
Statistics Netherlands

Discussion paper (08015)

Algorithms for correcting some
obvious inconsistencies and
rounding errors in business
survey data00

f
o
r07070707
for correcting someorrecting some orrectingorrecting
onsistencies andsistencies ansistencies ansistencies an
rors in businessrors in business rors in business rors in business

Sander Scholtus

The Hague/Heerlen, 2008

Explanation of symbols

. = data not available
* = provisional fi gure
x = publication prohibited (confi dential fi gure)
– = nil or less than half of unit concerned
– = (between two fi gures) inclusive
0 (0,0) = less than half of unit concerned
blank = not applicable
2005-2006 = 2005 to 2006 inclusive
2005/2006 = average of 2005 up to and including 2006
2005/’06 = crop year, fi nancial year, school year etc. beginning in 2005 and ending in 2006
2003/’04–2005/’06 = crop year, fi nancial year, etc. 2003/’04 to 2005/’06 inclusive

Due to rounding, some totals may not correspond with the sum of the separate fi gures.

Publisher
Statistics Netherlands
Henri Faasdreef 312
2492 JP The Hague

Prepress
Statistics Netherlands - Facility Services

Cover
TelDesign, Rotterdam

Information
Telephone .. +31 88 570 70 70
Telefax .. +31 70 337 59 94
Via contact form: www.cbs.nl/information

Where to order
E-mail: verkoop@cbs.nl
Telefax .. +31 45 570 62 68

Internet
www.cbs.nl

ISSN: 1572-0314

© Statistics Netherlands, The Hague/Heerlen, 2008.
Reproduction is permitted. ‘Statistics Netherlands’ must be quoted as source.

6008308015 X-10

S������

At Statistics Netherlands selective editing is used for the data of the struc-

tural business statistics. Records containing potentially influential errors

are edited manually, while the non-critical records are edited automatic-

ally by an advanced software package called SLICE. Prior to this several

types of obvious inconsistencies are detected and corrected deductively.

The rationale of this step is that it would be a waste of resources if these

errors were to be corrected by hand. Moreover, these obvious inconsisten-

cies are in fact systematic errors that can be corrected more accurately

by a separate, specific algorithm than by general editing software such as

SLICE. This paper describes two additional types of frequently occurring

obvious inconsistencies and gives simple algorithms to detect and correct

them. It also contains a heuristic method for resolving rounding errors.

Correction of these errors in a separate step will increase the efficiency of

the subsequent editing process, because more records will be eligible (and

suitable) for automatic editing.

Keywords: structural business statistics, editing, obvious inconsistencies,

sign errors, cumulation errors, rounding errors

3

1 Introduction

It is well known that data collected in a survey or register contain errors. In

the case of a survey, these errors may be introduced when the respondent fills

in the questionnaire or during the processing of survey forms at the statistical

office. It is important to resolve these errors by editing the data, because

figures based on erroneous data may be biased or logically inconsistent. For

the structural business statistics all survey variables are quantitative and many

(linear) relationships between them can be formulated. Thus a set of constraints

called edit rules is established. Two examples of edit rules are

profit = turnover − costs

and

number of employees (in persons) ≥ number of employees (in fte).

If the data in a particular record violate an edit rule, the record is found to be

inconsistent and it is deduced that some variable(s) must be in error.

A distinction is often made between systematic errors and random errors. Ac-

cording to Eurostat (2007, §3.3.1), an error is systematic if it is reported con-

sistently over time by respondents. This type of error can occur when a respon-

dent misunderstands or misreads a survey question, e.g. by reporting financial

amounts in Euros rather than the requested multiples of 103 Euros. A fault

in the data processing software might also introduce a systematic error. Since

it is reported consistently by different respondents, an undiscovered systematic

error leads to biased aggregates. Once detected, a systematic error can be cor-

rected (semi-)deductively because the underlying error mechanism is known.

Random errors on the other hand occur by accident, e.g. when a 1 on a survey

form is read as a 7 during data processing. Because of their random nature, no

deductive method can typically be applied to correct errors of this type.

At Statistics Netherlands selective editing is used to clean the data collected for

structural business statistics (de Jong (2002)). This means that only records

containing (potentially) influential errors are edited manually by subject-matter

specialists, whereas the remaining records are edited automatically. For the lat-

ter step the software package SLICE was developed at Statistics Netherlands.

SLICE uses an advanced error localisation algorithm based on a generalisation

of the Fellegi-Holt paradigm (Fellegi & Holt (1976)), which states that the smal-

lest possible (weighted) number of variables should be labelled erroneous such

that the record can be made consistent with every edit rule. This paradigm is

based on the assumption that the data contain only random errors. A descrip-

tion of the error localisation algorithm implemented in SLICE can be found in

de Waal & Quere (2003) and de Waal (2003).

4

A plausibility indicator is calculated for each record to assess whether it may

contain influential errors and should be edited manually (Hoogland (2006)).

The plausibility indicator is calibrated such that all records that receive a score

above a certain threshold are deemed suitable for automatic editing. Only the

records that do not receive a sufficiently high plausibility indicator are edited

manually. In addition to this the largest companies are always edited manually,

since they are likely to have a substantial influence on aggregates.

Selective editing leads to a more efficient editing process than traditional edit-

ing (where every record is corrected by hand), since part of the data stream

is not reviewed by subject-matter specialists anymore. However, Fellegi-Holt

based algorithms for automatic error localisation are not considered suitable for

editing records that contain either influential or systematic errors. Moreover,

in practice the error localisation problem becomes too complicated if a record

violates too large a number of edit rules. To preserve the quality of the editing

process, only records that contain a limited number of non-influential random

errors should be edited automatically. Ideally, the plausibility indicator filters

out all records containing influential errors or too many inconsistencies. Prior

to this, several types of obvious errors can be detected and resolved automatic-

ally in a separate step. A systematic error is called obvious if it can be detected

‘easily’, i.e. by applying some basic, specific search algorithm. An example of

an obvious error occurs when a respondent reports the values of some items in

a sum, but leaves the corresponding total blank. This error can be corrected

deductively by calculating and filling in the total value.

It is useful to detect and correct obvious inconsistencies as early as possible in

the editing process, since it is a waste of resources if subject-matter special-

ists have to deal with them. When obvious inconsistencies are corrected in a

separate step, before the plausibility indicator is calculated, the efficiency of

the selective editing process increases because more records will be eligible for

automatic editing. Solving the error localisation problem becomes easier once

obvious inconsistencies have been removed, since the number of violated edit

rules becomes smaller.

Moreover, since obvious inconsistencies are systematic errors, they can be cor-

rected more accurately by a specific, deductive algorithm than by a general

error localisation algorithm based on the Fellegi-Holt paradigm. If a certain

type of systematic error is expected to occur commonly and if a specific, reli-

able search routine is available to detect and correct it, it makes sense to apply

this routine rather than to rely on the general algorithm used by SLICE. After

all, if we leave the error in to be detected by SLICE, all we can hope for is that

the general algorithm will detect and correct the error the same way the simple

algorithm would have done, but at the cost of higher computational effort.

The currently implemented editing process for the structural business statistics

5

at Statistics Netherlands contains a step during which three obvious system-

atic errors are treated. Section 2 provides a brief description of this step. The

purpose of this paper is to present algorithms for detecting and correcting fur-

ther obvious inconsistencies. These error types were discovered through an

inspection of data collected in the past. Section 3 deals with so-called sign er-

rors. Cumulation errors are the subject of section 4. Finally, section 5 presents

a heuristic method for correcting rounding errors. Rounding errors are not

obvious inconsistencies in the true sense of the word (they are random, not

systematic), but the efficiency of the editing process is expected to increase if

these errors are also treated separately.

Due to item non-response, the unedited data contain a substantial number of

missing values. It is assumed throughout this paper that these missing values

have been temporarily replaced by zeros. This is merely a precondition for

determining which edit rules are violated and which are satisfied, and should

not be considered a full imputation. When the obvious inconsistencies have

been corrected, all imputed zeros should be replaced by missing values again,

to be imputed by a valid method later.

6

2 Current approach at Statistics Netherlands

The currently implemented editing process for structural business statistics at

Statistics Netherlands contains a step in which three kinds of obvious system-

atic errors are detected. These errors are treated deductively before any other

correction is made in the data of the processed survey forms.

The first of these obvious inconsistencies was already mentioned in section 1:

the amounts on the survey form are sometimes reported in Euros instead of

multiples of 1, 000 Euros. This is referred to as a uniform 1, 000-error. It is im-

portant to detect this error because otherwise publication figures of all financial

items will be overestimated. Depending on which auxiliary information is avail-

able, two methods are used to detect uniform 1, 000-errors. If the respondent is

present in the VAT-register, the amount of turnover in the register is compared

to the reported turnover in the survey. For the other respondents the amount

of reported turnover per reported number of employees (in fte) is compared to

its median in the edited data of the previous year. If a large discrepancy is

found by either method, all financial amounts reported by the respondent are

divided by 1, 000.

The second obvious inconsistency occurs when a respondent adds a redundant

minus sign to a reported value. This sometimes happens with variables that

have to be subtracted, even though there already is a printed minus sign on

the survey form. As a result, the value of the variable becomes wrongfully

negative after data processing. The resulting inconsistency can be detected

and corrected easily: the reported amount is simply replaced by its absolute

value.

The third and final obvious inconsistency was also mentioned in section 1: some

respondents report component items of a sum but leave the corresponding total

blank. When this is detected, the total value is calculated and filled in.

7

3 Sign errors

3.1 The profit-and-loss account

The profit-and-loss account is a part of the questionnaire used for structural

business statistics where the respondent has to fill in a number of balance

amounts. We refer to these balance variables by x0, x1, . . . , xn−1. A final bal-

ance amount xn called the pre-tax results is found by adding up the other

balance variables. That is, the data should conform to the following edit rule:

x0 + x1 + · · ·+ xn−1 = xn. (3.1)

Rule (3.1) is sometimes referred to as the external sum. A balance variable is

defined as the difference between a returns item and a costs item. If these items

are also asked in the questionnaire, the following edit rule should hold:

xk,r − xk,c = xk, (3.2)

where xk,r denotes the returns item and xk,c the costs item. Rules of this form

are referred to as internal sums.

