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1 Getting started

“The process of combining several numerical values into a single representative one

is called aggregation, and the numerical function performing this process is called

aggregation function. This simple definition demonstrates the size of the field of

application of aggregation: applied mathematics (e.g. probability, statistics, decision

theory), computer science (e.g. artificial intelligence, operation research), as well as
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many applied fields (economics and finance, pattern recognition and image process-

ing, data fusion, multicriteria decision making, automated reasoning etc.). Although

history of aggregation is probably as old as mathematics (think of the arithmetic

mean), its existence has reminded underground till only recent (. . . ).” [25, p. xiii]

R [32] is a free, open source software environment for statistical computing and graphics,

which includes an implementation of a very powerful and quite popular high-level language

called S. It runs on all major operating systems, i.e. Windows, Linux, and MacOS X. To install R

and/or find some information on the S language please visit R Project’s Homepage at www.R-

project.org. Perhaps you may also wish to install RStudio, a convenient development environment

for R. It is available at www.rsudio.org.

agop is an open source (licensed under GNU LGPL 3) package for R ≥ 2.12 to which anyone

can contribute. It started as a fork of the CITAN (Citation Analysis Toolpack, [14]) package.

To install latest “official” release of the package available on CRAN we type:

install.packages('agop')

Alternatively, we may fetch its current development snapshot from GitHub:

install.packages('devtools')

library('devtools')

install_github('agop', 'Rexamine')

Note that in this case you will need a working C/C++ compiler.

Each session with agop should be preceded by a call to:

library('agop') # Load the package

To view the main page of the manual we type:

library(help='agop')

For more information please visit the package’s homepage [19]. In case of any problems, com-

ments, or suggestions feel free to contact the authors. Good luck!

2 Theoretical Background

Let us establish some basic notation convention used throughout this tutorial. From now on let

I = [a, b], possibly with a = −∞ or b = ∞. Note that in many practical situations we commonly

choose I = [−1, 1], I = [0, 1] or I = [0, ∞]. A set of all vectors of arbitrary length with elements

in I is denoted by I
1,2,... =

⋃∞
n=1 I

n .

For two equal-length vectors x, y ∈ I
n we write x ≤ y if and only if for all i = 1, . . . , n it

holds xi ≤ yi. Moreover, all binary arithmetic operations on vectors x, y ∈ I
n will be performed

element-wise, e.g. x + y = (x1 + y1, . . . , xn + yn) ∈ I
n. Similar behavior is assumed for −, ·, /,

∧ (min), ∨ (max), etc. Additionally, each function of one variable f : I → I can be extended to

the vector space: we write f(x) to denote (f(x1), . . . , f(xn)).

Let x(i) denote the ith order statistic, i.e. the ith smallest value in x. Moreover, for conve-

nience, let x{i} = x|x|−i+1 denote the ith greatest value in x.

For any n ∈ N and c ∈ I, we set (n ∗ c) = (c, . . . , c) ∈ I
n. Also, [n] := {1, 2, . . . , n} with

[0] = ∅.
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2.1 A Note on Representing Numeric Data and Applying Operations in R

Recall how we create numeric vectors in R:

(x1 <- c(5, 2, 3, 1, 0, 0))

## [1] 5 2 3 1 0 0

class(x1)

## [1] "numeric"

(x2 <- 10:1) # the same as seq(10, 1)

## [1] 10 9 8 7 6 5 4 3 2 1

(x3 <- seq(1, 5, length.out=6))

## [1] 1.0 1.8 2.6 3.4 4.2 5.0

(x4 <- seq(1, 5, by=1.25))

## [1] 1.00 2.25 3.50 4.75

To obtain (n ∗ c), e.g. for n = 10 and c = 3, we call:

rep(10, 3)

## [1] 10 10 10

Note that in R all the arithmetic operations on vectors are performed element-wise, i.e. in

a manner indicated above. This is called vectorization. The same holds for mathematical

functions: they are extended to the vector space.

x <- c(1, 3, 3, 2)

y <- c(2, 3, -1, 0)

x+y

## [1] 3 6 2 2

x*y

## [1] 2 9 -3 0

pmin(x,y)

## [1] 1 3 -1 0

pmax(x,y)

## [1] 2 3 3 2

abs(y)

## [1] 2 3 1 0

Thus, we calculated x + y, x · y, x ∧ y, x ∨ y, and |x| (try to determine yourself what happens

if we deal with vectors of unequal length is R).

Moreover, for the ≤ relation we write:

all(x <= y)

## [1] FALSE

To get x{i} we have to sort the given vector nonincreasingly.

3



(xs <- sort(x, decreasing=TRUE)) # `decresing' may be misleading

## [1] 3 3 2 1

xs[3] # the third greatest value in x

## [1] 2

2.2 A Note on Storing Multiple Numeric Vectors in R

Vectors of the same length can be conveniently stored in a matrices. Please note that the

dimnames attribute of a matrix may define its row and column labels. Its value may be set

to NULL (no names given) or to a list with two character vectors (rows and columns names,

respectively). Another simple way to set the labels is by using the rownames() and colnames()

functions.

