, 15, 32, 39, 41
load_test, 10, 29
load_test (load_GWAS), 15

match_alleles, 7, 8, 16, 30, 33, 38, 41, 50

plot, 4, 24–26, 48
plot_distribution, 22, 24, 26, 32, 41
plot_precision, 23, 23, 26, 32, 41
plot_regional, 24, 46
plot_skewness, 3, 23, 24, 26, 32, 41

QC_GWAS, 2–10, 12, 13, 16, 18, 21, 22, 24–26,
27, 42, 45, 46, 48–51

QC_histogram, 23, 41, 48
QC_plots, 25, 31, 34, 41, 43, 48
QC_series, 10, 22–24, 26
QC_series (QC_GWAS), 27
QCGWAS (QCGWAS-package), 2
QCGWAS-package, 2
QQ_plot, 43, 46, 47
QQ_series (QQ_plot), 47

read.table, 10, 15, 16, 29, 32, 51

save_log, 49
switch_strand, 21, 50

translate_header, 4, 9, 10, 12–14, 18, 25,
29, 32, 41, 42, 45, 46, 48, 50

write.table, 10, 30

53

	QCGWAS-package
	calc_kurtosis
	check_P
	convert_impstatus
	create_hapmap_reference
	filter_GWAS
	gwa_sample
	header_translations
	HQ_filter
	identify_column
	load_GWAS
	match_alleles
	plot_distribution
	plot_precision
	plot_regional
	plot_skewness
	QC_GWAS
	QC_histogram
	QC_plots
	QQ_plot
	save_log
	switch_strand
	translate_header
	Index