We will use a general description of the profit-and-loss account, in which the

returns and costs are not necessarily asked for every balance variable in the

survey. To keep the notation simple we assume that the balance variables are

arranged such that only x0, . . . , xm are split into returns and costs, for some

m ∈ {0, 1, . . . , n− 1}. Thus, the following set of edit rules is used:




x0 = x0,r − x0,c
...

xm = xm,r − xm,c
xn = x0 + x1 + · · ·+ xn−1

(3.3)

In this notation the 0th balance variable x0 stands for operating results, and

x0,r and x0,c represent operating returns and operating costs, respectively.

3.2 Sign errors and interchanged returns and costs

Table 1 displays the structure of the profit-and-loss account from the structural

business statistics questionnaire that was used at Statistics Netherlands until

2005. The associated edit rules are given by (3.3), with n = 4 and m =

n− 1 = 3. (That is, all balance variables are split into returns and costs here.)
Table 1 also displays four example records that are inconsistent. The first

three example records have been constructed for this paper with nice ‘round’

amounts to improve readability, but the types of inconsistencies present were

taken from actual records from the structural business statistics of 2001. (The

fourth example record contains more realistic values.)

8

Table 1. Structure of the profit-and-loss account in the structural business sta-

tistics until 2005, with four example records.

variable full name (a) (b) (c) (d)

x0,r operating returns 2, 100 5, 100 3, 250 5, 726

x0,c operating costs 1, 950 4, 650 3, 550 5, 449

x0 operating results 150 450 300 276

x1,r financial revenues 0 0 110 17

x1,c financial expenditure 10 130 10 26

x1 operating surplus 10 130 100 10

x2,r provisions rescinded 20 20 50 0

x2,c provisions added 5 0 90 46

x2 balance of provisions 15 20 40 46

x3,r exceptional income 50 15 30 0

x3,c exceptional expenses 10 25 10 0

x3 exceptional result 40 10 20 0

x4 pre-tax results 195 610 −140 221

In example (a) two edit rules are violated: the external sum and the internal

sum with k = 1. Interestingly, the profit-and-loss account can be made fully

consistent with all edit rules by changing the value of x1 from 10 to −10 (see
Table 2). This is the natural way to obtain a consistent profit-and-loss account

here, since any other explanation would require more variables to be changed.

Moreover, it is quite conceivable that the minus sign in x1 was left out by the

respondent or ‘lost’ during data processing.

Two internal sums are violated in example (b), but the external sum is valid.

The natural way to obtain a consistent profit-and-loss account here is by inter-

changing the values of x1,r and x1,c, and also of x3,r and x3,c (see Table 2). By

treating the inconsistencies this way, full use is made of the amounts actually

filled in by the respondent and no imputation of synthetic values is necessary.

The two types of errors found in examples (a) and (b) are quite common. We

will refer to them as sign errors and interchanged returns and costs. For the sake

of brevity we also use the term sign error to refer to both types. Sign errors

and interchanged returns and costs are closely related and should therefore

be searched for by one detection algorithm. We will now formulate such an

algorithm, working from the assumption that if an inconsistent record can be

made to satisfy all edit rules in (3.3) by only changing signs of balance variables

9

Table 2. Corrected versions of the example records from Table 1. Changes are

shown in boldface.

variable full name (a) (b) (c) (d)

x0,r operating returns 2, 100 5, 100 3, 250 5, 726

x0,c operating costs 1, 950 4, 650 3, 550 5, 449

x0 operating results 150 450 −300 276

x1,r financial revenues 0 130 110 17

x1,c financial expenditure 10 0 10 26

x1 operating surplus −10 130 100 −10

x2,r provisions rescinded 20 20 90 0

x2,c provisions added 5 0 50 46

x2 balance of provisions 15 20 40 −46

x3,r exceptional income 50 25 30 0

x3,c exceptional expenses 10 15 10 0

x3 exceptional result 40 10 20 0

x4 pre-tax results 195 610 −140 221

and/or interchanging returns items and costs items, this is indeed the way the

record should be corrected.

It should be noted that the 0th returns and costs items differ from the other

variables in the profit-and-loss account in the sense that they are also present in

other edit rules, connecting them to items from other parts of the survey. E.g.

operating costs should equal the sum of total labour costs, total machine costs,

etc. If x0,r and x0,c were interchanged to suit the 0th internal sum, other edit

rules might be violated. When detecting sign errors we therefore introduce the

constraint that we are not allowed to interchange x0,r and x0,c. (Because of the

way the questionnaire is designed, it seems highly unlikely that any respondent

would mix up these two amounts anyway.)

As stated above, a record contains a sign error if it satisfies the following two

conditions:

• at least one edit rule in (3.3) is violated;

• it is possible to satisfy (3.3) by only changing the signs of balance amounts
and/or interchanging returns and costs items other than x0,r and x0,c.

An equivalent way of formulating this is to say that an inconsistent record

10

contains a sign error if the following set of equations has a solution:




x0s0 = x0,r − x0,c
x1s1 = (x1,r − x1,c) t1

...

xmsm = (xm,r − xm,c) tm
xnsn = x0s0 + x1s1 + · · ·+ xn−1sn−1

(s0, . . . , sn; t1, . . . , tm) ∈ {−1, 1}n+1 × {−1, 1}m

(3.4)

Note that in (3.4) the x’s are used as known constants rather than unknown

variables. Thus a different set of equations in (s0, . . . , sn; t1, . . . , tm) is found

for each record.

Moreover, once a solution to (3.4) has been found, it immediately tells us how

to obtain a consistent profit-and-loss account: if sj = −1 then the sign of xj
must be changed, and if tk = −1 then the values of xk,r and xk,c must be
interchanged. It is easy to see that the resulting record satisfies all edit rules

(3.3). Since we are not allowed to interchange x0,r and x0,c, no variable t0 is

present in (3.4).

Example. By way of illustration we set up (3.4) for example (c) from Table 1:




300s0 = −300
100s1 = 100t1

40s2 = −40t2
20s3 = 20t3

−140s4 = 300s0 + 100s1 + 40s2+ 20s3

(s0, s1, s2, s3, s4; t1, t2, t3) ∈ {−1, 1}5 × {−1, 1}3

(3.5)

This system has the following (unique) solution:

(s0, s1, s2, s3, s4; t1, t2, t3) = (−1, 1, 1, 1, 1; 1,−1, 1).

This solution tells us that the value of x0 should be changed from 300 to −300
and that the values of x2,r and x2,c should be interchanged. This correction

indeed yields a fully consistent results block with respect to (3.3), as can be

seen in Table 2. 	

An important question is: does system (3.4) always have a unique solution?

We derive a sufficient condition for uniqueness in appendix A at the end of this

paper. It appears that this condition is usually satisfied; in the data that we

examined the condition holds for over 95 percent of all records.

3.3 A binary linear programming problem

Detecting a sign error in a given record is equivalent to solving the corresponding

system (3.4). Therefore all that is needed to implement the detection of sign

11

errors is a systematic method to solve this system. Before addressing this

point, we write (3.4) in matrix notation to shorten the expressions. Define the

(m+ 2)× (n+ 1)-matrix U by

U =




x0 0 · · · 0 0 · · · 0 0

0 x1 · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...

0 0 · · · xm 0 · · · 0 0

x0 x1 · · · xm xm+1 · · · xn−1 −xn




and define the (m+ 2)× (m+ 1)-matrix V by

V =




x0,r − x0,c 0 · · · 0

0 x1,r − x1,c · · · 0
...

...
. . .

...

0 0 · · · xm,r − xm,c
0 0 · · · 0



.

Note that the bottom row of V consists entirely of zeros. We also define

s = (s0, s1, . . . , sn)
′ and t = (1, t1, . . . , tm)

′. Using this notation, (3.4) can

be rewritten as: 



Us−Vt = 0,
s ∈ {−1, 1}n+1 ,
t ∈ {1} × {−1, 1}m ,

(3.6)

where 0 denotes the (m+ 2)-vector of zeros.

The least sophisticated way of finding a solution to (3.6) would be to simply

try all possible vectors s and t. Since m and n are small in this situation, the

number of possibilities is not very large1 and this approach is actually quite

feasible. However, it is also possible to reformulate the problem as a so-called

binary linear programming problem. This has the advantage that standard

software may be used to implement the method. Moreover we will see presently

that this formulation can be adapted easily to accommodate possible rounding

errors present in the data.

To reformulate the problem, we introduce the following binary variables:

σj =
1−sj
2 , j ∈ {0, 1, . . . , n} ,

τk =
1−tk
2 , k ∈ {1, . . . ,m} .

Finding a solution to (3.6) may now be re-stated as follows:

minimise
∑n
j=0 σj +

∑m
k=1 τk

such that:

U (1− 2σ)−V (1− 2τ) = 0
σ0, . . . ,σn, τ1, . . . , τm ∈ {0, 1} ,

(3.7)

1The actual number of possible vectors is 2m+n+1 − 1, if it has been established beforehand
that the profit-and-loss account is inconsistent.

12

where 1 is a vector of ones, σ = (σ0,σ1, . . . ,σn)
′ and τ = (0, τ1, . . . , τm)

′.

Observe that in this formulation the number of variables sj and tk that are

equal to −1 is minimised, i.e. the solution is searched for that results in the
smallest (unweighted) number of changes being made in the record. Obviously,

if a unique solution to (3.6) exists, then this is also the solution to (3.7). The

binary linear programming problem may be solved by applying a standard

branch and bound algorithm. Since n and m are small, very little computation

time is needed to find the solution.

3.4 Allowing for rounding errors

It often happens that balance edit rules are violated by the smallest possible

difference. For instance, a reported total value is just one or two units smaller

or larger than the sum of the reported item values. We refer to these incon-

sistencies as rounding errors if the absolute difference is no larger than two

units.

In the profit-and-loss account, rounding errors can occur in two ways. Firstly

the pre-tax results may differ slightly from the sum of the balance amounts

(external sum),

x0 + · · ·+ xn−1
= xn, but − 2 ≤ x0 + · · ·+ xn−1 − xn ≤ 2,

and secondly a balance amount may just disagree with the difference between

the reported returns and costs items (internal sum),

xk,r − xk,c
= xk, but − 2 ≤ xk,r − xk,c − xk ≤ 2,

for some k ∈ {0, 1, . . . ,m}.

