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Abstract

This introduction to the R package bayesGARCH is a shorter version of Ardia and
Hoogerheide (2010), published in The R Journal and available at http://journal.
r-project.org/. The package provides functions for the Bayesian estimation of the
parsimonious and effective GARCH(1,1) model with Student-¢ innovations. The estima-
tion procedure is fully automatic and thus avoids the tedious task of tuning an MCMC
sampling algorithm.
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1. Introduction

The package bayesGARCH (Ardia 2007) implements the Bayesian estimation procedure de-
scribed in Ardia (2008, chapter 5) for the GARCH(1,1) model with Student-¢ innovations. The
approach, based on the work of Nakatsuma (1998), consists of a Metropolis-Hastings (MH)
algorithm where the proposal distributions are constructed from auxiliary ARMA processes
on the squared observations. This methodology avoids the time-consuming and difficult task,
especially for non-experts, of choosing and tuning a sampling algorithm. Moreover, in our
experience, the algorithm explores the domain of the joint posterior efficiently compared to
naive MH approaches or the Griddy-Gibbs sampler. The program is written in R with some
subroutines implemented in C in order to speed up the simulation procedure. The validity
of the algorithm as well as the correctness of the computer code have been verified by the
method of Geweke (2004). For further details, we refer the reader to Ardia and Hoogerheide
(2010).

We hope that the R package bayesGARCH will be fruitful for many researchers like econo-
metricians or applied statisticians. If you use R or bayesGARCH, please cite the software in
publications.

2. Model, priors and MCMC scheme

A GARCH(1,1) model with Student-¢ innovations for the log-returns {y;} may be written via
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data augmentation (see Geweke 1993) as
_ 1/2
ytzet(”—fwtht)/ tzl,...,T
&t %N(O, 1)
wd v v
4153
=~ 10(33
he = ag + a1y + Bhi1,
where ag > 0, ag,8 > 0 and v > 2; N(0,1) denotes the standard normal distribution;
ZG denotes the inverted gamma distribution. The restriction on the degrees of freedom
parameter v ensures the conditional variance to be finite and the restrictions on the GARCH
parameters ag, a1 and [ guarantee its positivity. We emphasize the fact that only positivity

constraints are implemented in the MH algorithm; no stationarity conditions are imposed in
the simulation procedure.

(1)

In order to write the likelihood function, we define the vectors y = (y1,...,yr), @
(w1,...,w7) and a = (ag,a1)’. We regroup the model parameters into the vector ¢ =
(a, B,v). Then, upon defining the 7" x T" diagonal matrix

Y= E(wvw) = dlag ({th;th(OQB)}z:l) )
where hy(a, B) = ag + a1y? 1 + Bhi—1(a, B), we can express the likelihood of (1, @) as

L, |y) o (det X)"V2exp [~1y'n71y] . (2)

The Bayesian approach considers (1, w) as a random variable which is characterized by a
prior density denoted by p(¢,w). The prior is specified with the help of parameters called
hyperparameters which are initially assumed to be known and constant. Moreover, depending
on the researcher’s prior information, this density can be more or less informative. Then,
by coupling the likelihood function of the model parameters with the prior density, we can
transform the probability density using Bayes’ rule to get the posterior density p (¢, w | y) as

follows:
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This posterior is a quantitative, probabilistic description of the knowledge about the model
parameters after observing the data.

We use truncated normal priors on the GARCH parameters « and 3

p(a) < én;, (@] ptas Ba) 1{a € R2}

p(B) o< oy (B | up,Xp) 1{B € R4},

where o and X, are the hyperparameters, 1{-} is the indicator function and ¢p;, is the
d-dimensional normal density.

The prior distribution of vector w conditional on v is found by noting that the components
w; are independent and identically distributed from the inverted gamma density, which yields
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The prior distribution for the degrees-of-freedom parameter is a translated exponential with
parameters A > 0 and § > 2

p(v) =Xexp[-A(v—10)] 1{v >4} .

For large values of A, the mass of the prior is concentrated in the neighborhood of § and a
constraint on the degrees of freedom can be imposed in this manner. Normality of the errors
is assumed when ¢ is chosen large.

The joint prior distribution is then formed by assuming prior independence between the
parameters, i.e. p(¢, @) = p(a)p(B)p(w@ | v)p(v).

3. Implementation

Fitting the GARCH(1,1) model with Student-¢ innovations to the data is achieved using the
function bayesGARCH

> args(bayesGARCH)

function (y, mu.alpha = c(0, 0),
Sigma.alpha = 1000 * diag(1,2),
mu.beta = 0, Sigma.beta = 1000,
lambda = 0.01, delta = 2,
control = list())

The input arguments of the function are the vector of data, the hyperparameters and the list
control which can supply any of the following elements:

e n.chain: number of MCMC chain(s) to be generated; default 1.
e 1.chain: length of each MCMC chain; default 10000.
e start.val: vector of starting values of the chain(s); default ¢(0.01,0.1,0.7,20).

e addPriorConditions: function which allows the user to add any constraint on the
model parameters; default NULL, i.e. not additional constraints are imposed.

e refresh: frequency of reports; default 10.

e digits: number of printed digits in the reports; default 4.

