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Abstract

Modelling of Gaussian spatio-temporal processes provide ample opportunity for dif-
ferent model formulations, however two principal directions have emerged. The data can
be modelled either as a set of spatially varying temporal basis functions or as spatial
fields evolving in time. This package provides maximum-likelihood estimation and cross-
validation tools for the first case. Development of the package was motivated by the need
to provide accurate spatio-temporal predictions of ambient air pollution at small spatial
scales for a health effects study.

The package provides tools for extracting temporal basis functions from the data. It
handles incomplete and highly unbalanced spatio-temporal sampling designs and allows
for a flexible set of covariates and covariance structures to capture the spatial variability in
the temporal basis functions and in the spatio-temporal residuals. Further, the package
provides bias corrected predictions for log-transformed data, cross-validation tools and
rudimentary MCMC-routines to asses the modelfit.

Here we describe the package, providing a brief summary of the theory, but focusing
our attention on an example illustrating how the package can be used for model fitting
and cross-validation analysis; the example is based on data included in the package.

Keywords: Spatio-temporal modelling, likelihood based estimation, cross-validation, air pol-
lution, NOy smooth EOFs, log-Gaussian process, unbalanced data.

1. Introduction

R (R Core Team 2013) package SpatioTemporal provides functions for fitting and evaluation
of a class of Gaussian spatio-temporal processes that are based on spatially varying temporal
basis functions, with spatially correlated residuals.

Development of SpatioTemporal was motivated by the need, in the Multi-Ethnic Study of
Atherosclerosis and Air Pollution (MESA Air), for accurate predictions of ambient air pollu-
tion. MESA Air is a cohort study funded by the Environmental Protection Agency (EPA)
with the aim of assessing the relationship between chronic exposure to air pollution and the
progression of sub-clinical cardiovascular disease (Kaufman et al. 2012). A primary focus of
the MESA Air study is the development of accurate predictions of ambient air pollution (Bild
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et al. 2002; Kaufman et al. 2012) — primarily gaseous oxides of nitrogen (NOy) and partic-
ulate matter with aerodynamic diameter less than 2.5 pm (PMsa5) — at the home locations
of study participants in six major US metropolitan areas: Los Angeles, CA; New York, NY;
Chicago, IL; Minneapolis-St. Paul, MN; Winston-Salem, NC; and Baltimore, MD.

To fullfill the prediction needs of MESA Air the spatio-temporal model implemented in this
package has been developed in a series of papers (Szpiro et al. 2010; Sampson et al. 2011;
Lindstrom et al. 2011, 2013). The model is based on the notion of spatially varying smooth
temporal basis functions (see e.g. Sec. 3 in Fuentes et al. 2006), and represents one of many
different ways that spatio-temporal dependencies can be modelled.

Several general overviews of statistical modeling approaches for spatially and spatio-temporally
correlated data exist (Banerjee et al. 2004; Cressie and Wikle 2011), including non-separable
spatio-temporal covariance functions (Gneiting and Guttorp 2010) and dynamic model for-
mulations (Gamerman 2010). There are also several methods developed specifically for the
modelling of air pollution data (Smith et al. 2003; Sahu et al. 2006; Calder 2008; Fanshawe
et al. 2008; Paciorek et al. 2009; De Iaco and Posa 2012). Additionally, other R packages that
handle spatio-temporal models and data are summarised in the relevant task view (http:
//CRAN.R-project.org/view=SpatioTemporal) on the Comprehensive R Archive Network
(CRAN) http://CRAN.R-project.org

The main purposes of this paper are to: 1) introduce SpatioTemporal to R users, 2) present
details regarding the model and its implementation necessary for users to fully understand
and analys output from the package, 3) demonstrate the use of SpatioTemporal by analysing
an example data-set, and 4) provide an outlook of future features that may be added to the
package.

This paper starts with an outline of the model and theory in Section 2, including details
regarding the smooth temporal basis functions (Section 2.1), estimation (Section 2.2), predic-
tion (Section 2.3), and cross-validation (Section 2.4). This is followed by a description of key
package features and assumptions in Section 3 and an example analysis of Los Angeles NOy
data in Section 4. Section 5 concludes with an outlook towards possible future features.

Results in this paper were obtained using version 1.1.7 of SpatioTemporal. The current ver-
sion of the package can be obtained from CRAN at http://CRAN.R-project.org/package=
SpatioTemporal.

A longer vignette providing detailed descriptions of function outputs and elaborating on fea-
tures not covered here (e.g. simulation) is included as vignette ("ST_tutorial", package="SpatioTemporal

2. Model and Theory
We are interested in models of the form

y(37t> - M(Sat) + V(Svt)7 (1)

where y(s,t) denotes the spatio-temporal observations, p(s,t) is the structured mean field,
and v(s,t) is the space-time residual field.

The mean field is modelled as

L m
u(s, ) = > uMils )+ 3 Bils) fi), (2)
=1 i=1
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where the M;(s,t) are spatio-temporal covariates; v; are coefficients for the spatio-temporal
covariates; {f;(t)}7, is a set of (smooth) temporal basis functions, with fi(t) = 1; and the
Bi(s) are spatially varying coefficients for the temporal functions.

The B;(s)-coefficients in (2) are treated as spatial fields with a universal kriging structure,
allowing the temporal structure to vary between locations:

61(8) eN (Xiai, 251.(01»)) fori=1,...,m, (3)

where X; are n X p; design matrices, oy are p; x 1 matrices of regression coefficients, and
Y3,(0;) are n x n covariance matrices. The X; matrices often contain geographical covariates
and we dentote this component a “land use” regression (LUR). This structure allows for
different covariates and covariance structures in the each of the f;(s) fields; the fields are
assumed to be apriori independent of each other.

The residual space-time field, v(s,t), is assumed to be independent in time with stationary,
parametric spatial covariance

»l,) o0 0
(s,t) e N |0, 0 0 , (4)
0 0 7,

or
v(s,t) €N(0,2L(6,)) fort=1,...,T and v(s1,t1) L v(se, ta), t1 # to.

Here the size of each block matrix, X! (6,), is the number of observations, n;, at each time-
point. Conceptually the v-field consists of a correlated component, v*, and an uncorrelated
nugget-effect comprising small-scale variability and measurement errors, vnygget, i-€.:

v(s,t) = v*(s,t) + Vnugget (s, ) and X, =3 + Eu nugget, (5)

where Y, hugget 1S a diagonal matrix.

The temporal independence in (4) is based on the assumption that the temporal basis,
{fi(t)}™,, in (2) accounts for the temporal correlation in data. A summary of the nota-
tion can be found in Table 1.

To simplify the model we introduce a sparse N x mn-matrix F' = (f s) with elements

Fstis = {f () s =s, (6)

0 otherwise,
along with the N x 1-vectors Y = y(s,t), V = v(s,t), and M;(s,t) by stacking the elements

into single vectors varying first s and then ¢, i.e. (assuming that the corresponding observations
exist)

Y =[y(s1,1) ylsa,1) - w(s1,2) w(s2,2) - y(sa,T)] .

3
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Table 1: Important notation and symbols

Symbol | Meaning
y(s,t) | Spatio-temporal observations.
yu(s,t) | Spatio-temporal process at the un-observed loca-
tions/times.
y*(s,t) | Smoothed version of the spatio-temporal process (i.e.
excl. nugget).
The log-Gaussian process, z(s,t) = exp(y(s,y))-
Mean field part of y(s,t).
Space-time residual part of y(s,t).
fi(t) Smooth temporal basis functions.
Bi(s) Spatially varying regression coefficients, weighing the
i:th temporal basis differently at each location.
X; Land use regression (LUR) basis functions for the spa-
tially varying regression coefficients in f3;(s).