Rounding errors often occur in conjunction with other errors. In particular

a record might contain a sign error that is obscured by a rounding error.

Column (d) in Table 1 shows an example of such a record. If the method

described in the previous subsection is applied directly, the sign error will not

be detected.

The binary linear programming problem (3.7) can be adapted to take the pos-

sibility of rounding errors into account. This leads to the following problem:

minimise
∑n
j=0 σj +

∑m
k=1 τk

such that:

U (1− 2σ)−V (1− 2τ) ≥ −2
U (1− 2σ)−V (1− 2τ) ≤ 2
σ0, . . . ,σn, τ1, . . . , τm ∈ {0, 1} ,

(3.8)

where 2 is a vector of 2’s and the rest of the notation is used as before.

13

Example. If (3.8) is set up for example (d) from Table 1, we find the following

solution:

(σ0,σ1,σ2,σ3,σ4; τ1, τ2, τ3) = (0, 1, 1, 0, 0; 0, 0, 0).

Recalling that σj = 1 if and only if sj = −1 (and a similar expression for τk
and tk), we conclude that the sign error may be removed by changing the signs

of both x1 and x2. As can be seen in Table 2, this correction indeed gets rid

of the sign error. It does not lead to a fully consistent profit-and-loss account,

however, because there are rounding errors left in the data. To remove these,

we need a separate method. This problem will be discussed in section 5. 	

3.5 Summary

The following plan summarises the correction method for sign errors and inter-

changed returns and costs. The input consists of a record that does not satisfy

(3.3).

1. Determine the matrices U and V and set up the binary linear program-

ming problem (3.8).

2. Solve (3.8). If no solution is possible, then the record does not contain a

sign error. If a solution is found: continue.

3. Replace xj by −xj for every σj = 1 and interchange xk,r and xk,c for

every τk = 1.

If step 3 is performed, the resulting record satisfies (3.3) barring possible round-

ing errors.

14

4 Cumulation errors

4.1 Definition and basic correction method

Table 3 shows three example records that have an inconsistent profit-and-loss

account. (A description of the profit-and-loss account was given in section 3.1.)

Each record contains a variation on a type of error that we will call a cumulation

error. It appears that these respondents have reported intermediate versions

of the final balance amount instead of correct values for the separate balances.

This error occurs persistently in examples (a) and (b). Example (c) is slightly

more complex. Here, most of the balance amounts are correct but a cumulation

error occurs for one of them. To complicate matters further, this respondent

has also interchanged the values of financial revenues and expenditure.

Table 3. Three example profit-and-loss accounts based on data from the struc-

tural business statistics 2001.

variable full name (a) (b) (c)

x0,r operating returns 6, 700 8, 300 6, 900

x0,c operating costs 5, 650 5, 400 6, 150

x0 operating results 1, 050 2, 900 750

x1,r financial revenues 0 0 0

x1,c financial expenditure 0 150 40

x1 operating surplus 1, 050 2, 750 790

x2,r provisions rescinded 0 0 0

x2,c provisions added 0 30 0

x2 balance of provisions 1, 050 2, 720 0

x3,r exceptional income 0 0 0

x3,c exceptional expenses 0 110 0

x3 exceptional result 1, 050 2, 610 0

x4 pre-tax results 1, 050 2, 610 790

We will now describe a method to detect and correct cumulation errors in the

profit-and-loss account automatically. We use some of the notation that was

introduced in section 3.1. To avoid complications we assume throughout this

section that m = n− 1, i.e. all balance amounts are accompanied by a returns
item and a costs item.

Consider the variables xk,r, xk,c and xk, for some k ∈ {1, . . . , n− 1}. Suppose
that the data in a given record do not satisfy the external sum (3.1), nor the

15

Table 4. Correction of cumulation errors occurring in example (b) of Table 3.

variable full name input step 1 step 2 output

x0,r operating returns 8, 300 8, 300 8, 300 8, 300

x0,c operating costs 5, 400 5, 400 5, 400 5, 400

x0 operating results 2, 900 2, 900 2, 900 2, 900

x1,r financial revenues 0 0 0 0

x1,c financial expenditure 150 150 150 150

x1 operating surplus 2, 750 −150 −150 −150

x2,r provisions rescinded 0 0 0 0

x2,c provisions added 30 30 30 30

x2 balance of provisions 2, 720 2, 720 −30 −30

x3,r exceptional income 0 0 0 0

x3,c exceptional expenses 110 110 110 110

x3 exceptional result 2, 610 2, 610 2, 610 −110

x4 pre-tax results 2, 610 2, 610 2, 610 2, 610

kth internal sum (3.2), but the reported amounts do satisfy

xk = xk−1 + xk,r − xk,c. (4.1)

If this is true, then we say that the record contains a cumulation error. The

error may be corrected by replacing the original values of xk,r, xk,c and xk by

x′k,r = xk,r, x′k,c = xk,c, x′k = xk − xk−1, (4.2)

since from (4.1) it is obvious that x′k = x
′
k,r − x′k,c.

By letting k run from 1 to n − 1, all cumulation errors in the profit-and-loss
account may be found. Note that for the method to work correctly, the original

value of xk−1 should be used in (4.1) and (4.2) rather than x′k−1.

Example. Table 4 shows the result when this method is applied to example (b)

of Table 3. In the first step we take k = 1 and obtain for (4.1):

2, 750 = 2, 900 + 0− 150.

Since this equality holds true, a cumulation error is detected. The error is

corrected by taking

x′1,r = 0, x′1,c = 150, x′1 = 2, 750− 2, 900 = −150.

The other columns of Table 4 are obtained analogously. 	

16

4.2 Allowing for sign errors

It is not uncommon for a record to contain a cumulation error as well as a sign

error (e.g. example (c) in Table 3). The method described in section 4.1 can

be modified to detect these errors as well. We assume that the record at hand

does not satisfy the external sum, nor the kth internal sum, and that xk−1
= 0.
Instead of (4.1), it should be checked whether

λxk = xk−1 + µ (xk,r − xk,c) (4.3)

holds for any combination (λ, µ) ∈ {−1, 1}2. This actually yields four equalities.
If our record satisfies any of these four equalities, it is deduced that the record

contains a cumulation error. The case λ = −1 then corresponds to a cumulation
error in conjunction with a sign error in xk, and the case µ = −1 corresponds
to a cumulation error in conjunction with interchanged values of xk,r and xk,c.

Note that the case λ = µ = 1 coincides with (4.1) above.

If an error is detected through (4.3), it may then be corrected deductively by

replacing the original values of xk,r, xk,c and xk by the new values

x′k,r = 1+µ
2 xk,r +

1−µ
2 xk,c,

x′k,c = 1−µ
2 xk,r +

1+µ
2 xk,c,

x′k = λxk − xk−1.
(4.4)

Note that x′k,r = xk,r if µ = 1 and x
′
k,r = xk,c if µ = −1, and similar expressions

for x′k,c. It follows from (4.3) that x′k = x
′
k,r − x′k,c.

Example. In example (c) of Table 3 we find that

x1 = 790 = 750− (−40) = x0 − (x1,r − x1,c) ,

i.e. (4.3) holds for λ = 1, µ = −1. Using (4.4) we obtain the new values

x′1,r = x1,c = 40, x′1,c = x1,r = 0 and x′1 = x1 − x0 = 40. This correction

removes both the cumulation error and the sign error. 	

We proceed to show that, under the natural assumptions that xk−1
= 0 and

xk
= xk,r − xk,c, the concept of a cumulation error as suggested by (4.3) is
well-defined, because (4.3) can only hold for at most one combination (λ, µ) ∈
{−1, 1}2. To proof this, we write (4.3) as

λa = c+ µb, (4.5)

where a, b, c are constants and it is assumed that c
= 0 and a
= b. First of all
if it happens that b = 0, (4.5) reduces to λa = c, which clearly has at most one

solution for λ.2 A similar argument deals with the case a = 0. (Note that the

2Strictly speaking the value of µ may be chosen freely and there is no unique solution in this

sense. Since xk,r = xk,c, (4.4) yields the same x′k,r and x
′
k,c for both choices of µ, so these are

determined uniquely. The point is that the value of µ is not very interesting in this degenerate

case.

17

case a = b = 0 is excluded by our assumptions.) Therefore we assume from

now on that a
= 0 and b
= 0. Suppose there are two different combinations of
λ ∈ {−1, 1} and µ ∈ {−1, 1} such that (4.5) holds, say (λ1, µ1) and (λ2, µ2). It
follows that

λ1a− µ1b = λ2a− µ2b,

or, equivalently,

(λ1 − λ2)a = (µ1 − µ2) b. (4.6)

Since a and b are non-zero and since at least one of λ1 − λ2 and µ1 − µ2 is
non-zero, it follows that both these terms must be non-zero, that is: λ1 = −λ2
and µ1 = −µ2. Thus (4.6) reduces to

λ1a = µ1b.

This means that either a = b or a = −b. The former is prohibited by our
assumptions, so we find that a = −b and λ1 = −µ1. However, if a = −b then
(4.5) can be written as

(λ+ µ)a = c.

Plugging in our supposed solution λ1 = −µ1 thus yields c = 0. This flatly

contradicts our assumption that c is non-zero. Hence there exists at most one

combination (λ, µ) ∈ {−1, 1}2 such that (4.5) holds.

4.3 Allowing for rounding errors

As with sign errors, it often happens that cumulation errors occur in conjunction

with rounding errors. Thus the deductive correction method of section 4.2 will

be more effective if it takes these rounding errors into account. This can be

achieved quite straightforwardly.

As a generalisation of (4.3), we can check whether there exists any combination

(λ, µ) ∈ {−1, 1}2 such that

−2 ≤ λxk − xk−1 − µ (xk,r − xk,c) ≤ 2 (4.7)

holds. If this is indeed the case, the record under scrutiny contains a cumulation

error. If λ or µ equals −1 it also contains a sign error, and if the expression
between the two inequality signs is non-zero it also contains a rounding error.

