
Frequently Asked Questions about Rcpp

Dirk Eddelbuettel Romain François

Rcpp version 0.10.4 as of June 23, 2013

Abstract

This document attempts to answer the most Frequently Asked Questions (FAQ) regarding the Rcpp (Eddelbuettel
and François, 2013, 2011) package.

1 Getting started

1.1 How do I get started ?

If you have Rcpp installed, please execute the following command in R

> vignette("Rcpp-introduction")

to access the vignette which provides a detailed introduction.
If you do not have Rcpp installed, the document should also be available whereever you found this document,

i.e., on every mirror of CRAN site.

1.2 What do I need ?

Obviously, R must be installed. Rcpp provides a C++ API as an extension to the R system. As such, it is bound
by the choices made by R and is also influenced by how R is configured.

In general, the standard environment for building a CRAN package from source (particularly when it contains
C or C++ code) is required. This means one needs:

� a development environment with a suitable compiler (see below), header files and required libraries;

� R should be built in a way that permits linking and possibly embedding of R; this is typically ensured by
the -enable-shared-lib option;

� standard development tools such as make etc.

1.3 What compiler can I use ?

On almost all platforms, the GNU Compiler Collection (or gcc, which is also the name of its C language compiler)
has to be used along with the corresponding g++ compiler for the C++ language. A minimal suitable version is a
final 4.2.* release; earlier 4.2.* were lacking some C++ features (and even 4.2.1, still used on OS X, has issues).

Generally speaking, and as of early 2011, the default compilers on all the common platforms are suitable.
Specific per-platform notes:

Windows users need the Rtools package from the site maintained by Duncan Murdoch which contains all the
required tools in a single package; complete instructions specific to Windows are in the ‘R Administration’
manual (R Development Core Team, 2012a, Appendix D).

OS X users, as noted in the ‘R Administration’ manual (R Development Core Team, 2012a, Appendix C.4), need
to install the Apple Developer Tools (e.g., Xcode) (as well as gfortran if R or Fortran-using packages are to
be built); also see FAQ 2.10 below.

Linux user need to install the standard developement packages. Some distributions provide helper packages
which pull in all the required packages; the r-base-dev package on Debian and Ubuntu is an example.

1

The clang and clang++ compilers from the LLVM project can also be used as they are inter-operable with
gcc et al. The clang++ compiler is particularly interesting as it emits much more comprehensible error messages
than g++.

The Intel icc family has also been used successfully as its output files can also be combined with those from
gcc.

1.4 What other packages are useful ?

Additional packages that we have found useful are

inline which is invaluable for direct compilation, linking and loading of short code snippets;

RUnit is used for unit testing; the package is recommended and will be needed to re-run some of our tests but it
is not strictly required;

rbenchmark to run simple timing comparisons and benchmarks; it is also recommended but not required.

2 Compiling and Linking

2.1 How do I use Rcpp in my package ?

Rcpp has been specifically designed to be used by other packages. Making a package that uses Rcpp depends on
the same mechanics that are involved in making any R package that use compiled code — so reading the Writing
R Extensions manual (R Development Core Team, 2012b) is a required first step.

Further steps, specific to Rcpp, are described in a separate vignette.

> vignette("Rcpp-package")

2.2 How do I quickly prototype my code using inline?

The inline package (Sklyar, Murdoch, Smith, Eddelbuettel, and François, 2013) provides the functions cfunction
and cxxfunction. Below is a simple function that uses accumulate from the (C++) Standard Template Library
to sum the elements of a numeric vector.

> fx <- cxxfunction(signature(x = "numeric"),

+ 'NumericVector xx(x);

return wrap(std::accumulate(xx.begin(), xx.end(), 0.0));',

+ plugin = "Rcpp")

> res <- fx(seq(1, 10, by = 0.5))

> res

[1] 104.5

Rcpp uses inline to power its entire unit test suite. Consult the unitTests directory of Rcpp for several
hundred further examples.

> list.files(system.file("unitTests", package = "Rcpp"), pattern = "^runit[.]")