; Regression coefficients for the i:th LUR-basis.
M;(s,t) | Spatio-temporally varying covariates.

Y Regression coefficient for the spatio-temporally vary-
ing covariates.

IS

N

A~~~
VA
~~
S— N

N No. of observations.

T No. of observed time-points.

n No. of observed locations.

ng No. of observations at time ¢ (N = Zthl ng and ny <
n Vt.

m No. of temporal basis functions (incl. intercept).

L No. of spatio-temporal model outputs.

Di No. of LUR-basis functions for the i:th temporal-basis.

The unknown regression and covariance parameters of the model are are collected into column
vectors

T T m
y=[m - wul . a=faf - ay] , Op={0}, V={050,},
and all spatio-temporal covariates are gathered in a N X L-matrix, M = [./\/ll e M L].
Components of the §;-fields are assembled into block matrices as
51(8) X1 0 0 21(91> 0 0
B=| |, X=|o0o . of, EsB)=| o . o |-
Bm(8) 0 0 X, 0 0 Xn(0n)

Using these matrices (1) can be written as
Y=M~y+FB+V, where BeN(Xa,Xp(p)) and V eN(0,%X,(0,)). (8)
Since (8) is a linear combinations of independent Gaussians we introduce the matrices

X =[M FX] and S(U) =%,(0,) + FXp(0p)F T, (9)
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and write the distribution of Y as
[Y|¥,~,a] €N <)Z m ,i(@) . (10)

Having defined the model the following Sections discuss: 2.1) specification of the (smooth)
temporal basis functions, 2.2) parameter estimation, 2.3) prediction, and 2.4) model evalu-
ation through cross-validation.

2.1. Smooth Temporal Functions

The objective of the smooth temporal basis functions, f;(t), is to capture the temporal vari-
ability in the data. These functions can either be specified as deterministic functions, or
obtained as smoothed singular vectors (See Fuentes et al. 2006, for details.).

To derive the m — 1 smoothed singular vectors (m — 1 since fi(t) = 1) we first construct the

T x n data matrix

D(t.s) = y(t,s), if the O.bservation y(t, s) exists, (1)
NA, otherwise,

and fill in missing observations using the algorithm described by Fuentes et al. (2006):

Step 0 Centre and scale each column (to mean zero, variance one) and compute the mean of
all available observations for each time-point, u(t). Missing values in D(¢, s) are then
imputed using fitted values from a linear regression where each column of D(t,s) is
regressed onto uq. For this step to be well defined the data matrix must have at least
one observation in each row and column.

Step 1. Compute the SVD (singular value decomposition) of the new data matrix with the
missing values imputed.

Step 2. Do regression of each column of the new data matrix on the first m — 1 orthogonal basis
functions from Step 1. The missing values are then replaced by the fitted values of this
regression.

Step 3. Repeat from Step 1 until convergence; convergence being measured by the change in
the imputed values between iterations.

Having imputed the missing values in D(¢, s) we then use splines to smooth the leading m — 1
singular vectors, i.e. the m — 1 first columns of U in the SVD: D = USV'T.

Cross-validation can be used to determine the number of smooth temporal basis functions
needed to capture the temporal variability in data. In a cross-validation the j™ column
of D(t,s) is held out, smooth temporal functions are computed for the reduced matrix as
above, and the functions are evaluated by how well they explain the held out j* column of
D(t, s). Repeating for all columns in D(¢, s) we obtain a set of regression statistics describing
how well the left out columns are explained by smooth temporal functions based on the
remaining columns. The computed statistics — mean squared errors (MSE), R?, AIC (Akaike
information criterion), and BIC (Bayesian information criterion) — together with correlation
analysis of temporal residuals (recall the assumption of temporal independence in (4)) are
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used to determine a suitable number of temporal basis functions; an example is provided in
Section 4.3.

2.2. Parameter Estimation

Parameter estimates are obtained by maximising the log-likelihood of (10)

A(W, a,7[Y) = — Nlog(2m) — log ‘f}(\y)‘

) <Y‘X B])Ti‘%% (y-;} BD (12)

Here ¥ is a dense N x N-matrix and to obtain a computationaly feasable solution that
utlizes the block diagonal structure of ¥, and ¥ p Lindstrém et al. (2011, 2013) simplified the
log-likelihood by application of various matrix identities, including the Woodbury identity
(Thm. 18.2.8 Harville 1997)

-1
Sty oy lF (2; T FnglF) FTy L (13)

v

and replaced v, a with the generalised least squares estimates

5 IO RUN P
[g] - (XTE*1X) (XT2*1Y> . (14)
Introducing the matrices
-1 -1 Ty—1
EB|Y =Xz +F X °F, (15a)
-1 Ty—1 Ty—1 -1
Za|Y =X Yp X - X Y5 ¥pyXp X, (15b)

S =5, -5 FEpy FTE;!

15¢
— S PY gy S5 X Sy X TS5 Sy F T (15¢)

and using (14) the log-likelihood (12) can be replaced by the corresponding profile or restricted
maximum log-likelihood (REML):

Upror (WY = — log [ (6,)] — log |[S5(05)| — log lzgfy(qx)’ —YTS(w)Y

_ (16)
+YTS@M(MTE(W)IM) "MTS(T)Y + const.

or

2 (U]Y) = 2pnor (V]Y) — log [ MTE(@) M| — 10g |27} (w)| (17)
respectively. Parameter estimates are obtained by maximisation of either (16) or (17) as

(I\IPROF = argmax lpror(V[Y), or \/I}R,EML = argmax lpp(¥]Y). (18)
v v

2.3. Predictions
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Given the structure of the model (1) with a mean component (2) and S-fields (3) the contribu-
tion to any predictions of unobserved Y’s can be decomposed in to parts due to the regression
model: M~ 4+ FXa, the g-fields: M~ + FB, and the full predictions. These different pre-
dictions are illustrated in Figure 1, using data from the example in Section 4. The different
predicitons play an important part in model evaluation by highlighting at which level of the
model different featurs of the data are captured.

First, given observations, Y, and estimates of the covariance parameters, ¥, the regression
coefficients are given by (14) with variances

e (1

Before providing predictions for § and Y some notation is needed. Let M,,, X, and F, denote
spatio-temporal covariates, geographic covariates, and temporal basis funcions at unobserved
locations/times. Further, B, denotes the collection of S-fields at the unobserved locations,
Y Buo and X, 4, are the cross-covariance matrices between observed and unobserved points,
and X 4, and X, ,, are the covariance matrices for unobserved points. Using this notation
relevant variations on the matrices in (9) are

~— o~ ~\ —1
Y, \I/) - (XT2—1X> .

)N(u = [Mu FuXu] and iuo = Eyj,uo + FuEB,uOFT' (19)

Prediction of -fields
Treating (8) as a hierarchical model straight forward but tedious calculations give predictions
for the S-fields as
_xa T5-1 b
E(BuY, V) = X,a+ XpuoF X (Y - X [&]) , (20)

with variance

VAR (Bu|Y> \117 «, ’7) :ZB,uu - ZB,uozfglzB,ou + ZB,uozglzB\YzélzB,ou

_ _ (21)
:ZB,uu - 2B,qu’TEy 1FZB\YEBlzB,ou‘

Here, the first two terms in the top line of (21) contain the standard spatial prediction
uncertainty for 3, the last term is the added uncertainty from estimating 8 at the observed
locations given Y. The variance in (21) is conditional on both regression and covariance
parameters, adding the uncertainty in the regression coefficients the variance becomes

VAR (B,|Y, ¥) =VAR (B,|Y, ¥, a, ) + ([0 X,] - EBMFTEJ_UN() :

~— o~ ~\ —1 . T (22)
(XT2—1X> ([0 X,] - ZBMOFTZ_lX) .