The function outputs the MCMC chains as an object of the class "mcmc" from the package
coda (Plummer et al. 2010). This package contains functions for post-processing the MCMC
output; see Plummer et al. (2006) for an introduction. Note that coda is loaded automatically
with bayesGARCH.

3.1. Prior restrictions and normal innovations

The control parameter addPriorConditions can be used to impose any type of constraints
on the model parameters ¢ during the estimation. For instance, to ensure the estimation of
a covariance stationary GARCH(1,1) model, the function should be defined as
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> addPriorConditions <- function(psi)
+ psi[2] + psi[3] < 1

Finally, we can impose normality of the innovations in a straightforward manner by setting
the hyperparameters A = 100 and § = 500 in the bayesGARCH function.

3.2. Practical advice

The estimation strategy implemented in bayesGARCH is fully automatic and does not require
any tuning of the MCMC sampler. This is certainly an appealing feature for practitioners.
The generation of the Markov chains is however time consuming and estimating the model over
several datasets on a daily basis can therefore take a significant amount of time. In this case,
the algorithm can be easily parallelized, by running a single chain on several processors. This
can be easily achieved with the package foreach (REvolution Computing 2010), for instance.
Also, when the estimation is repeated over updated time series (i.e., time series with more
recent observations), it is wise to start the algorithm using the posterior mean or median of
the parameters obtained at the previous estimation step. The impact of the starting values
(burn-in phase) is likely to be smaller and thus the convergence faster.

Finally, note that as any MH algorithm, the sampler can get stuck at a given value, so that the
chain does not move anymore. However, the sampler uses Taylor-made candidate densities
that are especially constructed at each step, so it is almost impossible for this MCMC sampler
to get stuck at a given value for many subsequent draws. In the unlikely case that such ill
behaviour does occur, one could scale the data (to have standard deviation 1), or run the
algorithm with different initial values or a different random seed.

Disclaimer

The views expressed in this vignette are the sole responsibility of the author and do not
necessarily reflect those of aeris CAPITAL AG.

References

D. Ardia. Financial Risk Management with Bayesian Estimation of GARCH Models: Theory
and Applications, volume 612 of Lecture Notes in Economics and Mathematical Systems.
Springer-Verlag, Berlin, Germany, June 2008. ISBN 978-3-540-78656-6. URL http://www.
springer.com/economics/econometrics/book/978-3-540-78656-6.

D. Ardia. bayesGARCH: Bayesian Estimation of the GARCH(1,1) Model with Student-t
Innovations in R, 2007. URL http://CRAN.R-project.org/package=bayesGARCH.

D. Ardia and L. F. Hoogerheide. Bayesian Estimation of the GARCH(1,1) Model with
Student-t Innovations. The R Journal, 2(2):41-47, Dec. 2010. URL http://journal.
r-project.org/

J. F. Geweke. Getting it right: Joint distribution tests of posterior simulators. Journal of the
American Statistical Association, 99(467):799-804, Sept. 2004.


http://www.springer.com/economics/econometrics/book/978-3-540-78656-6
http://www.springer.com/economics/econometrics/book/978-3-540-78656-6
http://CRAN.R-project.org/package=bayesGARCH
http://journal.r-project.org/
http://journal.r-project.org/

David Ardia 5

J. F. Geweke. Bayesian treatment of the independent Student-t linear model. Journal of
Applied Econometrics, 8(S1):519-S40, Dec. 1993.

T. Nakatsuma. A Markov-chain sampling algorithm for GARCH models. Studies in Nonlinear
Dynamics and Econometrics, 3(2):107-117, July 1998.

M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and output
analysis for MCMC. R News, 6(1):7-11, Mar. 2006.

M. Plummer, N. Best, K. Cowles, and K. Vines. coda: Output analysis and diagnostics for
MCMC, 2010. URL http://CRAN.R-project.org/package=coda.

REvolution Computing. foreach: Foreach looping construct for R, 2009. URL http://CRAN.
R-project.org/package=foreach.

Affiliation:

David Ardia

aeris CAPITAL AG, Switzerland

E-mail: david.ardia@unifr.ch

URL: http://perso.unifr.ch/david.ardia/


http://CRAN.R-project.org/package=coda
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach
mailto:david.ardia@unifr.ch
http://perso.unifr.ch/david.ardia/

	Introduction
	Model, priors and MCMC scheme
	Implementation
	Prior restrictions and normal innovations
	Practical advice