In either case, the cumulation error may be corrected deductively by taking

the new values from (4.4). This correction also gets rid of the sign error, as

before. It does not remove the rounding error, however, but it does make the

rounding error visible so that it may removed by another method. Deriving

such a method will be the subject of section 5.

18

4.4 Summary

The following plan summarises the correction method for cumulation errors.

The input consists of a record x for which −2 ≤ x0 + · · ·+ xn−1 − xn ≤ 2 does
not hold (i.e. the external sum is violated and this can not be explained as a

rounding error).

1. Define x′0 = x0, x
′
0,r = x0,r, x

′
0,c = x0,c and x

′
n = xn. Let k = 1.

2. If the record satisfies −2 ≤ xk − (xk,r − xk,c) ≤ 2 and/or if xk−1 = 0:

define x′k = xk, x′k,r = xk,r and x′k,c = xk,c, and continue to step 4.

Otherwise: continue to step 3.

3. (a) Check whether there exists any combination (λ, µ) ∈ {−1, 1}2 such
that (4.7) holds. If not: continue to step 4.

(b) Compute x′k, x
′
k,r and x

′
k,c from (4.4), for (λ, µ) found in step 3a.

4. Let k = k + 1. If k = n: stop. Otherwise: return to step 2.

The output consists of a record x′ that does not contain any cumulation errors.

This method requires that m = n − 1, i.e. all balance amounts in the profit-
and-loss account are accompanied by a returns item and a costs item.

19

5 Rounding errors

5.1 Introduction

In the previous sections we briefly touched on the subject of very small in-

consistencies with respect to balance edit rules, e.g. the situation that a total

value is just one unit smaller or larger than the sum of the values of the com-

ponent items. We call such inconsistencies rounding errors, because they may

be caused by values being rounded off to multiples of 1, 000 Euros. It is not

straightforward to obtain a so-called consistent rounding, i.e. to make sure that

the rounded off values have the same relation as the original values. For exam-

ple, if the terms of the sum 2.7+7.6 = 10.3 are rounded off to natural numbers

the ordinary way, the additivity is destroyed: 3+8
= 10. Several algorithms for
consistent rounding are available from the literature (see e.g. Bakker (1997) and

Salazar-González et al. (2004)), but obviously very few respondents are aware

of these methods or indeed inclined to use them while filling in a questionnaire.

Rounding errors may also be introduced when correcting uniform 1, 000-errors,

as the following example demonstrates. The third column of Table 5 shows

(part of) a record that contains a uniform 1, 000-error. This error is detected

through the use of the reference data shown in the second column. To correct

the error, all original values are divided by 1, 000 and rounded to the nearest

integer. Note that the original (erroneous) values conform to the edit rule

x1+ x2 = x3, whereas the corrected values do not. Again, this problem can be

avoided by using a controlled rounding method after dividing by 1, 000.

Table 5. Correcting a uniform 1, 000-error, introducing a rounding error.

variable reference data original data corrected data

x1 3, 331 3, 148, 249 3, 148

x2 709 936, 442 936

x3 4, 040 4, 084, 691 4, 085

By their nature, rounding errors have virtually no influence on aggregates, and

in this sense the choice of method to correct them is unimportant. However,

as we mentioned in section 1, the complexity of the automatic error localisa-

tion problem in SLICE increases rapidly as the number of violated edit rules

becomes larger, irrespective of the magnitude of these violations. Thus a rec-

ord containing many rounding errors and very few ‘real’ errors might not be

suitable for automatic editing by means of SLICE and might have to be edited

manually. This is clearly a waste of resources. It is therefore advantageous to

resolve all rounding errors in the early stages of the editing process, for instance

immediately after the correction of obvious inconsistencies.

20

In the remainder of this section we describe a heuristic method to resolve round-

ing errors in business survey data. We call this method a heuristic method

because it does not return a solution that is ‘optimal’ in some sense, e.g. that

the number of changed variables or the total change in values is minimised.

The rationale of using such a method is that the adaptations needed to resolve

rounding errors are very small, and that it is therefore not necessary to use a

sophisticated and potentially time-consuming search algorithm.

Although the idea behind the method is quite simple, we need some results

from matrix algebra to explain why it works. The necessary background will

be summarized in section 5.2.

5.2 Something about matrices

5.2.1 General concepts

The vectors v1, . . . ,vk are called linearly independent if there do not exist num-

bers λ1, . . . ,λk, not all equal to 0, such that λ1v1+ · · ·+λkvk = 0. Otherwise,
the vectors are called linearly dependent.

It can be shown that for any matrix the maximum number of linearly independ-

ent columns and the maximum number of linearly independent rows are equal.

This common number is referred to as the rank of the matrix. If all columns

or rows are linearly independent, the matrix is said to be of full rank.

A linear system of m equations in n unknowns may be expressed as Ax = b,

where the m× n-matrix A and the m-vector b are known and the n-vector x

is to be found. When m = n, A is called a square matrix. If A is square and

there exists a so-called inverse matrix A−1 such that the unique solution to

Ax = b is given by x = A−1b, irrespective of the choice of b, then A is called

invertible. A non-invertible square matrix is called singular. A necessary and

sufficient condition for a square matrix to be invertible is that it be of full rank.

To every square matrix A there is attached a number called the determinant,

denoted by detA. The determinant of a 1× 1-matrix is simply the value of its
single element. The determinant of an n× n-matrix (n > 1) may be defined as
a weighted sum of smaller determinants:

detA =
n∑

i=1

(−1)i+jaij detCij , (5.1)

where Cij denotes the (n− 1)× (n− 1)-matrix found by removing the ith row
and jth column of A. Note that in (5.1) a fixed column is chosen for removal

and the sum runs over all rows of A. The outcome of this sum appears to

depend on the choice of the jth column, but it can be shown that this is not the

case. Alternatively, the determinant may be calculated by choosing a fixed row

21

and summing over all columns analogously to (5.1); this also produces the same

value. Once this has been established, it is easy to see that detA′ = detA,

where A′ denotes the transpose of A. The following is a very useful matrix

property: a square matrix is invertible (that is: of full rank) if and only if its

determinant is non-zero.

The coefficient (−1)i+j detCij in (5.1) is called the cofactor of the element aij .
By taking the transpose of the matrix of cofactors of elements of A, we obtain

the so-called adjoint matrix of A, denoted by A†:
(
A†
)
ij
= (−1)i+j detCji. It

can be shown that for any invertible matrix A,

A−1 =
1

detA
A†. (5.2)

Cramer’s Rule is a theorem named after the Swiss mathematician Gabriel

Cramer (1704-1752), which goes as follows. Let A = [aij] be an invertible

n × n-matrix. The unique solution x = [x1, . . . , xn]′ to the system Ax = b is

given by:

xk =
detBk
detA

, k = 1, . . . , n, (5.3)

where Bk denotes the matrix found by replacing the kth column of A by b =

[b1, . . . , bn]
′. Cramer’s Rule is actually another way of expressing (5.2).

To prove Cramer’s Rule, we remark that Ax = b can be written as

x1a1 + · · ·+ xkak − b+ · · ·+ xnan = 0,

where a1, . . . ,an denote the columns of A. Thus a1, . . . , xkak − b, . . . ,an are
linearly dependent vectors, and the determinant of the matrix found by repla-

cing the kth column of A by the vector xkak − b must be 0. Hence we deduce
from (5.1) that

0 =
n∑

i=1

(−1)i+k (xkaik − bi) detCik

= xk

n∑

i=1

(−1)i+kaik detCik −
n∑

i=1

(−1)i+kbi detCik

= xk detA− detBk.

Since A is invertible, detA
= 0. Cramer’s Rule now follows.

Proofs of all other observations made in this subsection may be found in most

introductory books on linear algebra, such as Fraleigh & Beauregard (1995)

and Harville (1997).

5.2.2 Unimodular and totally unimodular matrices

A square matrix is called unimodular if its determinant is equal to 1 or −1.
The following property is an immediate consequence of Cramer’s Rule.

22

Property 5.1 If A is an integer-valued unimodular matrix and b is an integer-

valued vector, then the solution to the system Ax = b is also integer-valued.

A matrix for which the determinant of every square submatrix is equal to 0, 1

or −1 is called totally unimodular. That is to say, every square submatrix of
a totally unimodular matrix is either singular or unimodular. Clearly, in order

to be totally unimodular a matrix must have all elements equal to 0, 1 or −1.
We stress that a totally unimodular matrix need not itself be square.

A stronger version of Property 5.1 may be proved for the submatrices of a

totally unimodular matrix.

Property 5.2 Let B be a square submatrix of a totally unimodular matrix. If

B is invertible, all elements of B−1 are 0, 1 or −1.

Proof. We use the adjoint matrix B†. Since | detB| = 1 and all cofactors are
equal to 0, 1 or −1, the property follows immediately from equation (5.2). �

Appendix B contains some further results on total unimodularity that may

be used to determine whether a given matrix is totally unimodular without

computing determinants.

5.3 The scapegoat algorithm

5.3.1 Basic idea

When the survey variables are denoted by the vector x = [x1, . . . , xv]
′, the

balance edit rules can be written as a linear system

Rx = a, (5.4)

where each row of the r × v-matrix R defines an edit rule and each column

corresponds to a survey variable. The vector a = [a1, . . . , ar]
′ contains any

constant terms that occur in the edit rules. Denoting the ith row of R by r′i, an

edit rule is violated when |r′ix−ai| > 0. The inconsistency is called a rounding
error when 0 < |r′ix−ai| ≤ δ, where δ > 0 is small. In this paper we take δ = 2.

Similarly, the edit rules that take the form of a linear inequality can be written

as

Qx ≥ b, (5.5)

where each edit rule is defined by a row of the q × v-matrix Q together with a

constant from b = [b1, . . . , bq]
′. We assume until section 5.3.4 that only balance

edit rules are given.

The idea behind the heuristic method is as follows. For each record containing

rounding errors, a set of variables is selected beforehand. Next, the rounding

23

errors are resolved by only adjusting the values of these selected variables.

Hence the name scapegoat algorithm seems appropriate.3 In fact, the algorithm

performs the selection in such a way that exactly one choice of values exists

for the selected variables such that all rounding errors are resolved. Different

variables are selected for each record to minimise the effect of the adaptations

on aggregates.