For p-fields at observed locations (20) and (21) simplify to

E(B|Y,¥) =X& + Spy F'8;? (Y - X BD :

VAR (B|Y7 \Ilv a77) :EB|Y‘

7
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Prediction of Y

The model (10) is multivariate Normal and the full predictions of unobserved Y’s are in
principal standard kriging estimates. For the predictions we are primarily interested in the
smooth underlying field, denoted Y*; this can also been interpreted as smoothing over the

nugget in (5) (Cressie 1993, Ch. 3.2.1). The predictions of Y* and Y differ only at observed
locations.

Using (9) and (19) predictions for Y, are

E(Y|Y,0) = X, [g] TS o (Y - X [gD , (23)

with variances
VAR (YJ’Y, \IJ7 «, ’Y) :f::;u - i;kwi_lizu (243‘)
VAR (Y, |Y, ¥, o, ) =Sy, — S5 57185 (24b)

Here ifw is the cross-covariance matrix ezcluding the nugget in v, cf. (5); this distinction
is only relevant when Y, includes observed points. For the prediction variances, (24a) gives
the uncertainty in the prediction of the underlying y*-field, while (24b) gives the uncertainty
for a new observations at this point; the difference is similar to that between confidence and
prediction intervals in regression (Ch. 11.3.5 in Casella and Berger 2002) and is of importance
for the cross-validation. As for (21), (24) is conditional on both regression and covariance

parameters, accounting for uncertainty in the regression coefficients gives

VAR (Y;[Y, ¥) =VAR (Y |V, ¥, v, y) +

e e N e =Ll st~ AT (25)
(Xu - 2;02*1)() (XT2*1X> (Xu . EZOE*1X>

for (24a) and similarly for (24b).

For unobserved time-points it should be noted that the lack of temporal correlation in v
implies that predictions of y(s,t,) are identical to the contribution from the S-fields in (20)
(see Figure 1),

E(y(s, tu)|Y, ) = My + FLE (Bu|Y, ¥).
The prediciton variance for unobserved time-points,
_ T
VAR (y(s, tu)|Y, ¥, ;) = Fu VAR (Bu|Y, ¥, o, v) F, + X0

will typically be much larger than for observed time-points due to the added uncertainty from
the completely unknown v(s, t,,)-field.
Temporal averages

A primary interest in MESA Air is the health effects of chronic exposure to air pollution. Thus
we are interested in the long term average exposure at each location, F(s) = (>, y(s,t)) /T.
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Predictions and uncertainties of temporal averages are given by
1 X
E( ()|, 9) = = > E( (s,)[V,9), (26a)
t=1
LT
VAR (57 (s)|Y, ) = =5 > > COV (y"(s,11), y" (5, 12)[V, ©), (26b)

where COV (y*(s,t1),y" (s, t2)|Y, ¥) is the matrix form of (25).

log-Gaussian fields

Transformation of data is commonly used to facilitate the modelling of non-Gaussian data
under Gaussian assumptions (Tukey 1957; Box and Cox 1964). The log-transformation has
been successfully applied to environmental data, including, but not limited to, air-pollution
(e.g. PMyg, PM3 5 and NOy; see Paciorek et al. 2009; Szpiro et al. 2010; Sampson et al. 2011)
and precipitation (Damian et al. 2003). For log-transformed data exact expressions exist for
both bias-corrected estimates and their associated mean squared prediction errors (MSPE)
(Cressie 1993, 2006; De Oliveira 2006). This stands in contrast to the approximate d-method
described in Ch. 3.2.2 of Cressie (1993) for general trans-Gaussian Kriging.

To accomondate log-transformed data both point and temporal average predictions for log-
Gaussian processes, as described below, are implemented in SpatioTemporal. Figure 1 illus-
trates the difference between predictions of the log-Gaussian process (original data) and of
the Gaussian process (transformed data).

If y(s,t) is a Gaussian random process (10) then the corresponding log-Gaussian random pro-
cess (i.e. the original, untransformed, data) is given by z(s,t) = exp (y(s,t)) with expectation

VAR (y(s,t
o) = Ee(5,0) = exp (E Gyt + A=),
Assuming that both covariance (¥) and regression (a,-y) parameters are known the best
unbiased predictor of an unobserved part of the log-Gaussian field is (Cressie 1993, Ch. 3.2.2)

= VAR (Y |Y, ¥

7% = exp <E(Y;|Y,\If)+ ( “'2’ ’a’7)>. (27)
Here we are, just as in (23), interested in the underlying smooth field excluding the nugget
(see Appendix A in Cressie 2006); to obtain a predictor, Z,, that includes the nugget, the

variance from (24a) is replaced by the variance from (24b) in (27). The MSPE of Z’; is,
MSPE (25) = 2 (8u, ty)? (exp (i:‘m) — exp (i’[wi_lizu))

~ 73 exp (iuu) [1 _ exp(—VAR (Y |Y, 0, a,'y))] , 2%)

where the approximation follows since Zj is an unbiased estimator of j,(s,t). Prediction and
confidence intervals for z(s,t) are obtained by transformation of the corresponding intervals
obtained for y(s,t).

9
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Predictions at AQS 60590007

g+ e s ¥
o | — >
(@) e
ST N R =T
X 1 A X
z -"‘)—{L‘-Y ~
X
o0 _| X
N
X Observations

§ ——— Predictions
— Predictions, incl. nugget
% o Contribution from beta =
= S |'-- Contribution from mean '¥‘
@) 95% ClI X
z o

T}

o —]

| | | |
jul sep nov jan

Figure 1: Example of predictions on the Gaussian (top) and on the original scale (bottom) at
an AQS site (60590007) given data at all other locations. The black line gives the predictions
(E(YF|Y) or Z’j) the orange line is Z,, i.e. predictions incl. the nugget (lower pane only); the
dashed green line gives the contribution from the §-fields, M~y + FE (B,|Y); and the dotted
line is the contribution from the mean, M~ + FXa. For the lower pane, the last two are
simply transformed as exp [-] without bias correction. Observations occur every 14-days (red
x ), predictions at these time-points (black +) are close to the observations while observations
at un-observed time-points co-incide with (top), or are close to (bottom), the dashed green
line. Three different 95% intervals are given: a confidence interval for observed time-points
(white), prediction interval for observed time-points (dark grey), and prediction interval for
the additional un-observed time-points (light grey).

The distinction between predictions with and without nugget is much more important for the
log-Gaussian case (27) than for the Gaussian case (23). In general Z} # Z,, since

VAR (Y |Y, ¥, at,y) # VAR (Y,|Y, ¥, o, y), whereas E (Y,[|Y, V) # E (Y, |Y,¥)

only at observed locations. The difference between Zj and Z: is important when comparing
predictions to left-out observations in cross-validation.