One might want to use code that lives in a C++ file instead of writing the code in a character string in R.
This is easily achieved by using readLines :

> fx <- cxxfunction(signature(),

+ paste(readLines("myfile.cpp"), collapse = "\n"),

+ plugin = "Rcpp")

The verbose argument of cxxfunction is very useful as it shows how inline runs the show.
Update: Also see question 2.14 below about ’Rcpp Attributes’ (Allaire, Eddelbuettel, and François, 2013).

2

http://finzi.psych.upenn.edu/R/library/inline/html/cfunction.html
http://finzi.psych.upenn.edu/R/library/inline/html/cxxfunction.html
http://finzi.psych.upenn.edu/R/library/base/html/readLines.html
http://finzi.psych.upenn.edu/R/library/inline/html/cxxfunction.html

2.3 How do I convert my prototyped code to a package ?

Since release 0.3.5 of inline, one can combine FAQ 2.2 and FAQ 2.1. See help("package.skeleton-methods")

once inline is loaded and use the skeleton-generating functionality to transform a prototyped function into the
minimal structure of a package. After that you can proceed with working on the package in the spirit of FAQ 2.1.

2.4 How do I quickly prototype my code in a package?

The simplest way may be to work directly with a package. Changes to both the R and C++ code can be compiled
and tested from the command line via:

$ R CMD INSTALL mypkg && Rscript --default-packages=mypkg -e ’someFunction-

ToTickle(3.14)’

This first installs the packages, and then uses the command-line tool Rscript (which ships with R) to load the
package, and execute the R expression following the -e switch. Such an expression can contain multiple statements
separated by semicolons. Rscript is available on all three core operating systems.

On Linux, one can also use r from the littler package by Horner and Eddelbuettel which is an alternative
front end to R designed for both #! (hashbang) scripting and command-line use. It has slightly faster start-up
times than Rscript; and both give a guaranteed clean slate as a new session is created.

The example then becomes

$ R CMD INSTALL mypkg && r -l mypkg -e ’someFunctionToTickle(3.14)’

The -l option calls ’suppressMessages(library(mypkg))’ before executing the R expression. Several packages
can be listed, separated by a comma.

2.5 But I want to compile my code with R CMD SHLIB !

The recommended way is to create a package and follow FAQ 2.1. The alternate recommendation is to use inline
and follow FAQ 2.2 because it takes care of all the details.

However, some people have shown that they prefer not to follow recommended guidelines and compile their
code using the traditional R CMD SHLIB. To do so, we need to help SHLIB and let it know about the header files
that Rcpp provides and the C++ library the code must link against.

On the Linux command-line, you can do the following:

$ export PKG_LIBS=‘Rscript -e "Rcpp:::LdFlags()"‘

$ export PKG_CXXFLAGS=‘Rscript -e "Rcpp:::CxxFlags()"‘

$ R CMD SHLIB myfile.cpp

which first defines and exports two relevant environment variables which R CMD SHLIB then relies on. On other
operating systems, appropriate settings may have to be used to define the environment variables.

This approach corresponds to the very earliest ways of building programs and can still be found in some dep-
recated documents (as e.g. some of Dirk’s older ’Intro to HPC with R’ tutorial slides). It is still not recommended
as there are tools and automation mechanisms that can do the work for you.

An alternative, which might work better on Windows is to use the unexported function Rcpp:::SHLIB :

$ Rscript -e "Rcpp:::SHLIB(’myfile.cpp’)"

2.6 But R CMD SHLIB still does not work !

We have had reports in the past where build failures occurred when users had non-standard code in their
~/.Rprofile or Rprofile.site (or equivalent) files.

If such code emits text on stdout, the frequent and implicit invocation of Rscript -e "..." (as in FAQ 2.5
above) to retrieve settings directly from Rcpp will fail.

3

You may need to uncomment such non-standard code, or protect it by wrapping it inside if (interactive()),
or possibly try to use Rscript -vanilla instead of plain Rscript.

2.7 What about LinkingTo ?

R has only limited support for cross-package linkage.
We now employ the LinkingTo field of the DESCRIPTION file of packages using Rcpp. But this only helps in

having R compute the location of the header files for us.
The actual library location and argument still needs to be provided by the user. How to do so has been shown

above, and we recommned you use either FAQ 2.1 or FAQ 2.2 both which use the Rcpp function Rcpp:::LdFlags().
If and when LinkingTo changes and lives up to its name, we will be sure to adapt Rcpp as well.