It is assumed that the r× v-matrix R satisfies r ≤ v and rank(R) = r, that is:
the number of variables should be at least as large as the number of restrictions

and no redundant restrictions may be present. Clearly, these are very mild

assumptions. Additionally, the scapegoat algorithm becomes simpler if R is a

totally unimodular matrix. So far we have found that matrices of balance edit

rules used for structural business statistics at Statistics Netherlands are always

of this type. A similar observation is made in de Waal (2002, §3.4.1).

An inconsistent record x is given, possibly containing both rounding errors and

other errors. In the first step of the scapegoat algorithm, all rows of R for

which |r′ix− ai| > 2 are removed from the matrix and the associated constants

are removed from a. We denote the resulting r0 × v-matrix by R0 and the
resulting r0-vector of constants by a0. It may happen that the record satisfies

the remaining balance edit rules R0x = a0, because it does not contain any

rounding errors. In that case the algorithm stops here.

It is easy to see that if R satisfies the assumptions above, then so does R0.

Hence rank(R0) = r0 and R0 has r0 linearly independent columns. The r0
leftmost linearly independent columns may be found by putting the matrix

in row echelon form through Gaussian elimination, as described in Fraleigh &

Beauregard (1995, §2.2), or alternatively by performing a QR-decomposition

with column pivoting, as discussed in Golub & van Loan (1996, §5.4). (How

these methods work is irrelevant for our present purpose.) Since we want the

choice of scapegoat variables and hence of columns to vary between records,

a random permutation of columns is performed beforehand, yielding R̃0. The

variables of x are permuted accordingly to yield x̃.

Next, R̃0 is partitioned into two submatrices R1 and R2. The first of these is

an r0 × r0-matrix that contains the linearly independent columns, the second
is an r0 × (v − r0)-matrix containing all other columns. The vector x̃ is also
partitioned into subvectors x1 and x2, containing the variables associated with

the columns of R1 and R2, respectively. Thus

R̃0x̃ = a0 becomes [R1 R2]

[
x1

x2

]
= a0.

At this point, the variables from x1 are selected as scapegoat variables and the

variables from x2 remain fixed. Therefore the values of x2 are filled in from the
3The name “scapegoat algorithm” was coined by Léander Kuijvenhoven (Statistics Nether-

lands).

24

original record and we are left with the system

R1x1 = a0 −R2x2 ≡ c, (5.6)

where c is a vector of known constants.

By construction the square matrix R1 is of full rank and therefore invertible.

Thus (5.6) has the unique solution x̂1 = R−11 c. In general this solution might

contain fractional values, whereas most business survey variables are restricted

to be integer-valued. If this is the case, a controlled rounding algorithm similar

to the one described in Salazar-González et al. (2004) can be applied to the

values of [x̂′1,x
′
2]
′ to obtain an integer-valued solution to R0x = a0. Note

however that this is not possible without slightly changing the value of at least

one variable from x2 too.

If R happens to be a totally unimodular matrix, this problem does not occur.

In that case the determinant of R1 is equal to −1 or 1 and we know from

Property 5.1 that x̂1 is always integer-valued. In the remainder of this paper

we assume that R is indeed totally unimodular.

5.3.2 An example

To illustrate the scapegoat algorithm we work out a small-scale example. Sup-

pose a dataset contains records of eleven variables x1, . . . , x11 that should con-

form to the following five balance edit rules:

x1 + x2 = x3

x2 = x4

x5 + x6 + x7 = x8

x3 + x8 = x9

x9 − x10 = x11





(5.7)

These edit rules may be written as Rx = 0, with x = [x1, . . . , x11]
′ and

R =




1 1 −1 0 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 −1 0 0 0

0 0 1 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1 −1



. (5.8)

Thus a = 0 here. It is easily established that rank(R) = 5. Moreover, we

demonstrate in appendix B that R is totally unimodular.

We are given the following record that is inconsistent with respect to (5.7):

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

12 4 15 4 3 1 8 11 27 41 −13

25

This record violates all edit rules, except for x2 = x4. In each instance the

violation is small enough to qualify as a rounding error. Thus in this example

R0 is identical to R.

A random permutation is applied to the elements of x and the columns of R.

Suppose that the permutation is given by

1→ 11, 2→ 8, 3→ 2, 4→ 5, 5→ 10, 6→ 9,

7→ 7, 8→ 1, 9→ 4, 10→ 3, 11→ 6.

This yields the following result:

R̃ =




0 −1 0 0 0 0 0 1 0 0 1

0 0 0 0 −1 0 0 1 0 0 0

−1 0 0 0 0 0 1 0 1 1 0

1 1 0 −1 0 0 0 0 0 0 0

0 0 −1 1 0 −1 0 0 0 0 0



.

It so happens that the first five columns of R̃ are linearly independent. We

obtain:

R1 =




0 −1 0 0 0

0 0 0 0 −1
−1 0 0 0 0

1 1 0 −1 0

0 0 −1 1 0



, R2 =




0 0 1 0 0 1

0 0 1 0 0 0

0 1 0 1 1 0

0 0 0 0 0 0

−1 0 0 0 0 0



.

The scapegoat variables are those that correspond with the columns of R1,

that is to say x8, x3, x10, x9 and x4. For the remaining variables we fill in the

original values from the record to calculate the constant vector c:

c = −R2




x11

x7

x2

x6

x5

x1




= −




0 0 1 0 0 1

0 0 1 0 0 0

0 1 0 1 1 0

0 0 0 0 0 0

−1 0 0 0 0 0







−13
8

4

1

3

12




=




−16
−4
−12
0

−13



.

We obtain the following system in x1:

R1x1 =




0 −1 0 0 0

0 0 0 0 −1
−1 0 0 0 0

1 1 0 −1 0

0 0 −1 1 0







x8

x3

x10

x9

x4



=




−16
−4
−12
0

−13



= c. (5.9)

Rather than explicitly computing the inverse matrix of R1, we observe by re-

arranging the rows and columns of R1 (and also the corresponding elements of

26

c and x1) that (5.9) is equivalent to:



−1 0 1 0 0

0 −1 0 0 0

0 0 −1 1 1

0 0 0 −1 0

0 0 0 0 −1







x10

x4

x9

x8

x3



=




−13
−4
0

−12
−16



. (5.10)

(5.10) has the so-called upper triangular form and the solution may be read

off by applying back substitution (Golub & van Loan (1996, §3.1) or Harville

(1997, §11.8)). Working from back to front we find: x̂3 = 16, x̂8 = 12, x̂9 = 28,

x̂4 = 4 and x̂10 = 41.

When the original values of the variables in x1 are replaced by these new values,

the record becomes consistent with respect to (5.7):

x1 x2 x̂3 x̂4 x5 x6 x7 x̂8 x̂9 x̂10 x11

12 4 16 4 3 1 8 12 28 41 −13

We remark that in this example it was not necessary to change the value of

every variable in x1. In particular, x4 and x10 have retained their original

values.

5.3.3 On the size of the adjustments

The solution vector x̂1 is constructed by the scapegoat algorithm without any

explicit use of the original vector x1. Therefore it is not completely trivial that

the adjusted values remain close to the original values, which is obviously what

we would hope for. We will now derive an upper bound on the size of the

adjustments, under the assumption that R is totally unimodular.

The maximum norm of a vector v = [v1, . . . , vn]
′ is defined as

|v|∞ = max
j=1,...,n

|vj|.

Associated to this vector norm is a matrix norm (Stoer & Bulirsch (2002, §4.4)):

||A||∞ = max
i=1,...,m

n∑

j=1

|aij |,

with A = [aij] any m× n-matrix. It holds that

|Av|∞ ≤ ||A||∞|v|∞, (5.11)

for every m× n-matrix A and every n-vector v.4

4To see this, note that

|Av|∞ = max
i=1,...,m

∣∣∣∣∣
n∑

j=1

aijvj

∣∣∣∣∣ ≤ max
i=1,...,m

n∑

j=1

|aij | · |vj | ≤ ||A||∞|v|∞.

27

We now turn to the scapegoat algorithm. By construction x̂1 satisfiesR1x̂1 = c.

The original vector x1 satisfies R1x1 = c∗, with c∗
= c. Thus

x̂1 − x1 = R−11 (c− c∗) . (5.12)

It follows from (5.11) and (5.12) that

|x̂1 − x1|∞ ≤ ||R−11 ||∞|c− c∗|∞ ≤ r0|c− c∗|∞, (5.13)

where the last inequality is found by observing that Property 5.2 implies

||R−11 ||∞ = max
i=1,...,r0

r0∑

j=1

|
(
R−11

)
ij
| ≤ r0.

We write x̂ = [x̂′1,x
′
2]
′. By

c− c∗ = R1x̂1 −R1x1
= R1x̂1 +R2x2− a0 − (R1x1 +R2x2 − a0)

= R̃0x̂− a0 − (R0x− a0)

= − (R0x− a0)

we see that

|c− c∗|∞ = |R0x− a0|∞ ∈ {1, 2} .

Plugging this into (5.13) we find that

|x̂1 − x1|∞ ≤ 2r0. (5.14)

This upper bound on the maximum difference between elements of x̂1 and x1
shows that the solution found by the scapegoat algorithm cannot be arbitrarily

far from the original record. The fact that (5.14) is proportional to the order

of R1 suggests that we should expect ever larger adjustments as the number

of balance edit rules increases, which is somewhat worrying. In practice we

find much smaller adjustments than 2r0, though. E.g. in the example from

section 5.3.2 the maximal absolute difference according to (5.14) equals 10. In

actual fact no value was changed by more than one unit.

Example. It is possible to construct a pathological example for which upper

bound (5.14) becomes exact. Let the balance edit rules be given by Rx = 0,

with R the following r × (r + 1)-matrix:

R =




1 1 1 · · · 1 1 0

0 1 0 · · · 0 0 1

0 0 1 · · · 0 0 1
...
...
...
. . .

...
...

...

0 0 0 · · · 1 0 1

0 0 0 · · · 0 1 −1




.

28

Let the inconsistent record be

x =




−4(r − 1) + 2
4
...

4

0

−2




.