For the case with unknown regression parameters two possible predictors exist, either the un-
—~UB

biased predictor Z’j (De Oliveira 2006; Cressie 2006) or the biased, minimum mean squared
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—~ME
error predictor Z¥  (De Oliveira 2006),
Z’;UB = exp (E (Y)Y, 0) + VAR(};M - AZ> , (29a)
7 —exp (E (VY ) + VAR(S;W,\I!) _ 2AZ> . (29D)
Here A, is the Lagrange multiplier for the Kriging predictor in (23),
A= (X, -5,578) (X780%) XL (30)

The MSPE of the predictors in (29) are

/\UB —~UB\ 2

MSPE( > ~ (Z;; > exp <2 ) [1 —exp( VAR (Y'Y, q/)) (2eAz —e“z)], (31a)
—~ME —~TUB\ 2 .

MSPE <Z; > ~ (Z; > exp (2;u> [1 —exp(—VAR(Y;n/, q/))] (31D)

—~UB
where we have used that Z} is an unbiased estimator of 1, (s,t). We note that

—~ME —UB
MSPE <Z; ) < MSPE (Z;j >

in accordance with De Oliveira (2006)

Following the discussion of block prediction for log-Gaussian processes in De Oliveira (2006)
and Cressie (2006), estimates of temporal averages are computed as
Z*(s 2;; (s,1), (32)
T
~ UB
and similarly for z* (s) an

~
=
o*

(s) The MSPE for these predictors are

T
> (s 1) 2 (s, t)
2=1 (33a)

3=

MSPE (ﬁ(s)) ~

1-— exp(—COV (y*(s,tl),y*(S,tQ)\Y,\I/)> (33Db)

X ME r r 2 UB AUB ~
MSPE (2% (s) ) ~— ¢ t [ . }
(z <s>) 5D D (st) (s 2>exp( S )

1— eXP(—COV (y*(s,t1),y"(s5,t2)|Y, ‘I’)>]

(33c)

11
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Here o]
sty,st
(30) should now contain covariates for all times over which we are averaging.

, denotes elements in the e-matrix; to make A, a T x T-matrix X, and izo in

2.4. Cross-Validation

The model’s predictive accuracy can be assessed through cross-validation. In Lindstrom et al.
(2013) a cross-validation setup is presented; the setup, implemented in this package, handles
the highly unbalanced sampling design and the MESA Air study’s interest in predicting long
term average exposures.

Dividing the observed locations into groups, n-fold cross-validation, consisting of parameter
estimation and predictions, is performed as usual (Hastie et al. 2001, Ch. 7.10). Given the
predictions and prediction variances, coverage of 95% prediction intervals, root mean squared
error (RMSE) and cross-validated R?’s,

(34)

R? = max<0 1-— RMSE® )

VAR(y(s,1))
can be computed.

When assessing predictions of temporal averages at each location, the possibility of missing
observations and the resulting missmatch between averages over available observations and

averages over all predictions must be considered. To account for this, the averages in (26) are
adjusted to include only observed time-points

o y(s, 1)
= L o (%)

For locations with only a few observations a large part of the R? may be attributable to
the temporal variability. In Lindstrom et al. (2013) the temporal and spatial effects were
separated by replacing VAR(y(s,t)) in (34) with the MSE of a reference model. Suggested
reference models were: 1) the spatial average at each time-point based on observations from all
locations with good temporal coverage; 2) the observation from the closest available location
with good temporal coverage; 3) smooth temporal trends fitted to data from the closest
location with good temporal coverage. The resulting R?’s represent the improvement in
predictions provided by this model, compared to central location or nearest neighbour schemes
commonly used in epidemiology studies (Pope et al. 1995; Miller et al. 2007).

3. Package Features

The R-package SpatioTemporal includes functions for estimation (estimate.STmodel and
MCMC.STmodel), prediction (predict.STmodel), cross-validation (estimateCV.STmodel and
predictCV.STmodel), and simulation (simulate.STmodel) of the model described in Sec-
tion 2. In addition to these functions the package also contains functions for construction
(createSTdata and createSTmodel) of objects encapsulating model definition and data; plot-
ting and evaluation of both data and results; and functions (see Section 4.3) that compute
and evaluate the smooth temporal basis functions described in Section 2.1.

To reduce computational times matrix identities, such as (13), have been used when appro-
priate and functions from the Matrix-package (Bates and Maechler 2013) as well as some
custom C-functions have been utilized for sparse and block matrix computations.
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3.1. Key Assumptions

By construction, the model contains several key assumptions, including: 1) All temporal
structure is captured by the smooth temporal basis functions, 2) Spatial dependencies (in the
coefficients of the temporal functions) can be described using stationary universal Kriging
3) The residual v (s, t)-field is homoscedastic and independent in time; this will often require
roughly equidistant temporal sampling, with occasional missing time points included for pre-
diction but treated as unobserved. 4) When computing temporal averages the addition of
many unobserved times-points will result in an average that tends to

m T
)= 7 380 [ st

eliminating any contribution from the v(s,t)-field; this is an effect of the assumption of
temporal independence in the v(s, t)-field.

4. Example: Analysis of Los Angeles NO, Data

An example analysis of a small NOy data set from Los Angeles is used to illustrate features
of the SpatioTemporal-package. The data, which is included as an example in the pacakge,
is a subset of data available to the MESA Air study; a detailed description of the full dataset
can be found in Cohen et al. (2009).

Following a short description of the data (Section 4.1), we illustrate how to: 4.2) collect data
into the S3-structure used by the package, 4.3) construct and evaluate the smooth temporal
basis functions, 4.4) specify the covariates and covariances structures of the model in (3)
and (4), 4.5) estimate parameters and do predictions, and 4.6) evaluate the model using
cross-validation.

4.1. Data

NO, Observations

The data used in this example consists of log-transformed 2-week average NOy concentrations
(ppb) in Los Angelse; observed at 20 locations from the national AQS (Air Quality System)
network of regulatory monitors as well as at 5 locations from the supplementary MESA Air
monitoring.

The national AQS network of regulatory monitors consists of a modest number of fixed sites
that measure ambient concentrations of several different air pollutants including NOy. The
MESA Air supplementary monitoring consists of three sub-campaigns, (see Cohen et al. 2009,
for details): “fixed sites”, “home outdoor”, and “community snapshot”. Only data from the
“fixed sites” have been included in this tutorial; this campaign consisted of five fixed site
monitors that provided 2-week averages during the entire MESA Air monitoring period. To
allow for comparison of the different monitoring protocols, one of the MESA Air fixed sites
in coastal Los Angeles was colocated with an existing AQS monitor.

Covariates

To model the NOy data, and to predict at unobserved locations, a number of geographic and

13
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spatio-temporal covariates will be utilized. Geographic covariates used in this example are:
1) distance to major roads, i.e. census feature class code A1-A3 (distances truncated to be
>10m and log-transformed); 2) distance to the closest road, i.e. the minimum of distances in
1) above; 3) distance to coast (truncated to be <15km); and 4) average population density in
a 2 km buffer. Here census feature class code Al roads refer to interstates and other limited
access highways; A2 are primary roads without limited access; and A3 are secondary roads,
e.g. state highways (see pp. 3-27 in US Census Bureau 2002). For details on the variable
selection process that lead to these covariates as well as a more complete list of the covariates
available to MESA Air the reader is referred to Mercer et al. (2011).

In addition to the geographic covariates a spatio-temporal covariate in the form of output
from a deterministic air pollution model is also available. The spatio-temporal covariate is the
output from a slightly modified version of Caline3QHC (EPA 1992; Wilton et al. 2010; MESA
Air Data Team 2010). Caline is a line dispersion model for air pollution. Given locations
of major (road) sources and local meteorology Caline uses a Gaussian model dispersion to
predict how nonreactive pollutants travel with the wind away from sources; providing hourly
estimates of air pollution at distinct points. The hourly contributions from Caline have been
averaged to produce a 2-week average spatio-temporal covariate. The Caline predictions in
this tutorial only includes air pollution due to traffic on major roads (A1, A2, and large A3).