The apply() function may be called to evaluate a given method on each matrix row or

column (parameter MARGIN set to 1 and 2, respectively).

expertopinions <- matrix(c(

6,7,2,3,1, # this will be the first COLUMN

8,3,2,1,9, # 2nd

4,2,4,1,6 # 3rd

),

ncol=3,

dimnames=list(NULL, c("A", "B", "C")) # only column names set

)

class(expertopinions)

## [1] "matrix"

print(expertopinions) # or print(authors)

## A B C

## [1,] 6 8 4

## [2,] 7 3 2

## [3,] 2 2 4

## [4,] 3 1 1

## [5,] 1 9 6

apply(expertopinions, 2, mean) # apply the mean() function on each COLUMN

## A B C

## 3.8 4.6 3.4

Vectors that are not of the same length may be store in a list (with possibly named elements).

In that case, the functionality of apply() is provided by lapply() or sapply() functions.

authors <- list(

"John S." = c(7,6,2,1,0),

"Kate F." = c(9,8,7,6,4,1,1,0)

)

class(authors)

## [1] "list"

str(authors) # or print(authors)

## List of 2
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## $ John S.: num [1:5] 7 6 2 1 0

## $ Kate F.: num [1:8] 9 8 7 6 4 1 1 0

index_h(authors[[1]]) # the h-index /see below/ for 1st author

## [1] 2

sapply(authors, index_h) # calculate the h-index for all vectors in a list

## John S. Kate F.

## 2 4

index_h(authors) # index_h() expects an numeric vector on input

## Error: argument ‘x‘ should be a numeric vector (or an object coercible to)

2.3 Aggregation Operators and Their Basic Properties

Dealing with huge amounts of data faces us with the problem of constructing their synthetic

descriptions. The aggregation theory, a relatively new research domain at the border of mathe-

matics and computer science, is interested in the analysis of functions that may be used in this

task. Thus, we should start with the formal definition of objects of our interest. Here is the

most general setting:

Definition 1. A function F : I1,2,... → I is called an (extended1) aggregation operator if it is

at least nondecreasing in each variable, i.e. for all n and x, y ∈ I
n if x ≤ y, then F(x) ≤ F(y).

Note that each aggregation operator is a mapping into I, thus for all n we have infx∈In F(x) ≥
a and sup

x∈In F(x) ≤ b. By nondecreasingness, however, these conditions reduce to F(n ∗ a) ≥ a

and F(n ∗ b) ≤ b.

Also keep in mind that some authors assume (cf. [25]) that aggregation operators must

fulfill the two following strong boundary conditions: for all n we have infx∈In F(x) = a and

sup
x∈In F(x) = b. In our case, this does not necessarily hold – we want to be more general.

Here are some interesting properties of aggregation operators. Later on we will characterize

the classes of aggregation operators that fulfill them.

Definition 2. We call F : I1,2,... → I symmetric if:

(∀n ∈ N) (∀x, y ∈ I
n) x ∼= y =⇒ F(x) = F(y),

where x ∼= y if and only if there exists a permutation σ of [n] such that x = (yσ(1), . . . , yσ(n)).

It may be shown, see [25, Thm. 2.34], that F : In → I is symmetric if and only if there exists

a function G : I1,2,... → I such that F(x1, . . . , xn) = G(x{1}, . . . , x{n}), i.e. it may be defined solely

using order statistics. Intuitively, F is symmetric if its value is independent of the aggregated

vector’s elements presentation.

Idempotence is well-known from algebra, where we say that element x is idempotent with

respect to binary operator ∗ if we have x ∗ x = x. The following definition extends this property

to n-ary aggregation functions, cf. [25].

Definition 3. We call F : I1,2,... → I idempotent if:

(∀n ∈ N) (∀x ∈ I) F(n ∗ x) = x.

1Extended to the space of vectors of arbitrary length, cf. e.g. [4, 25]; Classical approach considers only fixed-

length vectors. In agop we are as much general as possible.
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Idempotent aggregation operators fulfilling the strong boundary conditions (see p. 5) are

sometimes called averaging functions, cf. [25].

An example of such object is the arithmetic mean or median.

Definition 4. We call F : I1,2,... → I additive if:

F(x + y) = F(x) + F(y),

for all n ∈ N, x, y ∈ I
n such that x + y ∈ I

n.

Please note that for a ≤ 0, if F is additive, then necessarily it holds F(0) = 0.

Definition 5. We call F minitive if:

(∀n ∈ N) (∀x, y ∈ I
n) F(x ∧ y) = F(x) ∧ F(y).

Definition 6. We call F maxitive if:

(∀n ∈ N) (∀x, y ∈ I
n) F(x ∨ y) = F(x) ∨ F(y).

Definition 7. We call F modular (cf. [3, 25, 29]) if:

(∀n ∈ N) (∀x, y ∈ I
n) F(x ∨ y) + F(x ∧ y) = F(x) + F(y)

It may easily be seen that each additive operator is also modular (i.e. modularity is more

general than additivity), because for any additive aggregation operator F, since (x∨y)+(x∧y) =

x + y, we have F(x) + F(y) = F(x + y) = F((x ∨ y) + (x ∧ y)) = F(x ∨ y) + F(x ∧ y).

Apart from the “ordinary” minitivity, maxitivity, and modularity we may introduce their

symmetrized versions, using x
S
+ y = (x{1}+y{1}, . . . , x{n}+y{n}), x

S∨ y = (x{1}∨y{1}, . . . , x{n}∨
y{n}) and x

S∧ y = (x{1} ∧ y{1}, . . . , x{n} ∧ y{n}).