Note that Rx = [−2, 2, . . . , 2]′, so all edit rules are violated and all violations
qualify as rounding errors. If x1, x2, . . . , xr are chosen as scapegoat variables,

the matrix R1 consists of the first r columns of R. It is easy to see that

R−11 =




1 −1 −1 · · · −1
0 1 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1



.

Moreover, c = −R2xr+1 = [0, 2, . . . , 2,−2]′, and

R−11 c =




1 −1 −1 · · · −1
0 1 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1







0

2
...

2

−2



=




−2(r − 3)
2
...

2

−2



.

The adjusted record is therefore

x̂ =




−2(r − 3)
2
...

2

−2
−2




,

which, as the reader may verify, indeed satisfies all edit rules. Note that

x̂1 − x1 = −2(r − 3) + 4(r − 1)− 2 = 2r,

which is the upper bound given by (5.14). 	

We remark that even in this contrived example most adjustments are quite

small: apart from x1 no scapegoat variable is adjusted by more than two

units. A more interesting view on the size of the adjustments may therefore be

provided by the quantity
1

r0

r0∑

i=1

| (x̂1 − x1)i |,

29

which measures the average size of the adjustments, rather than the maximum.

Starting from (5.12), we see that

| (x̂1 − x1)i | =

∣∣∣∣∣∣

r0∑

j=1

(
R−11

)
ij
(c− c∗)j

∣∣∣∣∣∣
≤

r0∑

j=1

|
(
R−11

)
ij
| · | (c− c∗)j |.

Using again that |c− c∗|∞ ≤ 2, we find

1

r0

r0∑

i=1

| (x̂1 − x1)i | ≤
2

r0

r0∑

i=1

r0∑

j=1

|
(
R−11

)
ij
| ≡ 2γ(R1), (5.15)

where γ(R1) = 1
r0

∑r0
i=1

∑r0
j=1 |

(
R−11

)
ij
|. This gives an upper bound on the

average adjustment size that is easy to evaluate.

Suppose that a set of balance edit rules (5.4) is given. Restricting ourselves to

the case r0 = r, we can compute γ(R1) for various invertible r× r-submatrices
of R to assess the magnitude of the upper bound in (5.15). It is shown at the

end of appendix B that there exist exactly det(RR′) of these submatrices. In

practice, this number is very large and it is infeasible to compute γ(R1) for all

matrices R1. In that case we can take a random sample of reasonable size, by

repeatedly performing the part of the scapegoat algorithm that constructs an

invertible submatrix.

Example. For the 5× 11-matrix from section 5.3.2, det(RR′) = 121, so R has

121 invertible 5 × 5-submatrices. Since this number is not too large, we have
evaluated γ(R1) for all these matrices. The mean value of γ(R1) turns out to

be about 1.68, with a standard deviation of 0.39. Thus according to (5.15) the

average adjustment size is bounded on average by 3.4, which is still somewhat

higher than what we found in our example. 	

In section 5.4 we look at the adjustments that occur in a real-world example.

These turn out to be quite small.

We remark that for records that violate R0x = a0 by no more than one unit

per edit rule, the factor 2 in (5.14) and (5.15) may be replaced by 1 to obtain

more accurate upper bounds.

5.3.4 Critical variables

In addition to balance edit rules, business survey variables usually have to

satisfy a large number of edit rules that take the form of linear inequalities.

For instance, it is very common that most variables are restricted to be non-

negative. The scapegoat algorithm as described above does not take this into

account. A non-negative variable might therefore be changed by the algorithm

from 0 to −1, resulting in a new violation of an edit rule. We will now extend
the algorithm to prevent this.

30

Suppose that in addition to the balance edit rules (5.4), the data also have to

satisfy the inequalities (5.5). For a given record, we call a variable critical if

it occurs in an inequality that (almost) becomes an exact equality when the

current values of the survey variables are filled in. That is to say:

xj is a critical variable ⇔ qij
= 0 and 0 ≤ q′ix− bi ≤ εi for some i, (5.16)

where q′i denotes the i
th row of Q and εi marks the margin we choose for the ith

restriction. As a particular case, xj is called critical if it must be non-negative

and currently has a value between 0 and εi(j), with i(j) the index of the row

in Q corresponding to the non-negativity constraint for xj . To prevent the

violation of edit rules in (5.5), no critical variable should be selected for change

during the execution of the scapegoat algorithm.

A way to achieve this works as follows: rather than randomly permuting all vari-

ables (and all columns of R0), two separate permutations should be performed

for the non-critical and the critical variables. The permuted columns associ-

ated with the non-critical variables are then placed to the left of the columns

associated with the critical variables. This ensures that linearly independent

columns are found among those that are associated with non-critical variables,

provided the record contains a sufficient number of non-critical variables. In

practice this is typically the case, because the number of survey variables is

much larger than the number of balance edit rules.

If a record contains many critical variables, some of these might still be selected

as scapegoat variables. This is not necessarily a problem, because usually not

all scapegoat variables are changed by the algorithm. We can build in a check

at the end of the algorithm that rejects the solution if a new violation of an

edit rule from (5.5) is detected. It then seems advantageous to let the record

be processed again, because a different permutation of columns may yield a

feasible solution after all. To prevent the algorithm from getting stuck, the

number of attempts should be maximised by a preset constant K. If no feasible

solution has been found after K attempts, the record remains untreated.

Good values of εi and K have to be determined in practice. However, in our

opinion not too much effort should be put into this, because these parameters

only affect a limited number of records. In the real-world example discussed in

section 5.4 we found only a handful of infeasible solutions when εi = 0 for all i.

5.3.5 Exceptional variables

In practice the data may contain some variables that should not be changed by

the scapegoat algorithm at all. An example of such a variable in the structural

business statistics is number of employees. This variable occurs in a balance

edit rule that is often inconsistent because of a very small violation, but this

31

violation cannot be the result of inconsistent rounding; this variable is asked as

a number, not as a multiple of 1, 000 Euros. Moreover the impact of changing

the number of employees to suit the balance edit rule can be considerable,

particularly for very small companies. Therefore at the start of the editing

process we prefer to leave this inconsistency as it is, to be resolved by either a

subject-matter specialist or SLICE.

This can be achieved by removing the balance edit rules concerning these excep-

tional variables from R. The variables should not be removed from x however,

as they may also occur in edit rules in (5.5). (E.g. the number of employees

times a constant is used to maximise the total labour costs.) The values of the

exceptional variables therefore play a rôle in determining the critical variables.

Note that it is not necessary to remove the exceptional variables from x anyway,

as the columns in the new version of R that correspond with these variables

contain only zeros.

5.3.6 Summary

The following plan summarises the scapegoat algorithm. The input consists of

an inconsistent record x (v variables), a set of r balance edit rules Rx = a,

a set of q inequalities Qx ≥ b and parameters εi (i = 1, . . . , q) and K. Edit

rules concerning exceptional variables (as described in section 5.3.5) have been

removed from Rx = a beforehand.

1. (a) Remove all edit rules for which |r′ix−ai| > 2. The remaining system
is denoted as R0x = a0. The number of rows in R0 is called r0. If

R0x = a0 holds: stop.

(b) Determine the critical variables according to (5.16).

2. (a) Perform random permutations of the critical and non-critical vari-

ables separately. Then permute the corresponding columns ofR0 the

same way. Put the non-critical variables and their columns before

the critical variables and their columns.

(b) Determine the r0 leftmost linearly independent columns in the per-

muted matrix R̃0. Together, these columns are a unimodular matrix

R1 and the associated variables form a vector x1 of scapegoat vari-

ables. The remaining columns are a matrix R2 and the associated

variables form a vector x2.

(c) Fix the values of x2 from the record and compute c = a0 −R2x2.

3. Solve the system R1x1 = c.

4. Replace the values of x1 by the solution just found. If the resulting record

does not violate any new edit rules from Qx ≥ b, we are done. If it does,

32

return to step 2a, unless this has been the Kth attempt. In that case the

record is not adjusted.

In this description it is assumed that R is totally unimodular. Methods to test

this assumption in practice are given in appendix B.

5.4 A real-world application

The scapegoat algorithm has been tested using data from the wholesale struc-

tural business statistics of 2001. There are 4, 725 records containing 97 variables

each. These variables should conform to a set of 28 balance edit rules and 120

inequalities, of which 92 represent non-negativity constraints. After exclusion

of edit rules that affect exceptional variables, 26 balance edit rules remain. The

resulting 26 × 97-matrix R is totally unimodular, as can be determined very

quickly5 using the reduction method described in appendix B.

We used an implementation of the algorithm in S-Plus to treat the data. The

parameters used were εi = 2 (i = 1, . . . , 120) and K = 10. The total computa-

tion time on an ordinary desktop PC was less than three minutes.

Table 6. Results of applying the scapegoat algorithm to the wholesale data.

number of records 4,725

number of variables per record 97

number of adjusted records 3,176

number of adjusted variables 13,531

number of violated edit rules (before) 34,379

balance edit rules 26,791

inequalities 7,588

number of violated edit rules (after) 23,054

balance edit rules 15,470

inequalities 7,584

Table 6 summarises the results of applying the scapegoat algorithm. No new

violations of inequalities were found. In fact, Table 6 shows that the adjusted

data happen to satisfy four additional inequalities.

According to (5.14) the size of the adjustments made by the algorithm is the-

oretically bounded by 2× 26 = 52, which is rather high. A random sample of

10, 000 invertible 26× 26-submatrices of R was drawn to evaluate (5.15). The

sample mean of γ(R1) is about 1.89, with a standard deviation of 0.27. Thus

the average adjustment size is bounded on average by 3.8. We remark that

5Note that it would be practically impossible to determine whether R is totally unimodular

just by computing all the relevant determinants.

33

this value is only marginally higher than the one obtained for the much smaller

restriction matrix from section 5.3.2.

Table 7 displays the adjustment sizes that were actually found for the wholesale

data. These turn out to be very reasonable.

Table 7. Distribution of the adjustments (in absolute value).

magnitude frequency

1 11,953

2 1,426

3 134

4 12

5 4

6 2

34

References

Bakker, T. (1997). Rounding in Tables. Report, Statistics Netherlands.