4.2. Creating an STdata-Object

To get started we load the package, along with a few additional packages and the data used
in this example:

> library(SpatioTemporal)

> library(plotrix)

> library(maps)

> data(mesa.data.raw, package="SpatioTemporal")

Here the raw data contains observations along with geographic and spatio-temporal covariates.

The first step is to create an STdata S3-object from the raw data. This object collects
observations, covariates and temporal trends and is used as input to several of the functions
in SpatioTemporal.

> mesa.data <- createSTdata(obs=mesa.data.raw$obs, covars=mesa.data.raw$X,
+ SpatioTemporal=1list(lax.conc.1500=mesa.data.raw$lax.conc.1500))

Here the observations, mesa.data.raw$obs, can be given either as a (number of time-points)
— by — (number of locations) matrix, where the location and time of each observation is given
by row- and columnames of the matrix and missing observations are denote by NA; or as a
data.frame with fields date, ID and obs.

Geographic covariates and locations of the observation are given as a data.frame, mesa.data.raw$X,
and matched to the observations through either 1) a field named ID, or 2) the rownames of the
data.frame. All observations must be associated with a row in mesa.data.raw$X; additional

rows giving covariates for unobserved locations at which we want predictions may be included

in mesa.data.raw$X. If a field type exists in mesa.data.raw$X it is used to denote which

type of monitoring system each location belongs to. In this example:
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> table(mesa.data.raw$X$type)

AQS FIXED
20 5

The spatio-temporal covariates can be given either as a 1list of matrices or as a 3D-array.
The row- and column names should provide the dates and locations of the spatio-temporal
covariates.

The STdata object has print, summary, plot, qqnorm and scatterPlot methods that can
be used for exploratory analysis of the data. For example print(mesa.data) provides an
overview of observations and covariates while the plot functions can be used to illustrate
which space-time locations that have been observed, investigate the Gaussianity of our data,
or study the dependence between observations and covariates, see Figure 2.

layout (matrix(c(1,2,1,3), 2, 2))

par(mar=c(2.3,3.3,2,1), mgp=c(2,1,0))

plot(mesa.data, "loc", main="Occurrence of Observations", xlab="",

ylab="Location", col=c("black", "red"), legend.loc=NULL)

par(mar=c(3.3,3.3,2,1))

qqnorm(mesa.data, line=1)

scatterPlot (mesa.data, covar="km.to.coast", xlab="Distance to coast",
ylab="NOx (log ppb)", pch=19, cex=.25,
smooth.args=1ist (span=4/5,degree=2))
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Figure 2: Counterclockwise from the top: Space-time locations of our observations divided
into AQS (black) and MESA fixed (red) locations, ggnorm-plot for all observations, and
dependence between observations and distance to coast.
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4.3. Temporal Basis Functions

Having collected the data, we are now ready to evaluate the temporal structure and spe-
cify temporal basis functions. The algorithms described in Section 2.1 are implemented in
SVDmiss, SVDsmooth, and SVDsmoothCV; calcSmoothTrends and updateTrend provide tools
for altering the smooth temporal basis functions of STdata- and STmodel-objects.

To estimate the smooth temporal functions we first need to construct a data-matrix (11)
> D <- createDataMatrix(mesa.data)

For highly unbalanced measurement designs a subset option exists. This can be used to
restrict the data matrix to only contain observations from some locations.

Determining the Number of Basis Functions

Here the temporal functions will be based on all available data. To determine a suitable
number of basis functions the cross-validation described in Section 2.1 is run, evaluting 0 to
4 smooth basis functions (i.e. m =1,...,5, since f1(t) = 1).

> SVD.cv <- SVDsmoothCV(D, 0:4)

The output of SVDsmoothCV consists of the cross-validated MSE, R?, AIC, and BIC com-
puted for each column using summary.1lm and extractAIC. Averaging over all columns/cross-
validation groups we have

> print (SVD.cv)

Result of SVDsmoothCV, average of CV-statistics:
MSE R2 AIC BIC
n.basis.0 0.37587597 0.0000000 -273.2316 -269.8684
n.basis.1 0.06979783 0.7583608 -643.9370 -637.2106
n.basis.2 0.05334179 0.8225333 -691.6487 -681.5591
n.basis.3 0.05229519 0.8284688 -695.0773 -681.6245
n.basis.4 0.04988794 0.8370008 -704.5244 -687.7084

with a graphical summary obtained from (see Figure 3)
> plot(SVD.cv)

As would be expected in any regression scenario, increasing the number of basis functions
increases R? and decreases the MSE. All four statistics flatten out noticable after 2 basis
functions, indicating that 2 basis functions is likely to provide the most efficient description of
the temporal variability. The lack of auto-correlation when fitting the temporal basis to data
at each location (Figure 5) shows that 2 basis functions are sufficient to capture the temporal
structure.

We now use the updateTrend function to add the smooth temporal basis functions to the
STdata-object

> mesa.data <- updateTrend(mesa.data, n.basis=2)
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Figure 3: Cross-validation results for different numbers of smooth temporal trends

Alternatively calcSmoothTrends can be used to compute both the basis functions based on
all data and those obtained when excluding each column in the data-matrix

> smooth.trend <- calcSmoothTrends (mesa.data, n.basis=2, cv=TRUE)

This allows for a sensitivity analysis of the temporal basis functions. Here we illustrate this by
the fit at one location (Figure 4), but the different temporal basis functions could be carried
through the entire analysis.

> mesa.data.cv <- vector("list", length(smooth.trend$trend.fnc.cv))
> for(i in 1:length(mesa.data.cv)){

+  suppressMessages (mesa.data.cv[[i]] <- updateTrend(mesa.data,

+ fnc=smooth.trend$trend.fnc.cv[[i]]))

+ }

> plot(mesa.data, main="Possible temporal trends",

+ xlab="", ylab="NOx (log ppb)", pch=c(19,NA), cex=.25)

> for(i in 1:length(mesa.data.cv)){

+ plot(mesa.data.cv[[i]], add=TRUE, col=i, pch=NA, lty=c(NA,2))

+ }

FEvaluating the Basis Functions

The plot.STdata function can now be used to evaluate how well the temporal basis functions
capture the temporal structure, see Figure 5. plot.STdata fits a linear regression of observa-
tions for a particular location of the smooth basis functions, and plots fitted values, residuals,
auto-correlation, or partial auto-correlation functions. Here the two temporal basis func-

17
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Possible temporal trends
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Figure 4: Cross-validated temporal basis functions. The solid line is the regression fit of 2
basis functions, based on all data, to observations at AQS site 60370002, the dashed lines are
the corresponding fits of basis functions obtained when excluding one column at a time from
the data-matrix.

tions capture the temporal variability in the data, as illustrated by residuals and correlation
functions.

> par(mar=c(3.3,3.3,1.5,1), mgp=c(2,1,0))
> layout (matrix(c(1,1,2,2,3,4), 3, 2, byrow=TRUE))
> plot(mesa.data, '"obs", ID="60370113",

+ xlab="", ylab="NOx (log ppb)",
+ main="Temporal trend 60370113")
> plot(mesa.data, '"res", ID="60370113",
+ xlab="", ylab="NOx (log ppb)")

> plot(mesa.data, "acf", ID="60370113")
> plot(mesa.data, "pacf", ID="60370113")

Deterministic Basis Functions

In lieu of the SVD based basis functions we could use a set of deterministic temporal functions,
e.g. fi(t) =1, fa(t) = 2wt/365, f3(t) = sin(27t/365), and f4(t) = cos(27t/365). Specifying
these and comparing to the data driven smooths extrated above (see Figure 6) we note that,
for this data, three deterministic basis functions achieve a slightly worse fit than the two
functions based on smoothed SVDs.