2.4 Impact Functions and The Producers Assessment Problem

We already noticed the important class of aggregation operators: the averaging functions. They

may be used to represent the most “typical” value of a numeric vector. Here is another interesting

class that represents solutions to some very interesting practical issue.

The Producers Assessment Problem (PAP, [23]) concerns evaluation of a set of produc-

ers (e.g. scientists, artists, writers, craftsman) according to some quality or popularity ratings

of products (e.g. scientific articles, works, books, artifacts) that were outputted by an entity.

Tab. 1. The Producer Assessment Problem – typical instances

Producer Products Rating method Discipline

A Scientist Scientific articles Number of citations Scientometrics

B Scientific institute Scientists The h-index Scientometrics

C Web server Web pages Number of in-links Webometrics

D Artist Paintings Auction price Auctions

E Billboard company Advertisements Sale results Marketing

F R package author Packages PageRank values on the

citation graph

Software Engineering
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PAP instances may be found in many real-life situations, like those encountered for example

in scientometrics, webometrics, marketing, manufacturing, or quality engineering, see Table 1

and e.g. [11]. Our main interest here is focused on constructing and analyzing aggregation

operators which may be used in the producers’ rating task. Such functions should take into

account the two following aspects of a producer’s quality:

• his/her ability to output highly-rated products,

• his/her overall productivity.

For the sake of illustration, we will consider PAP in the scientometric context, where scientists

“produce” papers that are cited by peers.

Let I = [0, ∞] represent the set of values that some a priori chosen paper quality measure may

take. These may of course be non-integers, for example when we consider citations normalized

with respect to the number of papers’ authors.

It is widely accepted, see e.g. [40, 39, 38, 33, 30, 31, 23, 13, 12], that each aggregation operator

F : I1,2,... → I to be applied in PAP should at least be:

(a) nondecreasing in each variable (additional citations received by a paper or an improvement

of its quality measure does not result in a decrease of the authors’ overall evaluation),

(b) arity-monotonic (by publishing a new paper we never decrease the overall valuation of the

entity),

(c) symmetric (independent of the order of elements’ presentation, i.e. we may always assume

that we aggregate vectors that are already sorted).

More formally, axiom (b) is fulfilled iff for any x ∈ I
1,2,... and y ∈ I it holds F(x) ≤

F(x1, . . . , xn, y). It may be seen that this property is arity-dependent, i.e. it takes into account

the number of elements to be aggregated.

Moreover, (a) and (c) were defined in the previous section.

Here is a bunch of arity-dependent properties that can be useful while aggregating vectors

of varying lengths.

Definition 8. We call F ∈ E(I) a zero-insensitive aggregation operator if for each x ∈ I
1,2,...

it holds F(x, 0) = F(x).

It may be seen that, under nondecreasingness, zero-insensitivity implies arity-monotonicity,

see [21]. What is interesting, each zero-insensitive impact function F may be defined by means

of G : I
∞ → I such that F(x) = G(x, 0, 0, . . . ), i.e. of function which domain is the space of

vectors of infinite length.

Zero-sensitivity may be strengthened as follows, cf. [21] and [40, Axiom A1].

Definition 9. F ∈ E(I) is F -insensitive if

(∀x ∈ I
1,2,...) (∀y ∈ I) y ≤ F(x) =⇒ F(x, y) = F(x).

Note that the above property was called R-stability in [2].

Definition 10. F ∈ E(I) is F+sensitive if

(∀x ∈ I
1,2,...) (∀y ∈ I) y > F(x) =⇒ F(x, y) > F(x).
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3 Visualization

3.1 Depicting producers

The plot_producer() function may be used to draw a graphical representation of a given

numeric vector, i.e. what is sometimes called a citation function in scientometrics.

A given vector x = (x1, . . . , xn) can be represented by a step function defined for 0 ≤ y < n

and given by:

π(y) = x(n−⌊y+1⌋+1).

This function may be obtained by setting type=’right.continuous’ argument in plot_pro-

ducer(). Recall that x(i) denotes i-th smallest value in x.

On the other hand, for type=’left.continuous’ (the default), we get

π(y) = x(n−⌊y⌋+1)

for 0 < y ≤ n.

Moreover, this function may depict the curve joining the sequence of points (0, x(n)), (1, x(n)),

(1, x(n−1)), (2, x(n−1)), . . . , (n, x(1)).

The plot_producer() function behaves much like the well-known R’s plot.default() and

allows for passing all its graphical parameters.

For example, let us depict the state of two given producers, x(1) and x(2).

x1 <- c(5, 4, 2, 2, 1)

x2 <- c(3, 3, 1, 0, 0, 0, 0)

plot_producer(x1, extend=TRUE)

plot_producer(x2, add=TRUE, col=2, pch=2, extend=TRUE)

legend('topright', c('x1', 'x2'), col=c(1, 2), lty=1, pch=c(1, 2))

0 1 2 3 4 5 6

0
1

2
3

4
5

x1

x2

4 Preorders

Let us consider the following relation on I
1,2,.... For any x ∈ I

n and y ∈ I
m we write x E y if

and only if n ≤ m and x{i} ≤ y{i} for all i ∈ min{n, m}. Of course, E is a preorder – it would

have been a partial order, if we had defined it on the set of sorted vectors.