2.8 Does Rcpp work on windows ?

Yes of course. See the Windows binaries provided by CRAN.

2.9 Can I use Rcpp with Visual Studio ?

Not a chance.
And that is not because we are meanies but because R and Visual Studio simply do not get along. As Rcpp

is all about extending R with C++ interfaces, we are bound by the available toolchain. And R simply does not
compile with Visual Studio. Go complain to its vendor if you are still upset.

2.10 I am having problems building Rcpp on OS X, any help ?

OS X is a little more conservative with compiler versions, so it pays to get the latest of whatever Apple releases
which may already be a little behind what is used on Linux or Windows.

At the time of writing this paragraph (in the spring of 2011), Rcpp (just like CRAN) supports all OS X releases
greater or equal to 10.5. However, building Rcpp from source (or building packages using Rcpp) also requires
a recent-enough version of Xcode. For the Leopard release of OS X, the current version is 3.1.4 which can be
downloaded free of charge from the Apple Developer site. Users may have to manually select g++-4.2 via the
symbolic link /usr/bin/g++. The Snow Leopard release already comes with Xcode 3.2.x and work as is.

2.11 Does Rcpp work on solaris/suncc ?

Yes, it generally does. But as we do not have access to such systems, some issues persist on the CRAN test
systems.

2.12 Does Rcpp work with Revolution R ?

We have not tested it yet. Rcpp might need a few tweaks to work with the compilers used by Revolution R (if
those differ from the defaults).

2.13 Is it related to CXXR ?

CXXR is an ambitious project that aims to totally refactor the R interpreter in C++. There are a few similaritites
with Rcpp but the projects are unrelated.

CXXR and Rcpp both want R to make more use of C++ but they do it in very different ways.

2.14 How do I quickly prototype my code using Attributes?

Rcpp version 0.10.0 and later offer a new feature ’Rcpp Attributes’ which is described in detail in its own vi-
gnette (Allaire et al., 2013). In short, it offers functions evalCpp, cppFunction and sourceCpp which extend the
functionality of the cxxfunction function.

4

3 Examples

The following questions were asked on the rcpp-devel mailing list, which is generally the best place to ask
questions.

3.1 Can I use templates with Rcpp and inline ?

I’m curious whether one can provide a class definition inline in an R script and then initialize an
instance of the class and call a method on the class, all inline in R.

Most certainly, consider this simple example of a templated class which squares its argument:

inc <- ’template <typename T>

class square : public std::unary_function<T,T> {

public:

T operator()(T t) const { return t*t ;}

};

’

src <- ’

double x = Rcpp::as<double>(xs);

int i = Rcpp::as<int>(is);

square<double> sqdbl;

square<int> sqint;

return Rcpp::DataFrame::create(Rcpp::Named("x", sqdbl(x)),

Rcpp::Named("i", sqint(i)));

’

fun <- cxxfunction(signature(xs="numeric", is="integer"),
body=src, include=inc, plugin="Rcpp")

fun(2.2, 3L)

Update: Also see question 2.14 above about ’Rcpp Attributes’ (Allaire et al., 2013) and its sourceCpp function.

3.2 Can I do matrix algebra with Rcpp ?

Rcpp allows element-wise operations on vector and matrices through operator overloading and STL
interface, but what if I want to multiply a matrix by a vector, etc ...

Currently, Rcpp does not provide binary operators to allow operations involving entire objects. Adding operators
to Rcpp would be a major project (if done right) involving advanced techniques such as expression templates.
We currently do not plan to go in this direction, but we would welcome external help. Please send us a design
document.

However, we have developed the RcppArmadillo package (François, Eddelbuettel, and Bates, 2013) that pro-
vides a bridge between Rcpp and Armadillo (Sanderson, 2010). Armadillo supports binary operators on its types
in a way that takes full advantage of expression templates to remove temporaries and allow chaining of operations.
That is a mouthful of words meaning that it makes the code go faster by using fiendishly clever ways available via
the so-called template meta programming, an advanced C++ technique. Also, the RcppEigen package provides
an alternative using the http://eigen.tuxfamily.org template library.