> mesa.data.fnc <- updateTrend(mesa.data, fnc=function(x){
+ x = 2+pi*as.numeric(x)/365;

+ return( cbind(x, sin(x), cos(x)) )})

> par(mfrow=c(2,1), mar=c(2.3,3.3,1.5,1), mgp=c(2,1,0))

> for(i in c("60370016","60371103"))1{

+ plot(mesa.data, ID=i, pch=c(19,NA), cex=.25, xlab="",
+ ylab="NOx (log ppb)", main=paste("AQS site",i))

+ plot(mesa.data.fnc, ID=i, add=TRUE, col=2, pch=NA)

+ }
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Figure 5: The smooth temporal trends fitted to data at site 60370113. Fitted trends, residuals,
auto-correlation, and partial auto-correlation functions are shown.
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Figure 6: Comparing the fit of 2 smooth (black) and 3 deterministic (red) basis functions at
two locations.

4.4. Specifying the Model

Having constructed a STdata-object with suitable temporal basis functions we are now ready
to create a STmodel-object that can be used by the estimation and prediction functions of
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SpatioTemporal. A STmodel-object is created through createSTmodel, by adding covariance
and covariate specifications for the 8- and v-fields to a STdata-object.

Suitable covariates and covariance structures for the [-fields in (3) can be determined by
considering the empirical estimates of these fields obtained by regressing the observations
at each location on the temporal basis functions. The resulting regression coefficients can
be analysed using standard geo-statistical software, e.g. provided by the R-packages geoR
(Ribeiro and Diggle 2001) or fields (Furrer et al. 2012), to determine suitable mean and
covariance models (see also Mercer et al. 2011).

Here we briefly illustrate the point by computing the regression coefficents and comparing
them to a few possible covariates (Figure 7).

> beta.lm <- estimateBetaFields(mesa.data)
> par(mfrow=c(1,2), mar=c(3.3,2.3,1.5,1), mgp=c(2,1,0))
> plotCI(mesa.data$covars$loglO.m.to.al, beta.lm$betal,1],

+ uiw=1.96*beta.Im$beta.sd[,1], ylab="", xlab="Distance to Al-road",
+ main="Beta-field for f1(t)")

> plotCI(mesa.data$covars$km.to.coast, beta.lm$betal,2],

+ uiw=1.96%*beta.lm$beta.sd[,2], ylab="", xlab="Distance to coast",
+ main="Beta-field for f2(t)")

To simplify the analysis of unbalanced measurement designs estimateBetaFields provides
a subset option that restricts the evaluated locations.
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Figure 7: Regression estimates of 1(s) and f2(s) at each location, with 95% confidence
intervals, as a function of the distance to Al roads or the distance to coast.

Partially based on Figure 7 we specify different mean models for the three (S-fields, but
use an exponential covariance function without nugget for all fields; it is possible to specify
different covariance functions for each §-field. Possible covariance functions are describe by
the functions namesCovFuns and parsCovFuns, while updateCovf can be used to alter the
covariance structure of an existing STmodel.

> LUR <- list("logl0.m.to.al+s2000.pop.div.10000+km.to.coast,
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+ “km.to.coast, “km.to.coast)
> cov.beta <- list(covf="exp", nugget=FALSE)

For the v-field we use an exponential covariance with a nugget that can differ between AQS
and MESA fixed sites.

> cov.nu <- list(covf="exp", nugget="type, random.effect=FALSE)

In this specification the log-nugget will be given by a linear model

log aﬁugget(s) = 0y const + v typel(s € MESA fixed sites). (36)

The random.effect=FALSE option specifies that we do not want a random mean for each
v(-,t) field. A random effect in time provides a way of capturing temporally uncorrelated
large scale deviations from the smooth temporal basis functions. Using both a regression
model for log-nugget (36) and a temporal random effect the full spatio-temporal covariance
for the v-field would be

Jrzlugget(sl) +g(0) + T2? if S1 = S2, t1 = t27
ru(s1,t1;582,t2) = < g(s1 — 89) + 72, if 51 # 59, t1 = to, (37)
O) if 7fl 7é t27

where 07,...¢(s) is a (spatially varying) nugget, g(s) is a stationary covariance function, and
72 is the variance of a temporal random effect.

The final step is to specify coordinates for the observations and create the STmodel-object:

> locations <- list(coords=c("x","y"), long.lat=c("long","lat"),

+ others="type")

> mesa.model <- createSTmodel (mesa.data, LUR=LUR, ST="lax.conc.1500",
+ cov.beta=cov.beta, cov.nu=cov.nu,

+ locations=locations)

In locations the element coords specifies which components of mesa.data$covars to use
when computing distances between observation locations; the elements long.lat and others
give additional fields that are carried over from mesa.data$covars tomesa.model$locations,
e.g. data that could be useful for plotting. All variables referenced in the LUR and cov.nu$nugget
formulas, and in the locations-list must be found in mesa.data$covars.

Most of the S3-methods available for STdata-objects also exists for STmodel-objects.

4.5. Parameter Estimation and Prediciton

Parameters of the spatio-temporal model (10) can by obtained by maximising (16) through
estimate.STmodel. Given (estimated) parameters predictions are obtained from predict.STmodel.

Estimation

To avoid potential numerical optimisation issues, the estimation function allows for multiple
starting points, returning all optima found. The functions loglikeSTdim and loglikeSTnames
gives the number of parameters (and other model dimension) and the names, i.e. expected
order, of the parameters. Using this information a two column matrix, where each column
represents a different optimisation starting point, is constructed
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> dim <- loglikeSTdim(mesa.model)

> x.init <- cbind(c( rep(2, dim$nparam.cov-1), 0),

+ c( rep(c(1,-3), dim$m+1), -3, 0))

> rownames (x.init) <- loglikeSTnames (mesa.model, all=FALSE)

Model parameters are then estimated through
> est.mesa.model <- estimate(mesa.model, x.init, type="p", hessian.all=TRUE)

where type allows us to use either the f(ull), p(rofile) (16), or r(eml) (17) log-likelihoods.
Since the estimation takes time (10-15 minutes, depending on the computer) the package
contains precomputed results which we load and examine.

> data(est.mesa.model, package="SpatioTemporal")

> print(est.mesa.model)

Optimisation for STmodel with 2 starting points.
Results: 2 converged, O not converged, O failed.

Best result for starting point 2, optimisation has converged

No fixed parameters.

Estimated parameters for all starting point(s):

[,1] [,2]
gamma.lax.conc.1500 0.0008974712 0.0008978266
alpha.const. (Intercept) 3.7403623155 3.7401860388
alpha.const.loglO.m.to.al -0.2021666282 -0.2021109943
alpha.const.s2000.pop.div.10000 0.0402093462 0.0402186866
alpha.const.km.to.coast 0.0374438274 0.0374357454
alpha.V1. (Intercept) -0.7424941400 -0.7427147900
alpha.V1.km.to.coast 0.0173683410 0.0173855016
alpha.V2. (Intercept) -0.1290170229 -0.1291748864
alpha.V2.km.to.coast 0.0155335639 0.0155418776
log.range.const.exp 2.4236209882 2.4252079596
log.sill.const.exp -2.7543738952 -2.7530652909
log.range.V1.exp 2.9250936694 2.9212909392
log.sill.Vi.exp -3.5194123375 -3.5230779066
log.range.V2.exp 1.7870147389 1.7833703171
log.sill.V2.exp -4.6784625732 -4.6776455920
nu.log.range.exp 4.3830937438 4.3833567348
nu.log.sill.exp -3.2127991617 -3.2127208289
nu.log.nugget. (Intercept) .exp  -4.4124997680 -4.4118811769
nu.log.nugget.typeFIXED. exp 0.6769586148 0.6750069008

Function value(s):
[1] 5748.562 5748.563
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The estimation results indicate that the optimisation for both starting points have converged,
starting point 1 being marginally better, with very similar parameter estimates and function
values.