Intuitively, we say that an author (scientometric context again) X is (weakly) dominated by

an author Y, if X has no more papers than Y and each the ith most cited paper of X has no
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more citations than the ith most cited paper of Y . Not that the (m − n) least cited Y ’s papers

are not taken into account here. Most importantly, however, there exist pairs of vectors that

are incomparable with respect to E (see the illustration below).

This preorder in agop may be determined using the pord_weakdom() function.

c(pord_weakdom(5:1, 10:1), pord_weakdom(10:1, 5:1)) # 5:1 <= 10:1

## [1] TRUE FALSE

c(pord_weakdom(3:1, 5:4), pord_weakdom(5:4, 3:1)) # 3:1 ?? 5:4

## [1] FALSE FALSE

We have the following result (Gagolewski, Grzegorzewski, [23]). Let F ∈ E(I). Then F is

symmetric, nondecreasing in each variable and arity-monotonic if and only if for any x, y if

x E y, then F(x) ≤ F(y). Therefore, the class of impact functions may be equivalently defined

as all the aggregation operators that are nondecreasing with respect to this preorder.

Additionally, we will write x ⊳ y if x E y and x 6= y (strict dominance).

Example. Let us consider the 5 following vectors.

ex1 <- list(

U = 10:0, # some upper bound

A = c(5,5,5,5), # moderate productivity & quality

B = c(4,3,2,1,1,0), # high productivity

C = c(8,7), # high quality

L = c(1,1) # some lower bound

)

Plot of “citation” curves:

for (i in seq_along(ex1))

plot_producer(ex1[[i]], add=(i>1), col=i)

legend("topright", legend=names(ex1), col=1:length(ex1), lty=1)

0 2 4 6 8 10 12

0
2

4
6

8
10

U

A

B

C

L

Here is the adjacency matrix for the preordered set ({A, B, C, L, U},E).
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ord <- rel_graph(ex1, pord_weakdom)

print(ord)

## 5 x 5 sparse Matrix of class "dtCMatrix"

## U A B C L

## U 1 . . . .

## A 1 1 . . .

## B 1 . 1 . .

## C 1 . . 1 .

## L 1 1 1 1 1

is_reflexive(ord) # is reflexive

## [1] TRUE

is_transitive(ord) # is transitive

## [1] TRUE

is_total(ord) # not a total preorder...

## [1] FALSE

We see that we have A??B, A??C, B??C (no pair from {A, B, C} is comparable w.r.t. E):

incomp <- get_incomparable_pairs(ord)

incomp <- incomp[incomp[,1]<incomp[,2],] # remove permutations: ((1,2), (2,1))->(1,2)

incomp[,] <- rownames(ord)[incomp]

print(incomp) # all incomparable pairs

## [,1] [,2]

## [1,] "A" "B"

## [2,] "A" "C"

## [3,] "B" "C"

# the other way: generate maximal independent sets

lapply(get_independent_sets(ord), function(set) rownames(ord)[set])

## [[1]]

## [1] "A" "B" "C"

To draw the Hasse diagram, it will be good to de-transitivize the graph (for æsthetic reasons).

require(igraph)

hasse <- graph.adjacency(de_transitive(ord))

set.seed(1234567) # igraph's draving facilities are far from perfect

plot(hasse, layout=layout.fruchterman.reingold(hasse, dim=2))
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B

C

L

({A, B, C, L, U},E) is not totally ordered, let’s apply fair totalization (set x E′′ y and

y E′′ x whenever ¬(x E y or y E x), see [17] for discussion), and then calculate transitive

closure.

ord_total <- closure_transitive(closure_total_fair(ord)) # a total preorder

print(ord_total)

## 5 x 5 sparse Matrix of class "dgCMatrix"

## U A B C L

## U 1 . . . .

## A 1 1 1 1 .

## B 1 1 1 1 .

## C 1 1 1 1 .

## L 1 1 1 1 1

hasse <- graph.adjacency(de_transitive(ord_total))

set.seed(1234)

plot(hasse, layout=layout.fruchterman.reingold(hasse, dim=2))

U

AB

C

L
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Note that each total preorder E′′ induces an equivalence relation (x ≃ y iff x E′′ y and

y E′′ x; the equivalence classes may be ordered with E′′). These may be explored with the

get_equivalence_classes() function.

sapply(get_equivalence_classes(ord_total), function(set) rownames(ord)[set])

## [[1]]

## [1] "L"

##

## [[2]]

## [1] "A" "B" "C"

##

## [[3]]

## [1] "U"

Thus, we’ve obtained L ≺ (A ≃ B ≃ C) ≺ U .

5 Predefined Classes of Aggregation Operators in agop

5.1 A Review of Notable Classes of Aggregation Operators

Here are some well-known classes of aggregation operators. Originally, they were defined for

fixed-length vector and for I = [0, 1].

Definition 11. Let w = (w1, . . . , wn) ∈ [0, 1]n be a weighting vector such that
∑n

i=1 wi = 1.

Then, for any x ∈ I
n:

1. The weighted arithmetic mean associated with w, WAMw : In → I, is defined as

WAMw(x) =
n∑

i=1

wixi.