Camion, P. (1965). Characterization of Totally Unimodular Matrices. Proceed-

ings of the American Mathematical Society, 16, 1068—1073.

de Jong, A. (2002). Uni-Edit: Standardized Processing of Structural Business

Statistics in The Netherlands. Paper presented at the UN/ECEWork Session

on Statistical Data Editing, 27-29 May 2002, Helsinki, Finland.

de Waal, T. (2002). Algorithms for Automatic Error Localisation and Modi-

fication. Paper presented at the UN/ECE Work Session on Statistical Data

Editing, 27-29 May 2002, Helsinki, Finland.

de Waal, T. (2003). A Simple Branching Scheme for Solving the Error Local-

isation Problem. Discussion paper 03010, Statistics Netherlands.

de Waal, T. & Quere, R. (2003). A Fast and Simple Algorithm for Automatic

Editing in Mixed Data. Journal of Official Statistics, 19, 383—402.

Eurostat (2007). Recommended Practices for Editing and Imputation in Cross-

Sectional Business Surveys. Manual prepared by ISTAT, CBS and SFSO.

Fellegi, I. P. & Holt, D. (1976). A Systematic Approach to Automatic Edit and

Imputation. Journal of the American Statistical Association, 71, 17—35.

Fraleigh, J. B. & Beauregard, R. A. (1995). Linear Algebra. Addison-Wesley,

third edition.

Golub, G. H. & van Loan, C. F. (1996). Matrix Computations. The Johns

Hopkins University Press, third edition.

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective.

Springer, New York.

Heller, I. & Tompkins, C. B. (1956). An Extension of a Theorem of Dantzig’s.

In H. W. Kuhn and A. W. Tucker (Ed.), Linear Inequalities and Related

Systems (pp. 247—254). Princeton University Press, New Jersey.

Hoogland, J. (2006). Selective Editing using Plausibility Indicators and SLICE.

In Statistical Data Editing, Volume No. 3: Impact on Data Quality (pp. 106—

130). United Nations, New York and Geneva.

Raghavachari, M. (1976). A Constructive Method to Recognize the Total Uni-

modularity of a Matrix. Zeitschrift für Operations Research, 20, 59—61.

Salazar-González, J. J., Lowthian, P., Young, C., Merola, G., Bond, S., &

Brown, D. (2004). Getting the Best Results in Controlled Rounding with the

35

Least Effort. In J. Domingo-Ferrer and V. Torra (Ed.), Privacy in Statistical

Databases (pp. 58—72). Springer, Berlin.

Stoer, J. & Bulirsch, R. (2002). Introduction to Numerical Analysis. Springer,

New York, third edition.

Tamir, A. (1976). On Totally Unimodular Matrices. Networks, 6, 373—382.

36

A Uniqueness of the solution to (3.4)

In this appendix to section 3 we derive a sufficient condition for (3.4) to have

at most one solution. We begin by slightly simplifying the notation. Instead of

(3.4) we look at the following system:




a0s0 = b0

a1s1 = b1t1
...

amsm = bmtm

ansn = a0s0 + a1s1 + · · ·+ an−1sn−1
(s0, . . . , sn; t1, . . . , tm) ∈ {−1, 1}n+1 × {−1, 1}m

(A.1)

We now proof the following Lemma.

Lemma A.1 Let n ≥ 2 and 0 ≤ m ≤ n − 1. Suppose that a0, a1, . . . , an are
all non-zero. If there do not exist λ0,λ1, . . . ,λn−1 ∈ {−1, 0, 1}, not all equal to
zero, such that λ0a0 + λ1a1 + · · ·+ λn−1an−1 = 0, then (A.1) has at most one
solution.

Proof. We proceed by supposing that there exist two different solutions

(s′0, . . . , s
′
n; t

′
1, . . . , t

′
m) and (s

′′
0, . . . , s

′′
n; t

′′
1, . . . , t

′′
m), and show that this would lead

to a contradiction. Observe that s′0 = s
′′
0, because of the first equation in (A.1).

First suppose that s′n = s
′′
n. Since the two solutions are different, there exists

at least one j ∈ {1, . . . , n− 1} such that s′j
= s′′j . By the last equation in (A.1),
it holds that

0 = a0
(
s′0 − s′′0

)
+ a1

(
s′1 − s′′1

)
+ · · ·+ an−1

(
s′n−1 − s′′n−1

)

= a1
(
s′1 − s′′1

)
+ · · ·+ an−1

(
s′n−1 − s′′n−1

)
,

and hence that λ1a1 + · · · + λn−1an−1 = 0, where λj = (s′j − s′′j)/2 for j =
1, . . . , n − 1. Since λj ∈ {−1, 0, 1} and since at least one λj is non-zero, this
would contradict our assumption.

Apparently it must hold that s′n = −s′′n. Again using the last equation in (A.1),
we find:

0 = a0
(
s′0 + s

′′
0

)
+ a1

(
s′1 + s

′′
1

)
+ · · ·+ an−1

(
s′n−1 + s

′′
n−1
)

= 2a0 + a1
(
s′1 + s

′′
1

)
+ · · ·+ an−1

(
s′n−1 + s

′′
n−1
)

Thus, taking µj = (s′j + s
′′
j)/2 for j = 1, . . . , n − 1 and µ0 = 1, it holds that

µ0a0 + µ1a1 + · · ·+ µn−1an−1 = 0. Again we would find a contradiction, since
µj ∈ {−1, 0, 1} and µ0 is certainly non-zero.

We conclude that (A.1) does not have two different solutions. In other words:

if (A.1) has a solution, it is unique. �

37

Translated back to the profit-and-loss account, Lemma A.1 states that system

(3.4) has a unique solution (provided that it has any solution at all) unless there

exists some simple linear relation between the amounts x0, x1, . . . , xn−1, e.g. if

two of these values happen to be equal. Obviously no such linear relation exists

by design, so most records will satisfy this condition.

It should be noted that Lemma A.1 establishes a condition that is sufficient for

uniqueness, but not necessary. This can be seen from the following example

with n = 2 and m = 1. The reader may verify that the system





s0 = 1

−s1 = t1

2s2 = s0 − s1
(s0, s1, s2; t1) ∈ {−1, 1}3 × {−1, 1}

has the unique solution (s0, s1, s2; t1) = (1,−1, 1; 1). This system is just (A.1)

with a0 = 1, a1 = −1, a2 = 2, b0 = 1 and b1 = 1. The condition from

Lemma A.1 is not satisfied, since the equation λ0 − λ1 = 0 clearly has two

non-trivial solutions for λ0,λ1 ∈ {−1, 0, 1}.

In Lemma A.1 we have made the assumption that a0, a1, . . . , an are all non-zero.

In the context of the profit-and-loss account this means that x0, x1, . . . , xn have

to be non-zero. For records that occur in practice this is not always true,

because not all items on the profit-and-loss account necessarily apply to all

firms. If some aj = 0, it is clear that (A.1) does not have a unique solution,

because the value of sj may then be chosen freely. (And if 1 ≤ j ≤ m the

same holds for tj.) On the other hand, put in the context of finding sign errors

the value of sj would then be irrelevant, since it corresponds to a zero-valued

balance amount. Hence it seems reasonable to say that the sign error is uniquely

defined in this situation, provided that the values of sj and tj that correspond

to non-zero balance amounts are uniquely determined by (A.1). In the next

Theorem we allow a1, . . . , an−1 to be zero-valued. However, we still assume

that a0
= 0 and an
= 0, because these assumptions are used explicitly in the
proof of Lemma A.1.

Theorem A.2 Let n ≥ 1 and 0 ≤ m ≤ n−1. Suppose that, for a given record,
a0
= 0 and an
= 0. If the equation λ0a0 + λ1a1 + · · · + λn−1an−1 = 0 does

not have any solution λ0,λ1, . . . ,λn−1 ∈ {−1, 0, 1} for which at least one term
λjaj
= 0, then if (A.1) has a solution, the sign error in the record is uniquely
determined by it.

Proof. The case n = 1,m = 0 is not covered by Lemma A.1. It can be shown

in a straightforward manner that for this case (A.1) has at most one solution,

provided that a0
= 0 and a1
= 0. (We omit this proof here.)

38

Hence we assume that n ≥ 2. We also assume that |ak| = |bk|, because (A.1) has
no solution otherwise. By striking out all equations from (A.1) for which both

sides are zero, and by deleting all terms that are zero from the last equation, we

obtain a reduced system of equations. In this reduced system all coefficients are

non-zero. If at least one value from the original set {a1, . . . , an−1} is non-zero,
then we may apply Lemma A.1 to the reduced system and find that this system

allows at most one solution. Otherwise, the reduced system corresponds to the

case n = 1,m = 0, and we have already seen that this also means that there is

at most one solution.

But for the purpose of detecting sign errors, the solution to the reduced system

is all we are interested in, because the deleted variables all have zero values.

Hence if the record contains a sign error, it is uniquely determined. �

Translating this back to system (3.4), we now know that the sign error is

uniquely determined if

• x0
= 0 and xn
= 0;

• the equation λ0x0+λ1x1+ · · ·+λn−1xn−1 = 0 does not have any solution
λ0,λ1, . . . ,λn−1 ∈ {−1, 0, 1} for which at least one term λjxj
= 0.

While testing these conditions using data collected for the wholesale structural

business statistics 2001, we found that close to 97% of all records satisfied both.

Example. For the purpose of illustration we apply this result to an example

record. The questionnaire for structural business statistics was redesigned at

Statistics Netherlands in 2006, leading to (among many other things) a new

structure for the profit-and-loss account as shown in Table 8. The edit rules

are given by (3.3) with n = 5 and m = 1. The third column of Table 8 displays

an example record. Setting up (3.4) for this record we find:




200s0 = 200

0s1 = 0t1

140s5 = 200s0 + 0s1 + 0s2 + 60s3 + 0s4

(s0, s1, s2, s3, s4, s5; t1) ∈ {−1, 1}6 × {−1, 1}
By striking out all the zero terms, this system can be reduced to:





200s0 = 200

140s5 = 200s0 + 60s3

(s0, s3, s5) ∈ {−1, 1}3
(A.2)

The equation 200λ0 + 60λ3 = 0 clearly has no non-trivial solution for λ0,λ3 ∈
{−1, 0, 1}. Thus, according to Lemma A.1, there is a unique solution to (A.2).
The solution is in fact given by (s0, s3, s5) = (1,−1, 1). This may be expanded to
a solution of the original system by choosing the remaining variables arbitrarily.