Plots of the estimated parameters together with approximate 95%-confidence intervals com-
puted using the Hessian, i.e. the observed information matrix (Casella and Berger 2002,
Ch. 10), can be seen in Figure 10 below; this Figure also includes parameter estimates from
the cross-validation. Confidence intervals for covariance parameters of the residual v-field are
much smaller than the corresponding intervals for the covariance parameters characterising
the p-fields. This is due to us having only one replicate of each B-field — in principal given
by the regression of observations on the smooth temporal basis functions — but 7' = 280
replicates of the residual v-field, one for each timepoint — in principal given by the residuals
from the regression.

Predictions

Given estimated parameters, predictions can be computed for the Gaussian model using (23);
for log-Gaussian processes using (27) or (29); and for the temporal averages using (26a) or
(32).

> pred <- predict(mesa.model, est.mesa.model, LTA=TRUE, type="p")
> pred.log <- predict(mesa.model, est.mesa.model, LTA=TRUE,
+ transform="unbiased", type="p")

Here the type option controls the computation of variances, with type="p" (or type="£f")
the regression parameters are assumed known resulting in variances/ MSPEs according to (24)

r (28); for type="r" regression parameters are assumed unknown and variances/MSPEs are
given by (25) or (31). Items computed include predictions of y(s,t), contributions to the
predictions from different parts of the model (see Figure 1 above), prediction variances (or
MSPE), and predictions of the §-fields; print.predictSTmodel can be used to display all
computed components.

The latent S-fields (20) can be compared to the empirical, regression based, estimates presen-
ted in Figure 7. Comparing these two estimates (see Figure 8) we see that they are close, with
the largest discrepancies occuring for §’s associated with the second temporal trend, f3(t).
However, the uncertainty for these 8’s are substantial.

> par(mfrow=c(2,2), mar=c(3.3,3.3,1.5,1), mgp=c(2,1,0), pty="s")
> for(i in 1:3)9{

+ plotCI(x=beta.lm$betal,i], y=pred$beta$EX[,i],

+ uiw=1.96*beta.lm$beta.sd[,i], err="x",

+ pch=NA, sfrac=0.005,

+ main=paste("Beta-field for f", i, "(t)", sep=""),

+ xlab="Empirical estimate",

+ ylab="Spatio-Temporal Model")

+ plotCI(x=beta.lm$betal,il, y=pred$beta$EX[,i],

+ uiw=1.96#*sqrt (pred$beta$Vx[,i]),

+ add=TRUE, pch=NA, sfrac=0.005)

+ abline(0, 1, col="grey")

"
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Figure 8: Comparison of the regression based and full (20) estimates of the f—field, including
the uncertainties in both estimates.

The predictions also include the temporal averages at each location. In Figure 9 these predic-
tions are compared to the temporal averages of observations at each site. A minor issue (see
also Section 2.4) with this comparison is the temporal miss-match between predictions (aver-
aged over 10-years) and the observations (averaged over 1 to 10 years depending on available
data).

> par(mfrow=c(1,2), mar=c(3.3,3.3,1.5,1), mgp=c(2,1,0))
> with(pred$LTA, plotCI(colMeans(D, na.rm=TRUE), EX, uiw=1.96*sqrt(VX.pred),
+ x1lim=c(2.9,4.4), ylim=c(2.9,4.4),
ylab="Predictions", xlab="Observations',
main="Average NOx (log ppb)"))
abline(0, 1, col="grey")
with(pred.log$LTA, plotCI(colMeans(exp(D), na.rm=TRUE),
EX, uiw=1.96*sqrt (VX.pred),
x1lim=c(25,95), ylim=c(25,95),
ylab="Predictions", xlab="Observations',
main="Average NOx (ppb)"))

+ + + + VvV Vv + +
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> abline(0, 1, col="grey")

Average NOXx (log ppb) Average NOXx (ppb)
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Figure 9: Observed and predicted temporal averages at each location, both for the Gaussian
(left) and log-Gaussian (right) processes. The difference between observed and predicted
values is (partially) due to temporally incomplete observations, i.e. the predicted average is
over the entire 10-year period, regardless of when we have observations.

4.6. Cross-validation and Model Evaluation
The model’s predictive ability can be evaluated through cross-validataion (Lindstrom et al.
2013). The first step is to define a vector that splits the observations into CV-groups

> Ind.cv <- createCV(mesa.model, groups=10, min.dist=.1)

For the i™® CV-group observations for which Ind.cv = i are predicted using parameter es-
timates and conditional expectations based on the observations where Ind.cv # i. Since the
primary focus when constructing the package was spatial prediction the number of locations
in each group will be roughly even

> ID.cv <- sapply(split(mesa.model$obs$ID, Ind.cv), unique)
> print( sapply(ID.cv, length) )
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N 00
N ©

w =
w N
w w
N

although the number of observations in each grup may differ substantially

> table(Ind.cv)

Ind.cv
1 2 3 4 5 6 7 8 9 10
438 389 811 556 546 165 228 487 160 797
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Having four locations in the 10'" group is due to the fact that AQS site 60371103 is colocated
with MESA Air site L0OO1.

> print (mesa.model$D.beta[ID.cv[[10]],ID.cv[[10]]])

60371103 60371601 60371701 LOO1
60371103 0.00000000 16.36527 43.75141 0.08363892
60371601 16.36527030 0.00000 29.06447 16.44669372
60371701 43.75141252 29.06447 0.00000 43.83429713
LOO1 0.08363892 16.44669 43.83430 0.00000000

As seen from the distance matrix above, the two stations are only 0.084 km apart (less than
min.dist=.1) causing createCV to treat them as “one” location.

For cases where the primary interest is in temporal predictions suitable Ind.cv vectors could
be construted with the help of elements in mesa.model$obs.

Estimation and Prediciton

For the estimation part of the cross-validation a set of starting point(s) is needed; here we
use the optimum found in the optimisation and the starting point, of the two possible, which
lead to the optimum.

> x.init <- coef(est.mesa.model, pars="cov")[,c("par","init")]
As before the estimation is computationally expensive

> est.cv.mesa <- estimateCV(mesa.model, x.init, Ind.cv)

and we load precomputed results.

> data(est.cv.mesa, package="SpatioTemporal")

Studying results from print (est.cv.mesa) (not shown) it can be seen that all 10 of the estim-
ations have converged, and comparing these estimates (available through coef (est.cv.mesa))
to those obtained for the entire data set shows reasonable agrement, both with regards to
values and uncertainties (Figure 10).

> par(mfrow=c(1,1), mar=c(13.5,2.5,.5,.5), las=2)

> with(coef (est.mesa.model, pars="all"),

+ plotCI((1:1ength(par))+.3, par, uiw=1.96%*sd,

+ col=2, xlab="", xaxt="n", ylab=""))

> boxplot(est.cv.mesa, "all", boxwex=.4, col="grey", add=TRUE)

Given parameter estimates the prediction part of the cross-validation can be carried out for
either Gaussian or log-Gaussian models. In both cases temporal averages are computed based
on only the observed time-points, as in (35).
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Figure 10: Estimated parameters and approximate 95% confidence intervals (red) compared
to parameter estimates from 10-fold cross-validation (box-plots).