2. The ordered weighted averaging operator (cf. [41]) associated with w, OWAw : In →
I, is defined as

OWAw(x) =
n∑

i=1

wix{i}.

We see that both functions are idempotent, additive, and that OWA is the symmetrized

version of WAM. Moreover, for w = (n ∗ 1
n), WAMw defines the arithmetic mean (mean() in R).

Truncated mean is an interesting example of an OWA operator (see mean(x, trim=...)).

In agop the WAM and OWA operators are available as wam() and owa().

wam(c(1,2,2,2), c(0.1,0.4,0.4,0.1))

## [1] 1.9

owa(c(1,3,5,2), rep(1,4)) # should be normalized

## Warning: elements of ‘w‘ does not sum up to 1. correcting.

## [1] 2.75

Definition 12. Let w = (w1, . . . , wn) ∈ I
n be a vector such that

∨n
i=1 wi = b = sup I. Then,

for any x ∈ I
n:
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1. The weighted maximum associated with w, WMaxw : In → I, is defined as

WMaxw(x) =
n∨

i=1

(wi ∧ xi).

2. The ordered weighted maximum (cf. [9]) associated with w, OWMaxw : I
n → I, is

defined as

OWMaxw(x) =
n∨

i=1

(wi ∧ x{i}),

with x{1} ≥ · · · ≥ x{n} and w1 ≥ w2 ≥ · · · ≥ wn.

agop implementation: wmax() and owmax().

wmax(c(1,3,5,2), Inf) # no vectorization here!

## Error: ‘x‘ and ‘w‘ should have the same length

wmax(c(1,3,5,2), rep(Inf, 4)) # greatest value /default behavior/

## [1] 5

owmax(1:10, 1:10)

## [1] 5

Definition 13. Let w = c(w1, . . . , wn) ∈ [0, 1]n be such that
∧n

i=1 wi = a = inf I. Then, for

any x ∈ I
n:

1. The weighted minimum WMinw : In → I associated with the weight vector w is defined

as

WMinw(x) =
n∧

i=1

((1 − wi) ∨ xi).

2. The ordered weighted minimum OWMinw : In → I associated with the weight vector

w is defined as

OWMinw(x) =
n∧

i=1

((1 − wi) ∨ x(i)),

with x(1) ≤ · · · ≤ x(n) and w1 ≤ w2 ≤ · · · ≤ wn.

agop implementation: wmin() and owmin().

It is clear to see that OWMax operators fulfill the maxitivity property and OWMin operators

fulfill the minitivity property. Interestingly, it may be shown, cf. [25], that for each OWMax

operator there exist an equivalent OWMin operator and inveresly.

As stated above, “classical” aggregation operators were defined for vectors of fixed lengths.

Let us present some notable generalizations of these operators.

Let II denote the set of functions from I to I. The following object will be needed for further

considerations.

Definition 14. A triangle of functions is a sequence △ = (fi,n ∈ I
I : i ∈ [n], n ∈ N).

Here is a graphical interpretation of △:

f1,1

f1,2 f2,2

f1,3 f2,3 f3,3

...
...

...
. . .
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Definition 15. Let △ = (fi,n)i∈[n],n∈N be a triangle of functions such that (∀n)
∑n

i=1 inf fi,n ≥ a

and (∀n)
∑n

i=1 sup fi,n ≤ b. Then the quasi-L-statistic generated by △ is a function qL△ :

I
1,2,... → I such that

qL△(x) =
n∑

i=1

fi,n(x{i}).

It is easily seen that quasi-L-statistics generalize OWA operators if we set fi,n(x) = ci,nx,

ci,n ∈ [0, 1], and (∀n)
∑n

i=1 ci,n = 1.

Assume that I = [0, b]. Interestingly, it has been shown ([29], cf. also [15]) that an aggre-

gation operator F : I1,2,... → I fulfills the symmetric modularity property if and only if F is a

nondecreasing quasi-L-statistic. What is more, in [15] we may find that qL△ is nondecreasing

if and only if there exists ▽ = (gi,n)i∈[n],n∈N such that (∀n) (∀i ∈ [n]) gi,n is nondecreasing,

(∀n)
∑n

i=1 gi,n ≤ b, (∀n) (∀i > 1) gi,n(0) = 0 and qL△ = qL▽.

Definition 16. The quasi-S-statistic for a given triangle of functions △ = (fi,n)i∈[n],n∈N is a

function qS△ : I1,2,... → I such that

qS△(x) =
n∨

i=1

fi,n(x{i}),

for any x ∈ I
1,2,....

Quasi-S-statistic generalize the OWMax operators, if fi,n(x) = x ∧ ci,n, ci,n ∈ I and

(∀n)
∨n

i=1 ci,n = b.

There is an equivalence between symmetric maxitive aggregation operators and nondecreas-

ing quasi-S-statistics. Moreover, without loss of generality we may assume that a nondecreasing

quasi-S-statistic is always generated by triangle of functions in which (∀n) (∀i ∈ [n]) fi,n is

nondecreasing, (∀n) (∀i ∈ [n]) fi,n(a) = fn,n(a) and (∀n) f1,n � · · · � fn,n), see [15].

Definition 17. The quasi-I-statistic generated by △ = (fi,n)i∈[n],n∈N is a function qI△ :

I
1,2,... → I such that

qI△(x) =
n∧

i=1

fi,n(x{i}),

for any x ∈ I
1,2,....