The following example is adapted from the examples available at the project page of Armadillo. It calculates
x′ × Y −1 × z

// copy the data to armadillo structures
arma::colvec x = Rcpp::as<arma::colvec> (x_);

arma::mat Y = Rcpp::as<arma::mat>(Y_) ;

5

arma::colvec z = Rcpp::as<arma::colvec>(z_) ;

// calculate the result
double result = arma::as_scalar(

arma::trans(x) * arma::inv(Y) * z

);

// return it to R
return Rcpp::wrap(result);

> fx <- cxxfunction(

+ signature(x_ = "numeric", Y_ = "matrix", z_ = "numeric"),

+ paste(readLines("myfile.cpp"), collapse = "\n"),

+ plugin = "RcppArmadillo")

> fx(1:4, diag(4), 1:4)

[1] 30

The focus is on the code arma::trans(x) * arma::inv(Y) * z, which performs the same operation as the R
code t(x) %*% solve(Y) %*% z, although Armadillo turns it into only one operation, which makes it quite fast.
Armadillo benchmarks against other C++ matrix algebra libraries are provided on the Armadillo website.

It should be noted that code below depends on the version 0.3.5 of inline and the version 0.2.2 of RcppAr-
madillo

3.3 Can I use code from the Rmath header and library with Rcpp ?

Can I call functions defined in the Rmath header file and the standalone math library for R–as for
example the random number generators?

Yes, of course. This math library exports a subset of R, but Rcpp has access to much more. Here is another
simple example. Note how we have to use and instance of the RNGScope class to set and re-set the random-number
generator. This also illustrates Rcpp sugar as we are using a vectorised call to rnorm. Moreover, because the RNG
is reset, the two calls result in the same random draws. If we wanted to control the draws, we could explicitly set
the seed after the RNGScope object has been instantiated.

> fx <- cxxfunction(signature(),

+ 'RNGScope();

return rnorm(5, 0, 100);',

+ plugin="Rcpp")

> fx()

[1] -18.82656 -84.93015 43.15631 -88.13726 -31.31748

> fx()

[1] -59.110546 17.895922 180.650483 19.352878 -4.491172

3.4 Can I use NA and Inf with Rcpp ?

R knows about NA and Inf. How do I use them from C++?

Yes, see the following example:

6

http://arma.sourceforge.net/speed.html

> src <- 'Rcpp::NumericVector v(4);

v[0] = R_NegInf; // -Inf

v[1] = NA_REAL; // NA

v[2] = R_PosInf; // Inf

v[3] = 42; // see the Hitchhiker Guide

return Rcpp::wrap(v);'

> fun <- cxxfunction(signature(), src, plugin="Rcpp")

> fun()

[1] -Inf NA Inf 42

3.5 Can I easily multiply matrices ?

Can I multiply matrices easily?

Yes, via the RcppArmadillo package which builds upon Rcpp and the wonderful Armadillo library at http:

//arma.sf.net:

> txt <- 'arma::mat Am = Rcpp::as< arma::mat >(A);

arma::mat Bm = Rcpp::as< arma::mat >(B);

return Rcpp::wrap(Am * Bm);'

> mmult <- cxxfunction(signature(A="numeric", B="numeric"),

+ body=txt, plugin="RcppArmadillo")

> A <- matrix(1:9, 3, 3)

> B <- matrix(9:1, 3, 3)

> C <- mmult(A, B)

Armadillo supports a full range of common linear algebra operations.
The RcppEigen package provides an alternative using the http://eigen.tuxfamily.org template library.

3.6 How do I write a plugin for inline ?

How can I create my own plugin for use by the inline package?

Here is an example which shows how to it using GSL libraries as an example. This is merely for demonstration,
it is also not perfectly general as we do not detect locations first—but it serves as an example:

> gslrng <- '

int seed = Rcpp::as<int>(par) ;

gsl_rng_env_setup();

gsl_rng *r = gsl_rng_alloc (gsl_rng_default);

gsl_rng_set (r, (unsigned long) seed);

double v = gsl_rng_get (r);

gsl_rng_free(r);

return Rcpp::wrap(v);'

> plug <- Rcpp:::Rcpp.plugin.maker(

+ include.before = "#include <gsl/gsl_rng.h>",

+ libs = paste("-L/usr/local/lib/R/site-library/Rcpp/lib -lRcpp",

+ "-Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib",

+ "-L/usr/lib -lgsl -lgslcblas -lm"))

> registerPlugin("gslDemo", plug)

> fun <- cxxfunction(signature(par="numeric"), gslrng, plugin="gslDemo")

> fun(0)

Here the Rcpp function Rcpp.plugin.maker is used to create a plugin ’plug’ which is then registered, and
subsequently used by inline.