> ##tpred.cv.mesa <- predictCV(mesa.model, est.cv.mesa, LTA=TRUE)
> data(pred.cv.mesa, package="SpatioTemporal")

> pred.cv.mesa.log <- predictCV(mesa.model, est.cv.mesa,

+ LTA=TRUE, transform="unbiased")

As for estimateCV the computations take time and precomputed results are included in
data(CV.mesa.model) which we loaded previously.

Alternatively the function computeLTA can be applied to the result from predictCV, however
this will only compute the temporal averages in (35) and will not include the variances from
(26b) or (33a)-(33c).

Model Evaluation

The summary.predCVSTmodel function computes RMSE, R2, and coverage of prediction in-
tervals for the cross-validation. For the log-Gaussian data we have:

> summary(pred.cv.mesa.log)
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Cross-validation predictions for STmodel with 10 CV-groups.
Predictions for 4577 observations.
Temporal averages for 25 locations.

RMSE:

EX.mu EX.mu.beta EX EX.pred
obs 25.10205  20.36451 16.26418 16.22350
average 16.58549  11.22260 10.38143 10.31357

R2:

EX.mu EX.mu.beta EX EX.pred
obs 0.6048077 0.7399014 0.8340969 0.8349258
average 0.1888641 0.6286158 0.6822021 0.6863430

Coverage of 95%, prediction intervals:
EX.pred

obs 0.9228752

average 0.9200000

The results show reasonable models fits with R? values of 0.835 and 0.686 for observations and
temporal averages respectively. It should also be noted that although the mean component,

exp( My + FXa),

accounts for a substantial part of the R? (0.6) for the observations, it captures very little of
the variability in the temporal averages (R2 ~ 0.19). The 92% coverage of a 95% confidence
interval for the temporal averages might seem a tad low, but one should remember that it
translates to 23 of 25 locations.

To seperate temporal and spatial predictive ability for locations with few observations (not
an issue here), the reference models described in Lindstrém et al. (2013) can be computed by
predictNaive, and including these in the summary-call above gives adjusted R2-values. Fur-
ther summary(pred.cv.mesa.log, by.date=TRUE) provides individual cross-validation stat-
istics for each time-point. The result from predCV contains, in pred.cv.mesa.log$pred.obs,
a data.frame with observations, predictions, variances, etc. that can be used to compute ad-
ditional cross-validation statistics.

To visualise the cross-validation results, several different plots are available (Figure 11); both
for the original (ppb, log-Gaussian) and the transformed (log ppb, Gaussian) data. Studying
time-series at single locations, both the predictions and 95% prediction intervals agree well
with left-out observations. Plotting all predictions against observations also shows reasonable
agreement, although some locations exhibit small, but consistent, biases. The predicted
temporal averages (35) match the observations, but with rather large prediction intervals.
The width of the intervals is caused by several locations only having a few years of data to
average over. The normalised residuals (y — E(y))/+/VAR(y) are approximately N (0, 1), with
no strong seasonal differences, indicating that our distributional assumptions are reasonable.
Finally plots of residuals agains covariates show little unexplained, residual structure.
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par(mar=c(3.3,3.3,1.5,1), mgp=c(2,1,0))
layout (matrix(c(1,1,2,2,3,4,5,6), 4, 2, byrow=TRUE))
plot(pred.cv.mesa, ID="60371601", xlab="", ylab="NOx (log ppb)",
main="Predictions for 60371601", 1ty=c(1,NA), lwd=2,
pch=c(NA,19), cex=.75)
plot(pred.cv.mesa, ID="60371601", pred.type="EX.mu",
lty=4, lwd=2, col="blue", add=TRUE)
plot(pred.cv.mesa, ID="60371601", pred.type="EX.mu.beta",
1ty=2, lwd=2, col="green", add=TRUE)
plot(pred.cv.mesa.log, ID="60371601", xlab="", ylab="NOx (ppb)",
main="Predictions for 60371601", pred.type="EX.pred",
1ty=c(1,NA), lwd=2, pch=c(NA,19), cex=.75)
plot(pred.cv.mesa.log, ID="60371601", pred.type="EX.mu",
1ty=4, lwd=2, col="blue", add=TRUE)
plot(pred.cv.mesa.log, ID="60371601", pred.type="EX.mu.beta",
1ty=2, lwd=2, col="green", add=TRUE)
legend("topright", c("Observations", "Predictions",
"Contribution from beta,
"Contribution from mean",
"957% CI"), bty="n",
lty=c(NA,1,2,4,NA), lwd=c(NA,2,2,2,NA),
pch=c(19,NA,NA,NA,15), pt.cex=c(.75,NA,NA,NA,2.5),
col=c("red", "black", "green", "blue", "grey"))
plot(pred.cv.mesa, "obs", ID="all", pch=c(19,NA), cex=.25, 1ty=c(NA,2),
col=c("ID", "black", "grey"), xlab="Observations",
ylab="Predictions", main="Cross-validation NOx (log ppb)")
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with(pred.cv.mesa.log$pred.LTA, plotCI(obs, EX.pred, uiw=1.96*sqrt(VX.pred),

xlab="0Observations", ylab="Predictions",

main="Temporal average NOx (ppb)"))
abline(0, 1, col="grey")
I.season <- as.factor(as.P0SIX1t (pred.cv.mesa$pred.obs$date)$mon+1)
levels(I.season) <- c(rep("Winter",2), rep("Spring",3),
rep ("Summer",3), rep("Fall",3), "Winter")
qqnorm(pred.cv.mesa, norm=TRUE, main="Normalised residuals",
col=I.season)
legend("bottomright", legend=as.character(levels(I.season)),
pch=1, col=1:nlevels(I.season), bty="n")
scatterPlot (pred.cv.mesa, STdata=mesa.model, covar="loglO.m.to.al",
group=I.season, col=c(2:5,1), type="res",
xlab="Distance to Al1-Road", ylab="Residuals",
main="Residuals (log ppb)")
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Figure 11: The two top panes shows predictions for a left-out location, in log and original
scale (cf. Figure 1). In the left pane of the third row predictions have been plotted against
observations; the points are coloured by location and grouping of data from single locations can
be seen. On the right predictions and observations of temporal averages (35) are compared.
In the last row, the left pane shows a QQ-plot for normalised residuals for the Gaussian
model, coloured by season; the solid line gives the theoretical behaviour of N (0, 1) residuals.
On the right, residuals (coloured by season) are plotted as a function of distance to Al-
roads; smooths, for each season and all data, have been added to help identify any remaining
structure.
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5. Outlook

Having introduced the R-package SpatioTemporal and illustrated the main features of the
package, we now discuss one possible future extension of the model.

The computational feasibility of the model implemented here relies on the simplification of
(12) using, mainly, the matrix identity in (13). This simplification will only lead to reduced
computational cost if 3, has a structure, e.g. block-diagonal, that allows for fast computations
of ¥;1. To obtain this block-diagonal structure an assumption of temporal independence in
the residual v(s, t)-field is required. In the future we hope to relax this assumption, allowing
for a temporally correlated v(s,t)-field. Computational feasibility can hopefully be retained
by obtaining a sparse ¥, matrix through tapering (Furrer et al. 2006).
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