Quasi-I-statistics are generalizations of the OWMin operators, if fi,n(x) = x ∨ ci,n, ci,n ∈ I

and (∀n)
∧n

i=1 ci,n = a.

Like above, it has been shown that every symmetric minitive aggregation operator is a

nondecreasing quasi-I-statistic, and conversely. Additionally, with no loss in generality we

may assume that nondecreasing quasi-S-statistic is generated by triangle of functions in which

(∀n) (∀i ∈ [n]) fi,n is nondecreasing, (∀n) (∀i ∈ [n]) fi,n(b) = fn,n(b) and (∀n) f1,n � · · · � fn,n,

see [15].

Note: sometimes we also consider L-, S-, and I-statistics, i.e. special cases of the above-

defined quasi-·-statistics, generated by triangles of coefficients (i.e. sequences △ = (ci,n ∈ I :

i ∈ [n], n ∈ N), cf. [4]). An L-statistic is a quasi-L-statistic for which we have fi,n(x) = ci,nx.

Similarly, by setting fi,n(x) = x ∧ ci,n we obtain an S-statistic from the quasi-S-statistics class,

and by setting fi,n(x) = x ∨ ci,n we get an I-statistic from quasi-I-statistics.

14



Also note that L-statistics are known from the probability theory. However, sometimes under

this name some authors understand sums of a function of order statistics.

Most interestingly, in [15] it has been shown that the intersection of any two of the three

“quasi” classes is the same:

quasi-S

quasi-Iquasi-L

Basing on this result, the OM3 class (symmetric maxitive, minitive, and also modular

aggregation operators) was proposed in [5, 6].

Definition 18. A sequence of nondecreasing functions w = (w1, w2, . . . ), wi : I → I, and a

triangle of coefficients △ = (ci,n)i∈[n],n∈N, ci,n ∈ I such that (∀n) c1,n ≤ c2,n ≤ · · · ≤ cn,n,

0 ≤ wn(0) ≤ c1,n, and wn(b) = cn,n, generates a nondecreasing OM3 operator M△,w : In → I

such that for x ∈ I
n we have:

M△,w(x) =
n∨

i=1

wn(x(n−i+1)) ∧ ci,n =
n∧

i=1

(wn(x(n−i+1)) ∨ ci−1,n) ∧ cn,n

=
n∑

i=1

((
wn(x(n−i+1)) ∨ ci−1,n

)
∧ ci,n − ci−1,n

)
.

We see that the OM3 class contains i.a. all order statistics (whenever wn(x) = x, and ci,n = 0,

cj,n = b for i < k, j ≥ k, and some k), OWMax operators (for wn(x) = x), and the famous

Hirsch h-index (see below).

5.2 Interesting Impact Functions

Let us go back to the Producers Assessment Problem. Below we assume that I = [0, ∞].

The h-index. Given a sequence x = (x1, . . . , xn) ∈ I
1,2,..., the Hirsch index [26] of x is

defined as H(x) = max{i = 1, . . . , n : x{i} ≥ i} if n ≥ 1 and x{1} ≥ 1, or H(x) = 0 otherwise. It

may be shown that the h-index is a zero-insensitive OM3 aggeration operator, see [16], with:

H(x) =
n∨

i=1,...,n

i ∧ ⌊x{i}⌋.

Interpretation: “an author has h-index of H if H of his/her n most cited papers have at least H

citations each, and the other n − H papers are cited no more that H times each”. The h-index

may also be expressed as a Sugeno integral [35] w.r.t. to a counting measure, cf. [36].

agop implementation: index_h().

index_h(c(6,5,4,2,1,0,0,0,0,0,0))

## [1] 3
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index_h(c(-1,3,4,2)) # only for x>=0

## Error: all elements in ‘x‘ should be in [0,Inf]

Moreover, we have H(x) ≤ min{n, x1}.

Note that the h-index was defined in original context (aggregation of citation counts) for

integer vectors. More generally, it is better to use the OM3 operator with wi(x) = x = Id(x)

and ci,n = i (two identity “objects” = one of the simplest setting). Interestingly, such aggregation

operator is then asymptotically idempotent, i.e. for all x ∈ I we have limn→∞ M△,w(n ∗ x) = x.

The g-index. Egghe’s g-index [10] is defined as G(x) = max{g = 1, . . . , n :
∑g

i=1 x{g} ≥ g2},

and is available in agop by calling index_g(). We have G(x) ≥ H(x) with G(n∗n) = H(n∗n) = n

Note that this aggregation operator is not zero-insensitive, for example G(9, 0) = 2 and

G(9, 0, 0) = 3. Thus, we also provide the index_g_zi() function, which treats x as it would be

padded with 0s.

index_g(9)

## [1] 1

index_g(c(9,0,0))

## [1] 3

index_g_zi(9)

## [1] 3

The index is interesting from the computational point of view – it may be calculated on

the nondecreasing vector of cumulative sums, cumsum(sort(x, decreasing=TRUE)), however,

it cannot directly be expressed as a symmetric maxitive aggregation operator.

However, it might be shown (see [24] for the proof) that if x is sorted nondecreasingly, then:

G(x) = H(x)(0 ∨ cummin(cumsum(x) − (1 : n)2 + (1 : n))),

where 1 : n = (1, 2, 3, . . . , n).