Regardless of how this is done, there is only one interpretation as a sign error:

the value of x3 should be changed from 60 to −60. 	

39

Table 8. Structure of the profit-and-loss account in the structural business sta-

tistics from 2006 onward, with an example record.

variable full name example corrected

x0,r operating returns 2, 100 2, 100

x0,c operating costs 1, 900 1, 900

x0 operating results 200 200

x1,r provisions rescinded 0 0

x1,c provisions added 0 0

x1 balance of provisions 0 0

x2 book profit/loss 0 0

x3 operating surplus 60 −60

x4 exceptional result 0 0

x5 pre-tax results 140 140

40

B On totally unimodular matrices

B.1 Recognising the total unimodularity of a matrix

It is infeasible to determine whether a given matrix is totally unimodular by

applying the definition, unless the matrix is very small. In particular, the

number of square submatrices of a matrix R from (5.4) that arises in practice

is exceedingly large. E.g. if there are 100 variables that should conform to

20 balance edit rules (a realistic situation), the number of determinants to be

computed equals
∑20
k=2

(100
k

)(20
k

)
≈ 3× 1022. (On the other hand, we are done

as soon as we find one determinant that lies outside the range {−1, 0, 1}.) The
purpose of this section is to provide feasible methods by which the assumption

that R is totally unimodular may be tested in practice.

We begin by making the following observation which, although easy to prove,

is not readily found in the literature.

Property B.1 Let A be a matrix containing only elements 0, 1 and −1 that
has the following form, possibly after a permutation of columns:

A =
[
B C

]
,

where each column of B contains at most one non-zero element. Then A is

totally unimodular if and only if C is totally unimodular.

Proof. We prove that if C is totally unimodular it follows that A is totally

unimodular, the other implication being trivial. To do this we must show that

the determinant of every square submatrix of A is equal to 0, 1 or −1. The
proof works by induction on the order of the submatrix. The statement is

clearly true for all 1× 1-submatrices. Suppose that the statement holds for all
(k−1)×(k−1)-submatrices ofA (with k > 1) and letAk be any k×k-submatrix
of A.

We may assume that Ak is invertible and also that it contains at least one

column from B, since otherwise there is nothing to prove. Let the jth column

of Ak come from B. Since Ak is invertible, this jth column must contain a

non-zero element, say in the ith row. If we denote this non-zero element by aij ,

we know from (5.1) that

detAk = (−1)i+jaij detAk−1,

where Ak−1 is the (k− 1)× (k − 1)-matrix found by removing the ith row and
the jth column of Ak. Since |aij | = 1 this means that | detAk| = |detAk−1|.
It follows from the invertibility of Ak and from the induction hypothesis that

|detAk| = 1. �

In the proof of the next property we use the fact that A is totally unimodular

if and only if A′ is totally unimodular.

41

Property B.2 Let A be a matrix containing only elements 0, 1 and −1 that
has the following form, possibly after a permutation of rows:

A =

[
B

C

]
,

where each row of B contains at most one non-zero element. Then A is totally

unimodular if and only if C is totally unimodular.

Proof. By Property B.1 we know that A′ is totally unimodular if and only if

C′ is totally unimodular. �

These two properties sometimes allow us to determine whether a given matrix

A is totally unimodular by considering a much smaller matrix. Instead of A

it suffices, by Property B.1, to consider the submatrix A1 that consists of all

columns of A containing two or more non-zero elements. Similarly, instead of

A1 it suffices, by Property B.2, to consider the submatrixA2 that consists of all

rows of A1 containing two or more non-zero elements. Next, it can happen that

one or more columns of A2 contain less than two non-zero elements, so we may

again apply Property B.1 and consider the submatrix A3 found by deleting

these columns from A2. And it may then be possible to consider a further

submatrix by another application of Property B.2. This iterative process may

be continued until we either come across a matrix of which all columns and all

rows contain two or more non-zero elements, or a matrix that is clearly totally

unimodular (or clearly not).

Example. As an illustration we apply this reduction method to the 5×11-matrix
defined in (5.8). By removing all columns with less than two non-zero elements,

we obtain the following matrix:



1 −1 0 0

1 0 0 0

0 0 −1 0

0 1 1 −1
0 0 0 1



.

Next, we remove all rows containing less than two non-zero elements to find:
[
1 −1 0 0

0 1 1 −1

]
.

One more application of Property B.1 reduces this matrix to:
[
−1
1

]
.

This 2× 1-matrix is clearly totally unimodular, and we immediately know that
the original matrix is also totally unimodular. Note that we have obtained this

result without computing a single determinant. 	

42

In this example the reduction method is very successful, because the matrix

under scrutiny happens to be sparse. In general we also need other methods

to determine whether a given matrix is totally unimodular, without having to

resort to computing determinants. The next Theorem completely describes the

case where all columns contain no more than two non-zero elements. The proof

can be found in Heller & Tompkins (1956).

Theorem B.3 (Hoffman, Gale) Let A be a matrix containing only elements

0, 1 and −1, that satisfies these two conditions:

1. Each column contains at most two non-zero elements.

2. The rows of A may be partitioned into two subsets M1 and M2, such that

the following holds for each column containing two non-zero elements: if

the two elements have the same sign their rows are in different subsets

and if the two elements have different signs their rows are in the same

subset.

Then A is totally unimodular. Moreover, every totally unimodular matrix that

satisfies the first condition also satisfies the second condition.

Example. The following 4× 4-matrix is totally unimodular:



1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1



.

This follows from Theorem B.3 by taking e.g. M1 = {1, 2} and M2 = {3, 4}.
Note that the reduction method has no effect here. 	

As the formulation of the last part of Theorem B.3 suggests, there are totally

unimodular matrices that do not satisfy these two conditions, because they

contain a column of three or more non-zero elements. One example of such a

matrix is:

M =



1 1 1

1 1 0

1 0 1


 .

Several characterisations of total unimodularity that are valid for all matrices

may be found in Camion (1965) and Tamir (1976). These characterisations

are insightful, but not easy to check in practice. A different approach is used

by Raghavachari (1976). His result (Theorem B.4 below) relates the total uni-

modularity of one matrix to that of several smaller matrices, thus providing a

recursive algorithm for determining whether a given matrix is totally unimod-

ular.

43

LetA = [aij] be anm×n-matrix containing only elements 0, 1 and −1. Suppose
that aj , the jth column of A, contains k > 2 non-zero elements, and suppose

that aij
= 0. We obtain a matrix in which the jth column has exactly one

non-zero element, by adding the ith row of A to all rows that have an element

in aj with value −aij and by subtracting it from all other rows that have an

element in aj with value aij. Next, we delete the jth column of this matrix to

obtain an m× (n− 1)-matrix that we call Bi. Working from the jth column of

A, such a matrix can be constructed for every i with aij
= 0. Consider the set
Aj of these matrices.

Theorem B.4 (Raghavachari) Let A be an m × n-matrix containing only
elements 0, 1 and −1. A is totally unimodular if and only if every m× (n−1)-
matrix in Aj = {Bi1 , . . . ,Bik} is totally unimodular.

The proof of this Theorem can be found in Raghavachari (1976).

Example. For the purpose of illustration we apply Theorem B.4 to demonstrate

the total unimodularity of M. Working from the first column, the reader may

verify that A1 consists of the following 3× 2-matrices:

B1 =




1 1

0 −1
−1 0


 , B2 =




0 1

1 0

−1 1


 , B3 =



1 0

1 −1
0 1


 .

These matrices are all totally unimodular, as may be seen by applying either

the reduction method or Theorem B.3. It follows from Theorem B.4 thatM is

also totally unimodular. 	

In general, Raghavachari’s method produces a set of m× (n− 1)-matrices for
which neither the reduction method nor Theorem B.3 can be applied. In that

case we can apply Raghavachari’s method for each of these matrices separately.

Many recursions may be needed before we find a final set of smaller matrices of

which it is immediately clear whether they are totally unimodular or not. Since

the number of matrices in this set is exponential in the number of recursions,

Raghavachari’s method is infeasible for large matrices.

B.2 Invertible submatrices

In section 5.3.3 we mentioned the following:

Property B.5 Let m ≤ n and let A be a totally unimodular m × n-matrix.
The number of invertible m×m-submatrices of A equals det(AA′).

We will now prove this.

44

The proof uses the Cauchy-Binet formula (also known as the Binet-Cauchy

formula). This formula states that, for an arbitrary m × n-matrix A and an

arbitrary n×m-matrix B, the following holds:

det (AB) =
∑

S

det(A•S) det(BS•), (B.3)

where the sum is over all S ⊂ {1, . . . , n} with #S = m, A•S denotes the

submatrix of A found by choosing the columns in S and BS• denotes the

submatrix of B found by choosing the rows in S. A proof of the Cauchy-Binet

formula may be found in Harville (1997, §13.8).

In particular, it follows from (B.3) that

det(AA′) =
∑

S

det(A•S) det(A
′
S•) =

∑

S

(det(A•S))
2 .

Now suppose that A is totally unimodular. Observe that

(det(A•S))
2 =

{
0 if A•S is singular

1 if A•S is invertible

So the number of invertible m×m-submatrices of A is equal to det(AA′).

45

	Algorithms for correcting some obvious inconsistencies and rounding errors in business survey data
	Summary
	1 Introduction
	2 Current approach at Statistics Netherlands
	3 Sign errors
	3.1 The profit-and-loss account
	3.2 Sign errors and interchanged returns and costs
	3.3 A binary linear programming problem
	3.4 Allowing for rounding errors
	3.5 Summary

	4 Cumulation errors
	4.1 Denition and basic correction method
	4.2 Allowing for sign errors
	4.3 Allowing for rounding errors
	4.4 Summary

	5 Rounding errors
	5.1 Introduction
	5.2 Something about matrices
	5.3 The scapegoat algorithm

	References
	A Uniqueness of the solutionto (3.4)
	B On totally unimodular matrices
	B.1 Recognising the total unimodularity of a matrix
	B.2 Invertible submatrices

