
Estimating Confidences of Individual Regression

Predictions with confReg

Sebastian Briesemeister

July 5, 2011

1 Introduction

In contrast to classification approaches, where the uncertainty between classes
is an indicator of reliability, most regression methods do not offer an opportunity
to estimate the confidence of individual predictions.

In this package, we wrap different methods for confidence estimation for
regression prediction. In addition, the package implements a linear regression,
a ridge regression, a support vector regression, and a simple feature selection
approach. Every confidence estimator measures the confidence in a prediction
using a confidence score between zero and one, where a confidence score of zero
corresponds to a low-confidence prediction and a score close to one corresponds
to a highly confident prediction. In addition, confidence scores are translated
into confidence intervals, in which the prediced response lies with a probability
of 80%. Given a good confidence estimation, the confidence intervals will be
tighter for confident predictions.

To load the package type:

> library("confReg")

2 An Artificial Dataset

We first create an artificial dataset for testing the described methods of
this package. We create a dataset of 200 instances with 10 features and one
response. The response is created by applying the Friedman function to the
first five features and adding some noise.

> set.seed(100)

> dataMatrix <- matrix(runif(10 * 200), 200, 10)

> y <- (10 * sin(pi * dataMatrix[, 1] * dataMatrix[, 2]) + 20 *

+ (dataMatrix[, 3] - 0.5)^2 + 10 * dataMatrix[, 4] + 5 * dataMatrix[,

+ 5]) + rnorm(200, 0, 0.1)

> dataMatrix <- cbind(dataMatrix, y)

1



After creating the data matrix, we save the data in a Dataset object of the
package.

> data <- Dataset(dataMatrix)

Since we have to test our methods, we split the dataset in a training and
test dataset. We calculate the fold assignment for every instance assuming a
split in five parts and assign set five as our test set.

> folds <- calculateFolds(data, 5, random = TRUE)

> datasets <- splitByFolds(data, folds, 5)

Finally, we normalize the training dataset to zero mean and a standard
deviation of one and apply the same normalization to the test dataset.

> trainingData <- normalize(datasets[[1]])

> testData <- normalizeBy(datasets[[2]], trainingData)

3 Model Creation

Lets create a model on our training data. For this, we will first select features
since some features in the dataset are non-predictive. We first create a regression
object and a model evaluation object, which is needed for evaluating the worth
of a feature set in the feature selection. The regression object can be created
with any regression method that uses a formula as input for training, e.g. “lm”
and has a corresponding prediction function, e.g. “predict”.

> me <- ModelEvaluation()

> rModel <- Regression(lm, predict)

Note, that we could also use the provided FastRegression object, which is a
fast implementation of a ridge regression.

> rModel <- FastRegression()

We then create a feature selection object, namely a TwinScan object, which
aims to minimizes the average error of predictions made with a feature set.

> fs <- TwinScan(averageError, min)

Now, we select a feature set from the training data using the above objects.

> featureList <- selectFeatures(fs, trainingData, me, randomize = TRUE,

+ rModel)

> featureList

[1] 1 2 3 4 5

Lets create a model using the selected feature set.

> featureSet(trainingData) <- featureList

> rModel <- learnFromDataset(rModel, trainingData)

2



4 Model Testing

Before we come to the actual confidence estimation, lets test our model on
the test data. We assign the feature set of the training data to the test data
and predict the responses of the test data.

> featureSet(testData) <- featureList

> predictions <- predictDataset(rModel, testData)

> predictions

[,1]
[1,] -0.12633007
[2,] 0.05029106
[3,] 0.96222107
[4,] 0.88265502
[5,] -0.01338626
[6,] -0.16452070
[7,] -0.31711196
[8,] 0.64604206
[9,] 1.30421336
[10,] -0.41184359
[11,] 1.74850039
[12,] -0.06082061
[13,] -1.51800586
[14,] 0.14934645
[15,] -0.08763298
[16,] -0.94604161
[17,] -0.04629694
[18,] -0.99593038
[19,] 1.65450202
[20,] 1.28570963
[21,] 0.97761312
[22,] -1.16113762
[23,] -0.75595752
[24,] -0.88318289
[25,] -1.97354000
[26,] 0.48561524
[27,] 0.57489831
[28,] -0.34784174
[29,] 0.16369287
[30,] 1.71971332
[31,] 0.09097077
[32,] -0.60592559
[33,] 0.07625206
[34,] -0.31804901
[35,] 0.48852976
[36,] 0.33610229

3



[37,] 1.96057032
[38,] 0.61331678
[39,] -0.83325330
[40,] 0.93586990

In contrast, the real response values are:

> getResponses(testData)

[1] -0.095274343 -0.348808298 1.422912533 1.337572529 0.498226183
[6] 0.802668849 -0.245927507 0.729828014 1.082307465 0.188889423
[11] 1.613101889 0.297076505 -1.451797119 -0.386881926 -0.033540275
[16] -1.146083146 0.160198548 -1.396756382 2.423148935 1.477409733
[21] 1.260573023 -0.661840301 -0.556130160 -0.934713379 -2.174491607
[26] 0.693936671 0.415853753 0.275802280 -0.091780822 2.343349362
[31] -0.301392953 -1.833809161 0.009856587 -0.619404877 0.163229116
[36] 0.521050458 2.704518761 0.623759866 -0.403960291 1.129643713

To evaluate the model, lets calculate the average squared error of the pre-
dicted responses.

> averageError(getResponses(testData), predictions)

[1] 0.1876864

Since we normalized the responses the average squared error, the real average
squared error is calculated as follows.