The w-index. The w-index [40] is defined as

W(x) = max
{

w = 0, 1, 2, . . . : x{i} ≥ w − i + 1, i = 1, . . . , w
}

and is available in agop by calling index_w().

Interestingly, we have shown in [24] that if x is sorted nondecreasingly, then:

W(x) = H(x)(cummin(x + (1 : n) − 1)).

Thus, it is easily seen that this is a zero-insensitive impact function. What is more we have

H(x) ≤ W(x) ≤ 2H(x) and W(x) ≤ min{n, x1}.

The rp-indices. The rp-index, for p > 1 is expressed as

rp(x) = sup {r > 0 : sp,r
E x},

where sp,r =
(

p
√

rp − 0p, p
√

rp − 1p, . . . , p
√

rp − ⌊r⌋p)
)
. For more details see [13, 20].

Please note that for integer vectors we have r1 = W and r∞ = H (cf. [20]). Hence it easily

seen that, this is a zero-insensitive impact function.

agop implementation index_rp().
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The lp-indices. The lp-index (cf. [13, 20]) for p ∈ [1, ∞), u > 0 and v > 0 is a function

lp : I1,2,... → I
2 given by the equation

lp(x) = arg sup
(u,v)

{uv : ep,u,v
E x},

where ep,u,v =
(

p

√
vp − ( v

u0)p, p

√
vp − ( v

u1)p, . . . , p

√
vp − ( v

u⌊u⌋)p
)
.

agop implementation index_lp().

The MAXPROD-index. The MAXPROD-index [28] is given by the equation

MP(x) = max
{

i · x{i} : i = 1, 2, . . .
}

is another example of zero-insensitive impact function. Interestingly, this index is a particular

case of a projected l∞-index, see [20], and can be also expressed in terms of Shilkret integral

[34], see [24] for discussion.

In agop the MAXPROD-index is implemented in the index_maxprod() function.

Simple transformations of the h-index. Bibliometricians in many papers considered very

simple, direct modifications of the h-index. For example, the h(2)-index [27] is defined as:

H2(x) = max
{

h = 0, 1, 2, . . . : xh ≥ h2
}

.

Some authors introduced other settings than “h2” on the right side of (5.2), e.g. “2h”, “αh” for

some α > 0, or “hβ”, β ≥ 1, cf. [1].

It may easily be shown that these reduce to the h-index for properly transformed input

vectors, e.g. H2(x) = H(
√

x).

6 Aggregation Operators from the Probabilistic Perspective

By default, theory of aggregation looks at the aggregation operators mainly from the alge-

braic perspective. Of course, we may also be interested in their probabilistic properties, e.g. in

i.i.d. RVs models (the simplest and the most “natural” ones in statistics), cf. [13] for discussion.

Intuitively, a random variable is a method for “producing” input data. An aggregation oper-

ator applied on a random variable (possibly multidimensional) is classically called a statistic.

6.1 Some Notable Probability Distributions

Let (X1, . . . , Xn) i.i.d. F , where supp F = I. In social phenomena modeling, if F is continuous,

we often assume that the underlying density f is decreasing and convex on I, possibly with

heavy-tails. E.g. in the bibliometric impact assessment problem, this assumption reflects the

fact that higher paper valuations are more difficult to obtain than the lower ones, most of the

papers have very small valuation (near 0), and the probability of attaining a high note decreases

in at least linear pace.

Let us make a review of some useful statistical distributions, that are not available through

“base” R (for other ones, e.g. exponential, normal, uniform, Weibull, etc. refer to the widely-

available literature).
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6.1.1 Pareto-Type II Distribution

Many generalizations of the Pareto distribution have been proposed (GPD, Generalized Pareto

Distributions, cf. e.g. [37, 42]). Here we will introduce the so-called Pareto-Type II (Lomax)

distribution, which has support I = [0, ∞] and is defined with two parameters.

Formally, X follows the Pareto-II distribution with shape parameter k > 0 and scale param-

eter s > 0, denoted X ∼ P2(k, s), if its density is of the form

f(x) =
ksk

(s + x)k+1
(x ≥ 0). (1)

The cumulative distribution function of X is then:

F (x) = 1 − sk

(s + x)k
(x ≥ 0). (2)

The Pareto-Type II distribution is implemented in agop: dpareto2() gives the p.d.f. (1),

ppareto2() gives the c.d.f. (2), qpareto2() calculates the quantile function, F −1, and rpare-

to2() generates random deviates.

Properties. The expected value of X ∼ P2(k, s) exists for k > 1 and is equal to EX = s
k−1 .

Variance exists for k > 2 and is equal to Var X = ks2

(k−2)(k−1)2 . More generally, the i-th raw

moment for k > i is given by: EXi = Γ(i+1)Γ(k−i)
Γ(k+1) ksi.

For a fixed s, if X ∼ P2(kx, s) and Y ∼ P2(ky, s), kx < ky, then X stochastically dominates

Y , denoted X ≻ Y . On the other hand, for a fixed k, if X ∼ P2(k, sx) and Y ∼ P2(k, sy), then

sx > sy implies X ≻ Y .

Most importantly, if X ∼ P2(k, s), then the conditional distribution of X − t given X > t,

is P2(k, s + t) t ≥ 0.