7

http://arma.sf.net
http://arma.sf.net

3.7 How can I pass one additional flag to the compiler?

How can I pass another flag to the g++ compiler without writing a new plugin?

The quickest way is to modify the return value from an existing plugin. Here we use the default one from
Rcpp itself in order to pass the new flag -std=c++0x. As it does not set the PKG_CXXFLAGS variable, we simply
assign this. For other plugins, one may need to append to the existing values instead.

> myplugin <- getPlugin("Rcpp")

> mypluginenvPKG_CXXFLAGS <- "-std=c++0x"

> f <- cxxfunction(signature(), settings=myplugin, body='

+ std::vector<double> x = { 1.0, 2.0, 3.0 }; // fails without -std=c++0x

+ return Rcpp::wrap(x);

+ ')

> f()

3.8 How can I set matrix row and column names ?

Ok, I can create a matrix, but how do I set its row and columns names?

Pretty much the same way as in R itself: We define a list with two character vectors, one each for row and
column names, and assign this to the dimnames attribute:

> src <- '

Rcpp::NumericMatrix x(2,2);

x.fill(42); // or more interesting values

Rcpp::List dimnms = // two vec. with static names

Rcpp::List::create(Rcpp::CharacterVector::create("cc", "dd"),

Rcpp::CharacterVector::create("ee", "ff"));

// and assign it

x.attr("dimnames") = dimnms;

return(x);

'

> fun <- cxxfunction(signature(), body=src, plugin="Rcpp")

> fun()

3.9 Why can long long types not be cast correctly?

That is a good and open question. We rely on the basic R types, notably integer and numeric. These can be
cast to and from C++ types without problems. But there are corner cases. The following example, contributed
by a user, shows that we cannot reliably cast long types (on a 64-bit machines).

> BigInts <- cxxfunction(signature(),

+ 'std::vector<long> bigints;

bigints.push_back(12345678901234567LL);

bigints.push_back(12345678901234568LL);

Rprintf("Difference of %ld\\n", 12345678901234568LL - 12345678901234567LL);

return wrap(bigints);', plugin="Rcpp", includes="#include <vector>")

> retval<-BigInts()

> stopifnot(length(unique(retval)) == 2)

While the difference of one is evident at the C++ level, it is no longer present once cast to R. The 64-bit integer
values get cast to a floating point types with a 53-bit mantissa. We do not have a good suggestion or fix for casting
64-bit integer values: 32-bit integer values fit into integer types, up to 53 bit precision fits into numeric and
beyond that truly large integers may have to converted (rather crudely) to text and re-parsed. Using a different
representation as for example from the GNU Multiple Precision Arithmetic Library may be an alternative.

8

http://gmplib.org/

4 Support

4.1 Is the API documented ?

You bet. We use doxygen to generate html, latex and man page documentation from the source. The html
documentation is available for browsing, as a very large pdf file, and all three formats are also available a zip-
archives: html, latex, and man.

4.2 Does it really work ?

We take quality seriously and have developped an extensive unit test suite to cover many possible uses of the
Rcpp API.

We are always on the look for more coverage in our testing. Please let us know if something has not been
tested enough.

4.3 Where can I ask further questions ?

The Rcpp-devel mailing list hosted at R-forge is by far the best place. You may also want to look at the list
archives to see if your question has been asked before.

4.4 Where can I read old questions and answers ?

The normal Rcpp-devel mailing list hosting at R-forge contains an archive, which can be searched via swish.
Alternatively, one can also use Gmane on Rcpp-devel as well as Mail-Archive on Rcpp-devel both of which

offer web-based interfaces, including searching.

4.5 I like it. How can I help ?

The current list of things to do is available in our TODO file. . If you are willing to donate time and have skills in
C++, let us know. If you are willing to donate money to sponsor improvements, let us know.