> realResponses <- unscaleVector(testData, getResponses(testData))

> realPredictions <- unscaleVector(testData, predictions)

> averageError(realResponses, realPredictions)

[1] 4.168221

To get a more precise view on the performance of the model, we can also
start a five-fold nested cross-validation.

> evaluateInCV(me, data, rModel, 5, random = FALSE, fs)

[1] 5.415507

The returned value is the average result of the quality function, assigned at
the moment of creating the ModelEvaluation object, the average squared error
in our case.

4



5 Confidence Estimation

To predict confidence scores and confidence intervals in addition to our plain
predicted responses, we first create ConfidenceEstimator object. In our case,
we use ConfidenceEstimatorNNErrors, which estimates the confidence of each
prediction by calculating the average sqaured error the the m nearest neighbors.

> ce <- ConfidenceEstimatorNNErrors(rModel, trainingData)

To train our confidence estimator, we have to provide predictions on the
training data. In addition, we have to decide whether we want to optimize our
estimator on the training dataset or want to use a kernel estimate instead. We
choose to optimize the estimator since it often leads to better results

> predictionsTrainingData <- predictDataset(rModel, trainingData)

> ce <- create(ce, optimize = TRUE, predictionsTrainingData)

Now, the estimator is trained and can be used to predict the confidences of
our predictions.

> confidences <- estimate(ce, testData, predictions)

> confidences

[,1] [,2] [,3]
[1,] 0.92500 -0.47355372 0.14878158
[2,] 0.27500 -0.67788918 0.73424720
[3,] 0.98750 0.61499743 1.15931931
[4,] 0.40000 0.32563771 1.49431389
[5,] 0.16250 -0.86610124 0.70254853
[6,] 0.16250 -1.01723569 0.55141409
[7,] 0.88125 -0.66832359 -0.04020124
[8,] 0.94375 0.29296567 0.92553921
[9,] 0.03125 0.36932665 2.09110391
[10,] 0.27500 -1.14002383 0.27211255
[11,] 0.05625 0.83663238 2.53106517
[12,] 0.08125 -1.00721667 0.71190908
[13,] 0.98750 -1.86522950 -1.32090763
[14,] 0.93750 -0.20186517 0.42625718
[15,] 0.71250 -0.47325338 0.32123428
[16,] 0.91875 -1.29127126 -0.67182949
[17,] 0.21875 -0.82846430 0.67445787
[18,] 0.55000 -1.39969845 -0.53717820
[19,] 0.44375 1.19061621 2.21388330
[20,] 0.37500 0.72647815 1.94739927
[21,] 0.33125 0.37817166 1.64786663
[22,] 0.82500 -1.53172946 -0.87905405
[23,] 0.93125 -1.10517515 -0.47994633

5



[24,] 0.30000 -1.58518819 -0.20705683
[25,] 0.94375 -2.32661639 -1.69404285
[26,] 0.63750 0.06788423 0.92733649
[27,] 0.05000 -0.34272437 1.35854453
[28,] 0.25000 -1.09565318 0.34198696
[29,] 0.71250 -0.22192754 0.57256013
[30,] 0.05000 0.80209064 2.50335954
[31,] 0.49375 -0.34108898 0.63123631
[32,] 0.08125 -1.55232165 0.16680411
[33,] 0.29375 -0.63229697 0.75433565
[34,] 0.37500 -0.87728049 0.34364063
[35,] 0.30000 -0.21347554 1.16465583
[36,] 0.92500 -0.01112135 0.61121395
[37,] 0.05000 1.04294764 2.74421654
[38,] 0.48125 0.18125703 1.15358232
[39,] 0.98750 -1.18047694 -0.63615506
[40,] 0.75625 0.55932333 1.22446781

For each instance in the test set, the estimator returned a score and a lower
and an upper bound of an 80% confidence interval.

To analyze the quality of our confidence estimation on the training data, we
calculate the correlation of the prediction errors with the width of the corre-
sponding confidence intervals

> evaluateConfidenceEstimates(getResponses(testData), predictions,

+ confidences)

[1] 0.4269676

Depending on the random artificial dataset, we see different results. On
average the correlation is positive. If we would repeat everything with a dataset
of say 1000 instances, the correlation would very likely increase since confidence
estimation is usally much more stable on large datasets.

An alternative way of looking at the enrichment of predictions with a low
error is by calculating the confidence associated prediction improvement. The
prediction improvement shows by what percentage the average squared error
is reduced if we consider only the 20% predictions with the smalles confidence
interval. Therefore, we calculate the average squared error of the top 20%
predictions and normalize it by the error on all predictions.

> interval_widths <- confidences[, 3] - confidences[, 2]

> top20 <- which(interval_widths <= sort(interval_widths)[length(interval_widths) *

+ 0.2])

> top20Error <- averageError(getResponses(testData)[top20], predictions[top20])

> top20Error

[1] 0.08984874

6



−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

confidence score

pr
ed

ic
tio

n 
er

ro
r

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

score−based confidence interval
overall confidence interval
zero error

Figure 1: Predicted score-based confidence interval and predicted instances.

> overallError <- averageError(getResponses(testData), predictions)

> overallError

[1] 0.1876864

> (1 - top20Error/overallError) * 100

[1] 52.12826

Finally, we can evaluate the estimated confidence intervals by plotting the
intervals and the predicted instances 1.

> plotConfidenceIntervals(ce, getResponses(testData), predictions,

+ confidences[, 1])

We expect the confidence interval to be smaller for large confidence scores.
We also expect about 80% of the instances within the interval. However, es-
pecially for small datasets, often less than the expected number of instances is
within the interval borders.

7