Additionally, it might be shown that if X ∼ P2(k, s), then ln(s + X) has c.d.f. F (x) =

1 − ske−kx and density f(x) = kske−kx for x ≥ ln s, i.e. has the same distribution as Z + ln s,

where Z ∼ Exp(k) ≡ Γ(1, 1/k) (exponential distribution).

Parameter estimation. Let x = (x1, . . . , xn) be a realization of the Pareto-Type II i.i.d.

sample with known s > 0. The unbiased (corrected) maximum likelihood estimator for k:

k̂(x) =
n − 1

∑n
i=1 ln

(
1 + 1

s xi

) .

It may be shown that for n > 2 it holds Var k̂(x) = k2 1
n−2 .

agop implementation: pareto2_estimate_mle() with explicitly set argument s.

rowMeans(replicate(1000, {

pareto2_estimate_mle(rpareto2(50, 2, 1.5), s=1.5)

}))

## k s

## 2.003142 1.500000

For both unknown k and s we have:




k̂ = n∑n

i=1
ln(1+xi/ŝ)

,

1 + 1
n

∑n
i=1 ln (1 + xi/ŝ) − n∑n

i=1
(1+xi/ŝ)

−1 = 0.
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Unfortunately, the second equation must be solved numerically. It is worth noting that the above

system of equations may sometimes have no solution (as the local minimum of the likelihood

function may not exist, see [8] for discussion). This estimator may be heavily biased and have

a large mean squared error (of course, it is only asymptotically unbiased).

agop implementation: pareto2_estimate_mle() with explicitly set argument s.

rowMeans(replicate(1000, {

pareto2_estimate_mle(rpareto2(50, 2, 1.5))

}), na.rm=TRUE)

## k s

## 2.794081 2.378223

We see that the estimator’s performance is weak.

A better (in general) estimation procedure was proposed in [43]. The Zhang-Stevens MMS

(minimum mean square error) (Bayesian) estimator has relatively small bias (often positive)

and mean squared error. In agop it is available as: pareto2_estimate_mmse.

rowMeans(replicate(1000, {

pareto2_estimate_mmse(rpareto2(50, 2, 1.5))

}))

## k s

## 2.602839 2.089551

Two-sample F -test. The following simple test was introduced in [13]. Let (X1, X2, . . . , Xn1
)

i.i.d. P2(k1, s) and (Y1, Y2, . . . , Yn2
) i.i.d. P2(k2, s), where s is an a-priori known scale parameter.

We are going to verify the null hypothesis H0 : k1 = k2 against the two-sided alternative

hypothesis K : k1 6= k2.

It might be shown that
∑n

i=1 ln(s + Xi) − n ln s ∼ Γ(n, 1/k). This implies that under H0,

the following test statistic follows the Snedecor F distribution:

R(X, Y) =
n1

n2

∑n2

i=1 ln
(
1 + Yi

s

)

∑n1

i=1 ln
(
1 + Xi

s

) H0∼ F[2n2,2n1]. (3)

The null hypothesis is accepted iff

R(x, y) ∈ [
qf(α

2 , 2n2, 2n1), qf(1 − α
2 , 2n2, 2n1)

]
,

where qf(q, d1, d2) denotes the q-quantile of F[d1,d2]

The p-value may be determined as follows:

p = 2
(

1
2 −

∣∣∣pf(R(x, y), 2n2, 2n1) − 1
2

∣∣∣
)

, (4)

where pf(x, d1, d2) is the c.d.f. of F[d1,d2].

agop implementation: pareto2_test_f().

x <- rpareto2(35, 1.2, 1)

y <- rpareto2(25, 2.1, 1)

pareto2_test_f(x, y, s=1)

##

## Two-sample F-test for equality of shape parameters for Type
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## II-Pareto distributions with known common scale parameter

##

## data: x and y

## F = 0.3858, p-value = 0.000547

## alternative hypothesis: two-sided

6.2 Stochastic Properties of Aggregation Operators

Given (X1, X2, . . . ) i.i.d. following a continuous c.d.f. F it is well-known, see [7], that L-statistics

with weights ci,n = w(i/n), for w : [0, 1] → I, are asymptotically normally distributed. A similar

result for the same weight setting has been shown for S-statistics, see [22].

For i.i.d samples of finite length we have e.g. the following result [18]:

Theorem 19. Let X = (X1, . . . , Xn) be a sequence of i.i.d. random variables with continuous

c.d.f. F defined on R0+. Then the c.d.f. of H(X) for x ∈ [0, n) is given by

Dn(x) = I(F(⌊x + 1⌋−0); n − ⌊x⌋, ⌊x⌋ + 1),

where I(p; a, b) is the regularized incomplete beta function (pbeta() in R).

More generally, the c.d.f. of some quasi-S-statistics may be expressed as an incomplete beta

function, see [22]. Note that, unlike in the case of the distribution of “ordinary” order statistics

(see [7]), the parameters a, b of I are functions of x here.

7 NEWS/CHANGELOG

** agop package NEWS **

***************************************************************************

0.1-3 /2013-06-27/

* Complier errors on Mac and Solaris Studio removed

***************************************************************************

0.1-1 /2013-06-26/

* initial release

[the package started as a lightweight fork of the CITAN package]

***************************************************************************
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