You can also spread the word about Rcpp. There are many packages on CRAN that use C++, yet are not
using Rcpp. You could write a review of Rcpp in crantastic, blog about it or get the word out otherwise.

4.6 I don’t like it. How can I help ?

It is very generous of you to still want to help. Perhaps you can tell us what it is that you dislike. We are very
open to constructive criticism.

4.7 Can I have commercial support for Rcpp ?

Sure you can. Just send us an email, and we will be happy to discuss the request..

4.8 I want to learn quickly. Do you provide training courses ?

Yes. Just send us an email.

References

J. J. Allaire, Dirk Eddelbuettel, and Romain François. Rcpp Attributes, 2013. URL http://CRAN.R-Project.

org/package=Rcpp. Vignette included in R package Rcpp.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ Integration, 2013. URL http://CRAN.

R-Project.org/package=Rcpp. R package version 0.10.4.

9

http://dirk.eddelbuettel.com/code/rcpp/html/index.html
http://dirk.eddelbuettel.com/code/rcpp/Rcpp_refman.pdf
http://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-html.zip
http://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-latex.zip
http://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-man.zip
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://lists.r-forge.r-project.org/mailman/swish.cgi?query=listname=rcpp-devel
http://thread.gmane.org/gmane.comp.lang.r.rcpp/
http://www.mail-archive.com/rcpp-devel@lists.r-forge.r-project.org/info.html
https://r-forge.r-project.org/scm/viewvc.php/pkg/Rcpp/TODO?view=markup&root=rcpp
http://crantastic.org
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo tem-
plated linear algebra library, 2013. URL http://CRAN.R-Project.org/package=RcppArmadillo. R package
version 0.3.900.0.

R Development Core Team. R Installation and Administration. R Foundation for Statistical Computing, Vienna,
Austria, 2012a. URL http://CRAN.R-Project.org/doc/manuals/R-admin.html. ISBN 3-900051-09-7.

R Development Core Team. Writing R extensions. R Foundation for Statistical Computing, Vienna, Austria,
2012b. URL http://CRAN.R-Project.org/doc/manuals/R-exts.html. ISBN 3-900051-11-9.

Conrad Sanderson. Armadillo: An open source C++ algebra library for fast prototyping and computationally
intensive experiments. Technical report, NICTA, 2010. URL http://arma.sf.net.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François. inline: Inline C, C++,
Fortran function calls from R, 2013. URL http://CRAN.R-Project.org/package=inline. R package version
0.3.12.

10

http://CRAN.R-Project.org/package=RcppArmadillo
http://CRAN.R-Project.org/doc/manuals/R-admin.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://arma.sf.net
http://CRAN.R-Project.org/package=inline

	Getting started
	How do I get started ?
	What do I need ?
	What compiler can I use ?
	What other packages are useful ?

	Compiling and Linking
	How do I use Rcpp in my package ?
	How do I quickly prototype my code using inline?
	How do I convert my prototyped code to a package ?
	How do I quickly prototype my code in a package?
	But I want to compile my code with R CMD SHLIB !
	But R CMD SHLIB still does not work !
	What about LinkingTo ?
	Does Rcpp work on windows ?
	Can I use Rcpp with Visual Studio ?
	I am having problems building Rcpp on OS X, any help ?
	Does Rcpp work on solaris/suncc ?
	Does Rcpp work with Revolution R ?
	Is it related to CXXR ?
	How do I quickly prototype my code using Attributes?

	Examples
	Can I use templates with Rcpp and inline ?
	Can I do matrix algebra with Rcpp ?
	Can I use code from the Rmath header and library with Rcpp ?
	Can I use NA and Inf with Rcpp ?
	Can I easily multiply matrices ?
	How do I write a plugin for inline ?
	How can I pass one additional flag to the compiler?
	How can I set matrix row and column names ?
	Why can long long types not be cast correctly?

	Support
	Is the API documented ?
	Does it really work ?
	Where can I ask further questions ?
	Where can I read old questions and answers ?
	I like it. How can I help ?
	I don't like it. How can I help ?
	Can I have commercial support for Rcpp ?
	I want to learn quickly. Do you provide training courses ?

